

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

NOTICE TO BIDDERS AND

SPECIAL PROVISIONS

FOR CONSTRUCTION ON STATE HIGHWAY IN ORANGE COUNTY AT VARIOUS LOCATIONS

In District 12 On Route 5, 74

Under

Bid book dated June 4, 2012

Standard Specifications dated 2006

Project Plans approved April 9, 2012

Standard Plans dated 2006

Identified by

Contract No. 12-0E3104 12-Ora-5, 74-9.3/10.0, 0.0/0.2 Project ID 1200000102

Electronic Advertising Contract

SPECIAL NOTICES

 Refer to Section 8-1.07, "Liquidated Damages," of the Amendments to the Standard Specifications for your project-specific liquidated damages based on your total bid.

- The Department has changed its DVBE requirements. Refer to section titled "Disabled Veteran Business Enterprises" in Section 2, "Bidding," of these special provisions.
- The Department is providing an electronic Information Handout for this project. Refer to Section 2-1.03B, "Supplemental Project Information," in the Amendments to the Standard Specifications for the location of this information.
- The Department is allowing contractors to submit electronic payroll records to the District Labor Compliance Office. Refer to section titled "Electronic Submission of Payroll Records" under Section 5, "General," of these special provisions.

CONTRACT NO. 12-0E3104

The special provisions contained herein have been prepared by or under the direction of the following Registered Persons.

REGISTERED CIVIL ENGINEER	David Lam C63493 D9-30-12 CIVIL OR DALFORM
HYDRAULICS Phi when REGISTERED CIVIL ENGINEER	Phi Dinh C61179 CIVIL OR 1985 TOWN TOW
REGISTERED ON IL ENGINEER	Bang Hua C71273 DOI: 12-31-13 CIVIL DA CASTONIA

CONTRACT NO. 12-0E3104

The special provisions contained herein have been prepared by or under the direction of the following Registered Persons.

TRAFFIC DESIGN	PEST BIG TON U
REGISTERED CIVIL ENGINEER	Bernadette Suraweera C77207
ELECTRICAL (HIGHWAYS)	GELF BOO TOWN
Namena Van Tomons, REGISTERED ELECTRICAL ENGINEER	Vanessa Truong E13983 ED. 06-30-12 ELECT OR 194 FOR
ELECTRICAL (HIGHWAYS)	PERS BOS LONG
REGISTERED ELECTRICAL ENGINEER	B. K. Sharma E19299 Exp. 12-31-12 ELECT. OA USA 12-12

CONTRACT NO. 12-0E3104

THE SPECIAL PROVISIONS CONTAINED HEREIN HAVE BEEN PREPARED BY OR UNDER THE DIRECTION OF THE FOLLOWING REGISTERED PERSONS.

LANDSCAPE

LANDSCAPE

LICENSED LANDSCAPE ARCHITECT

STRUCTURES

REGISTERED CIVIL ENGINEER

C 69430 06/30/12

Vaikunthan Renganathan

TABLE OF CONTENTS

NOTICE TO BIDDERS	
COPY OF BID ITEM LIST	
SPECIAL PROVISIONS	
SECTION 1 (BLANK)	
SECTION 2 BIDDING	
2-1.01 SMALL BUSINESS AND NON-SMALL BUSINESS SUBCONTRACTOR PREFERENCES	
2-1.02 DISABLED VETERAN BUSINESS ENTERPRISES	
2-1.03 CALIFORNIA COMPANIES	17
2-1.04 TIE BID RESOLUTION	
2-1.05 OPT OUT OF PAYMENT ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS	18
SECTION 3 CONTRACT AWARD AND EXECUTION	
3-1.01 SMALL BUSINESS PARTICIPATION REPORT	
SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION, AND LIQUIDATED DAMAGES	
SECTION 5 GENERAL	20
5-1.01 EMISSIONS REDUCTION	20
5-1.02 NON–SMALL BUSINESSES	20
5-1.03 DISABLED VETERAN BUSINESS ENTERPRISES	20
5-1.04 PARTNERING DISPUTE RESOLUTION	20
5-1.05 PAYMENT ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS	21
5-1.06 SURFACE MINING AND RECLAMATION ACT	24
5-1.07 ELECTRONIC SUBMISSION OF PAYROLL RECORDS	24
5-1.08 FORCE ACCOUNT PAYMENT	25
5-1.09 AREAS FOR CONTRACTOR'S USE	25
5-1.10 PAYMENTS	26
5-1.11 SUPPLEMENTAL PROJECT INFORMATION	27
5-1.12 RELATIONS WITH CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD	27
5-1.13 MATERIAL SITES	
5-1.14 NONHIGHWAY FACILITIES (INCLUDING UTILITIES)	28
5-1.15 RELIEF FROM MAINTENANCE AND RESPONSIBILITY	
SECTION 6. (BLANK)	37
SECTION 7. (BLANK)	
SECTION 8. MATERIALS	
SECTION 8-1. MISCELLANEOUS	
8-1.01 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS	37
8-1.02 STATE-FURNISHED MATERIALS	
8-1.03 SLAG AGGREGATE	43
SECTION 8-2. CONCRETE	
8-2.01 PORTLAND CEMENT CONCRETE	
8-2.02 PRECAST CONCRETE QUALITY CONTROL	
8-2.03 SELF-CONSOLIDATING CONCRETE FOR PRECAST ELEMENTS	48
SECTION 8-3. WELDING	
8-3.01 WELDING	50
WELDING QUALITY CONTROL	
WELDING FOR OVERHEAD SIGN AND POLE STRUCTURES	
STEEL PIPE PILING QUALIFICATION AUDIT	55
SECTION 9. DESCRIPTION OF BRIDGE WORK	
SECTION 10. CONSTRUCTION DETAILS	
SECTION 10-1. GENERAL	
10-1.00 CONSTRUCTION PROJECT INFORMATION SIGNS	
10-1.01 ORDER OF WORK	
10-1.02 WATER POLLUTION CONTROL	
10-1.03 CONSTRUCTION SITE MANAGEMENT	
10-1.04 STREET SWEEPING	
10-1.05 TEMPORARY HYDRAULIC MULCH (BONDED FIBER MATRIX)	
10-1.06 TEMPORARY CONCRETE WASHOUT (PORTABLE)	

10-1.07 TEMPORARY FIBER ROLL	
10-1.08 TEMPORARY SILT FENCE	
10-1.09 TEMPORARY GRAVEL BAG BERM	
10-1.10 TEMPORARY CONSTRUCTION ENTRANCE	95
10-1.11 TEMPORARY DRAINAGE INLET PROTECTION	97
10-1.12 TEMPORARY SUPPORTS	106
TEMPORARY SUPPORT DESIGN AND DRAWINGS	107
TEMPORARY SUPPORT DESIGN CRITERIA	
SPECIAL LOCATIONS	
TEMPORARY SUPPORT CONSTRUCTION	108
REMOVING TEMPORARY SUPPORTS	
PAYMENT	
10-1.13 TEMPORARY PEDESTRIAN SIDEWALK	100
10-1.14 COOPERATION	
10-1.15 PROGRESS SCHEDULE (CRITICAL PATH METHOD)	
10-1.16 TIME-RELATED OVERHEAD	
10-1.16 TIME-RELATED OVERHEAD	
10-1.18 CONSTRUCTION AREA SIGNS	
10-1.19 MAINTAINING TRAFFIC	
10-1.20 CLOSURE REQUIREMENTS AND CONDITIONS	
10-1.21 IMPACT ATTENUATOR VEHICLE	
10-1.22 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE	
10-1.23 TEMPORARY PAVEMENT DELINEATION	
10-1.24 BARRICADE	
10-1.25 PORTABLE CHANGEABLE MESSAGE SIGNS	
10-1.26 CHANNELIZER	
10-1.27 TEMPORARY TRAFFIC SCREEN	133
10-1.28 TEMPORARY CRASH CUSHION MODULE	
10-1.29 REMOVE YELLOW TRAFFIC STRIPE AND PAVEMENT MARKING (HAZARDOUS WASTE)	135
10-1.30 TREATED WOOD WASTE	138
10-1.31 EXISTING HIGHWAY FACILITIES	139
EARTH MATERIAL CONTAINING LEAD	
REMOVE METAL BEAM GUARD RAILING	
REMOVE SIGN STRUCTURE	
REMOVE PAVEMENT MARKER	
REMOVE TRAFFIC STRIPE AND PAVEMENT MARKING	
RESIDUE CONTAINING LEAD FROM PAINT AND THERMOPLASTIC	
REMOVE DRAINAGE FACILITY	
REMOVE BRAINAGETACIETT	
RESET ROADSIDE SIGN	
RELOCATE ROADSIDE SIGN	
ADJUST INLET	
REMOVE ASPHALT CONCRETE PAVEMENT	142
COLD PLANE ASPHALT CONCRETE PAVEMENT	
BRIDGE REMOVAL	
REMOVE CONCRETE	145
10-1.32 REMOVAL OF UNDERGROUND STORAGE TANK (UST) SYSTEM, REMOVAL OF	
UNDERGROUND WASTE OIL TANK SYSTEM, REMOVAL OF HYDRAULIC LIFT, REMOVAL OF	
REMEDATION\VAPOR EXTRACTION SYSTEM (VES), REMOVAL AND DISPOSAL OF PETROLEUM	
HYDROCARBON CONTAMINATED SOIL, REMOVAL AND DISPOSAL OF PEA GRAVEL, AND	
BACKFILLING AND COMPACTION OF SOIL	145
10-1.33 DESTRUCTION OF MONITORING WELLS AND REMEDIATION WELLS, AND	
INSTALLATION OF MONITORING WELLS	152
10-1.34 CLEARING AND GRUBBING	155
10-1.35 EARTHWORK	155
GEOCOMPOSITE DRAIN	158
10-1.36 LIGHTWEIGHT FILL (CELLULAR CONCRETE)	159
10-1.37 RETAINING STRUCTURES	

POST-CONSTRUCTION WALL MOVEMENT MONITORING	
10-1.38 CONTROLLED LOW STRENGTH MATERIAL	
10-1.39 LIGHTWEIGHT FILL (EPS GEOFOAM)	
GENERAL	
MATERIALS	
CONSTRUCTION	
MEASUREMENT	
PAYMENT	
10-1.40 EROSION CONTROL (COMPOST BLANKET)	170
10-1.41 ROCK BLANKET	
10-1.42 INTERLOCKING CONCRETE PAVERS (SIDEWALK)	
MATERIALS	
EARTHWORK AND PLACEMENT	175
MEASUREMENT AND PAYMENT	176
10-1.43 IRRIGATION CROSSOVERS	176
10-1.44 IRRIGATION SLEEVE	176
10-1.45 AGGREGATE SUBBASE	177
10-1.46 AGGREGATE BASE	177
10-1.47 LEAN CONCRETE BASE	177
10-1.48 HOT MIX ASPHALT	
10-1.49 RUBBERIZED HOT MIX ASPHALT (GAP GRADED)	178
10-1.50 HOT MIX ASPHALT (MISCELLANEOUS AREAS)	180
10-1.51 MINOR HOT MIX ASPHALT	180
10-1.52 HOT MIX ASPHALT AGGREGATE LIME TREATMENT - SLURRY METHOD	180
10-1.53 HOT MIX ASPHALT AGGREGATE LIME TREATMENT - DRY LIME METHOD	182
10-1.54 LIQUID ANTISTRIP TREATMENT	185
10-1.55 JOINTED PLAIN CONCRETE PAVEMENT (RAMP TERMINI)	187
10-1.56 CONTINUOUSLY REINFORCED CONCRETE PAVEMENT (RAPID STRENGTH CONCRETE)	189
10-1.57 CONTINUOUSLY REINFORCED CONCRETE PAVEMENT	
10-1.58 CONCRETE PAVEMENT JUST-IN-TIME-TRAINING	201
10-1.59 PILING	202
CAST-IN-DRILLED-HOLE CONCRETE PILES	205
OPEN ENDED CAST-IN-STEEL-SHELL CONCRETE PILING	218
STEEL PIPE PILING	219
NONDESTRUCTIVE TESTING OF CLASS N STEEL PIPE PILING	222
10-1.60 PRESTRESSING CONCRETE	224
10-1.61 CONCRETE STRUCTURES	224
FALSEWORK	224
COST REDUCTION INCENTIVE PROPOSALS FOR CAST-IN-PLACE PRESTRESSED BOX	
GIRDER BRIDGES	225
10-1.62 BRIDGE DECK SURFACE TEXTURE	226
DECK CLOSURE POURS	227
SLIDING BEARINGS	
ELASTOMERIC BEARING PADS	227
MEASUREMENT AND PAYMENT	227
10-1.63 STRUCTURE APPROACH SLABS (TYPE EQ)	228
10-1.64 SEALING JOINTS	230
10-1.65 REFINISHING BRIDGE DECKS	230
10-1.66 ARCHITECTURAL TEXTURE (TEXTURED CONCRETE)	232
10-1.67 PORTLAND CEMENT PLASTER	
MATERIALS	
PLASTER PROPORTIONING AND MIXING	
PLASTER APPLICATION	
10-1.68 COLORED CONCRETE	
10-1.69 REINFORCEMENT	
MEASUREMENT AND PAYMENT	
10-1.70 STEEL STRUCTURES	
MATERIALS	236

ROTATIONAL CAPACITY TESTING PRIOR TO SHIPMENT TO JOB SITE	
INSTALLATION TENSION TESTING AND ROTATIONAL CAPACITY TESTING AFTER ARRIVA	
ON THE JOB SITE	
SEALING	
WELDING	
10-1.71 SIGN STRUCTURES	
10-1.72 ROADSIDE SIGNS	243
10-1.73 INSTALL ROADSIDE SIGN PANEL ON EXISTING POST	243
10-1.74 FURNISH SIGN	
SHEET ALUMINUM	
RETROREFLECTIVE SHEETING	245
PROCESS COLOR AND FILM	
SINGLE SHEET ALUMINUM SIGN	246
LAMINATED PANEL SIGN	246
MEASUREMENT AND PAYMENT	247
10-1.75 PREPARE AND STAIN CONCRETE	247
MATERALS	247
TEST PANEL	248
DEBRIS CONTAINMENT AND COLLECTION PROGRAM	248
SURFACE PREPARATION	248
STAIN APPLICATION FOR CONCRETE SMOOTH BANDS ON RETAINING WALLS AND	
RETAINING STRUCTURE & CONCRETE BARRIER	248
STAIN APPLICATION FOR TEXTURED CONCRETE	
MEASUREMENT AND PAYMENT	249
10-1.76 REINFORCED CONCRETE PIPE	249
10-1.77 PREFABRICATED VERTICAL DRAIN	251
10-1.78 OVERSIDE DRAIN	
10-1.79 MISCELLANEOUS FACILITIES	253
10-1.80 DRAINAGE INLET MARKER	253
10-1.81 WELDED STEEL PIPE CASING (BRIDGE)	254
10-1.82 SLOPE PROTECTION	
10-1.83 SLOPE PAVING	
10-1.84 MISCELLANEOUS CONCRETE CONSTRUCTION	
10-1.85 MISCELLANEOUS IRON AND STEEL	256
10-1.86 MISCELLANEOUS METAL (BRIDGE)	
10-1.87 BRIDGE DECK DRAINAGE SYSTEM	
10-1.88 MANAGEMENT OF CONTAMINATED GROUNDWATER	
10-1.89 CHAIN LINK FENCE	
10-1.90 MARKERS AND DELINEATORS	
10-1.91 METAL BEAM GUARD RAILING	
ALTERNATIVE IN-LINE TERMINAL SYSTEM	
ALTERNATIVE FLARED TERMINAL SYSTEM	260
10-1.92 VEGETATION CONTROL (MINOR CONCRETE)	
10-1.93 CHAIN LINK RAILING	
10-1.94 CABLE RAILING	
10-1.95 CONCRETE BARRIER	
10-1.96 TRANSITION RAILING (TYPE WB)	
10-1.97 CRASH CUSHION (TYPE CAT)	
10-1.98 TEMPORARY CRASH CUSHION (ADIEM)	
10-1.99 CRASH CUSHION (REACT)	
10-1.100 THERMOPLASTIC TRAFFIC STRIPE AND PAVEMENT MARKING	
10-1.101 PAINT TRAFFIC STRIPE AND PAVEMENT MARKING	
10-1.102 PAVEMENT MARKERS	
SECTION 10-2 HIGHWAY PLANTING AND IRRIGATION SYSTEMS	
10-2.01 GENERAL.	
PROGRESS INSPECTIONS	
COST BREAK-DOWN	
10-2.02 EXISTING HIGHWAY PLANTING	

10-2.03 EXISTING HIGHWAY IRRIGATION FACILITIES	272
CHECK AND TEST EXISTING IRRIGATION FACILITIES	272
REMOVE EXISTING IRRIGATION FACILITIES	
10-2.04 HIGHWAY PLANTING	
HIGHWAY PLANTING MATERIALS	
ROADSIDE CLEARING	273
PESTICIDES	
PREPARING PLANTING AREAS	
CULTIVATE	
PLANTING	
TURF (SOD)	
PLANT ESTABLISHMENT WORK	276
10-2.05 IRRIGATION SYSTEMS	277
VALVE BOXES	
BALL VALVES	277
GATE VALVES	
ELECTRIC AUTOMATIC IRRIGATION COMPONENTS	278
IRRIGATION CONTROLLER ENCLOSURE CABINET	
IRRIGATION SYSTEMS FUNCTIONAL TEST	280
PIPE	
THRUST BLOCK	281
WATER METER	
BACKFLOW PREVENTER ASSEMBLIES	
BACKFLOW PREVENTER ASSEMBLY ENCLOSURE	
TESTING NEW BACKFLOW PREVENTERS	
SPRINKLERS	
RECYCLED WATER WARNING SIGNS	
FILTER ASSEMBLY UNIT	
FINAL IRRIGATION SYSTEM CHECK	
SECTION 10-3. ELECTRICAL SYSTEMS	
10-3.01 DESCRIPTION	
10-3.02 COST BREAK-DOWN	
10-3.03 MAINTAINING EXISTING AND TEMPORARY ELECTRICAL SYSTEMS	284
10-3.04 MAINTAINING EXISTING TRAFFIC MANAGEMENT SYSTEM ELEMENTS DURING	20
CONSTRUCTION	284
10-3.05 CAST-IN-DRILLED-HOLE CONCRETE PILE FOUNDATIONS	
10-3.06 STANDARDS, STEEL PEDESTALS, AND POSTS	
10-3.07 CONDUIT	
10-3.08 TRAFFIC PULL BOXES	
10-3.09 PULL BOX	288
10-3.10 CONDUCTORS, CABLES, AND WIRING	
10-3.11 SERVICE	290
10-3.12 NUMBERING ELECTRICAL EQUIPMENT	
10-3.13 STATE-FURNISHED CONTROLLER ASSEMBLIES	
10-3.14 LIGHT EMITTING DIODE SIGNAL MODULE	
10-3.16 BATTERY BACKUP SYSTEM	
10-3.17 CITY OF SAN JUAN CAPISTRANO BATTERY BACKUP SYSTEM	
10-3.18 LIGHT EMITTING DIODE PEDESTRIAN SIGNAL FACE MODULES	
10-3.19 LIGHT EMITTING DIODE FEDESTRIAN SIGNAL FACE MODULE	
10-3.19 LIGHT EMITTING DIODE COUNTDOWN FEDESTRIAN SIGNAL MODULE	
10-3.21 VIDEO IMAGE VEHICLE DETECTION SYSTEM	
10-3.21 VIDEO IMAGE VEHICLE DETECTION STSTEM	
10-3.23 LUMINAIRES	
10-1.24 LIGHT EMITTING DIODE LUMINAIRE	
10-3.25 INTERNALLY ILLUMINATED SIGNS	
10-3.26 INTERNALLY ILLUMINATED STREET NAME SIGNS	
10-3.20 INTERNALET ILLOWINATED STREET NAME SIGNS	329

10-3.28 FIBER OPTIC CABLE	328
10-3.29 COMMUNICATION SYSTEM	
GENERAL	
10-3.30 SYSTEM TESTING AND DOCUMENTATION	
10-3.31 TRAINING	350
10-3.32 PAYMENT	
AMENDMENTS TO THE STANDARD SPECIFICATIONS	353

STANDARD PLANS LIST

The Standard Plan sheets applicable to this contract include, but are not limited to, those indicated below. Applicable Revised Standard Plans (RSP) and New Standard Plans (NSP) indicated below are included in the project plans as Standard Plan sheets.

A10A	Acronyms and Abbreviations (Sheet 1 of 2)
A10B	Acronyms and Abbreviations (Sheet 2 of 2)
A10C	Symbols (Sheet 1 of 2)
A10D	Symbols (Sheet 2 of 2)
A20A	Pavement Markers and Traffic Lines, Typical Details
A20B	Pavement Markers and Traffic Lines, Typical Details
A20C	Pavement Markers and Traffic Lines, Typical Details
A20D	Pavement Markers and Traffic Lines, Typical Details
A24A	Pavement Markings – Arrows
A24B	Pavement Markings – Arrows
RSP A24C	Pavement Markings – Symbols and Numerals
A24D	Pavement Markings – Words
A24E	Pavement Markings – Words and Crosswalks
A62B	Limits of Payment for Excavation and Backfill – Bridge Surcharge and Wall
A62C	Limits of Payment for Excavation and Backfill – Bridge
A62D	Excavation and Backfill – Concrete Pipe Culverts
RSP A62DA	Excavation and Backfill – Concrete Pipe Culverts
A62E	Excavation and Backfill – Cast-In-Place Reinforced Concrete Box and Arch Culverts
A73A	Object Markers
A73B	Markers
A73C	Delineators, Channelizers and Barricades
RSP A76A	Concrete Barrier Type 60
A76B	Concrete Barrier Type 60
RSP A76F	Concrete Barrier Type 60GE
RSP A77A1	Metal Beam Guard Railing – Standard Railing Section (Wood Post with Wood Block)
RSP A77A2	Metal Beam Guard Railing – Standard Railing Section (Steel Post with Notched Wood or
	Notched Recycled Plastic Block)
A77B1	Metal Beam Guard Railing – Standard Hardware
A77C1	Metal Beam Guard Railing – Wood Post and Wood Block Details
A77C2	Metal Beam Guard Railing Steel Post, Notched Wood Block and Notched Recycled Plastic Block Details
RSP A77C3	Metal Beam Guard Railing - Typical Line Post Embedment and Hinge Point Offset Details
RSP A77C4	Metal Beam Guard Railing – Typical Railing Delineation and Dike Positioning Details
NSP A77C5	Metal Beam Guard Railing – Typical Vegetation Control Standard Railing Section
NSP A77C6	Metal Beam Guard Railing – Typical Vegetation Control for Terminal System End Treatments
NSP A77C7	Metal Beam Guard Railing – Typical Vegetation Control at Structure Approach and Departure
NSP A77C8	Metal Beam Guard Railing – Typical Vegetation Control at Fixed Object
NSP A77C9	Metal Beam Guard Railing – Typical Vegetation Control at Fixed Object
NSP A77C10	Metal Beam Guard Railing – Typical Vegetation Control at Fixed Object
RSP A77F1	Metal Beam Guard Railing – Typical Layouts for Structure Approach
RSP A77H1	Metal Railing – End Anchor Assembly (Type SFT)
RSP A77H2	Metal Railing – Rail Tensioning Assembly
A77H3	Metal Railing – Anchor Cable and Anchor Plate Details
	Thener care and thener that Deans

A77I1 Metal Railing – End Anchor Assembly (Type CA)

RSP A77J3 Metal Beam Guard Railing – Connections to Abutments and Walls

RSP A77J4 Metal Beam Guard Railing – Transition Railing (Type WB)

A77L1 Metal Beam Railing - Terminal System (Type SRT)
A77L2 Metal Beam Railing - Terminal System (Type SKT)
A77L3 Metal Beam Railing - Terminal System (Type ET)
A77L4 Metal Beam Railing - Terminal System (Type CAT)
A77L5 Metal Beam Railing - Terminal System (Type FLEAT)

A82B1 Crash Cushion (Type ADIEM)
RSP A82C1 Crash Cushion (Type React 9CBB)

A82C2 Crash Cushion (Type React 9CBB) – Backup Block Details

A82C3 Crash Cushion (Type React 9CBB) – Concrete Barrier Transition Details

RSP A85 Chain Link Fence

NSP A85A Chain Link Fence Details
NSP A85B Chain Link Fence Details
RSP A87A Curbs and Driveways
A87B Asphalt Concrete Dikes
RSP A88A Curb Ramp Details

A88B Curb Ramp and Island Passageway Details

RSP P1 Jointed Plain Concrete Pavement

RNSP P4 Continuously Reinforced Concrete Pavement
RSP P10 Concrete Pavement – Dowel Bar Details
RSP P12 Concrete Pavement – Dowel Bar Basket Details

NSP P13 Continuously Reinforced Concrete Pavement – Single Piece Transverse Bar Assembly

RSP P17 Concrete Pavement – Tie Bar Basket Details

RSP P18 Concrete Pavement – Lane Schematics and Isolation Joint Detail

RSP P20 Concrete Pavement – Joint Details

RSP P30 Jointed Plain Concrete Pavement – End Panel Pavement Transitions

NSP P34 Concrete Pavement – Lane Drop Paving Details No. 2
RSP P35 Concrete Pavement – Ramp Transition Paving Details
RSP P45 Concrete Pavement – Drainage Inlet Details No. 1

P70 Asphalt Concrete Paving (Longitudinal Tapered Notched Wedge Joint)

D72 Drainage Inlets
D73 Drainage Inlets
D74C Drainage Inlets Details

D75C Pipe Inlets – Ladder and Trash Rack Details

RSP D77A Grate Details

D77B Bicycle Proof Grate Details

D78A Gutter Depressions

D81 Cast-In-Place Reinforced Concrete – Double Box Culvert

D82 Cast-In-Place Reinforced Concrete Box Culvert – Miscellaneous Details

D87D Overside Drains
D93A Pipe Riser Connections

D93B Drainage Inlet Riser Connections D94B Concrete Flared End Sections

D97H Reinforced Concrete Pipe or Non-Reinforced Concrete Pipe – Standard and Positive Joints

D102 Underdrains

RSP H1 Planting and Irrigation – Abbreviations Planting and Irrigation – Symbols RSP H2 H3 Planting and Irrigation Details RSP H5 Planting and Irrigation Details Planting and Irrigation Details H6 RSP H7 Planting and Irrigation Details Planting and Irrigation Details RSP H8 H9 Planting and Irrigation Details

H10 Irrigation Controller Enclosure Cabinet

```
RSP T1A
                Temporary Crash Cushion, Sand Filled (Unidirectional)
RSP T1B
                Temporary Crash Cushion, Sand Filled (Bidirectional)
RSP T2
                Temporary Crash Cushion, Sand Filled (Shoulder Installations)
                Temporary Railing (Type K)
T3
NSP T3A
                Temporary Railing (Type K)
T4
                Temporary Traffic Screen
                Construction Project Funding Identification Signs
RSP T7
                Traffic Control System for Lane Closure on Multilane Conventional Highways
T12
T14
                Traffic Control System for Ramp Closure
T51
                Temporary Water Pollution Control Details (Temporary Silt Fence)
RSP T56
                Temporary Water Pollution Control Details (Temporary Fiber Roll)
                Temporary Water Pollution Control Details (Temporary Construction Entrance)
T58
                Temporary Water Pollution Control Details (Temporary Drainage Inlet Protection)
NSP T64
B0-1
                Bridge Details
                Bridge Details
B0-3
                Bridge Details
B0-5
B0-13
                Bridge Details
B2-5
                Pile Details - Class 90 and Class 140
                Retaining Wall Type 1 - H = 4' through 30'
B3-1
B3-8
                Retaining Wall Details No. 1
                Joint Seals (Maximum Movement Rating = 2")
RSP B6-21
B7-1
                Box Girder Details
                Deck Drains – Types D-1 and D-2
B7-6
                Deck Drainage Details
B7-8
B7-10
                Utility Opening – Box Girder
B7-11
                Utility Details
                Cast-In-Place Prestressed Girder Details
B8-5
                Cable Railing
RSP B11-47
                Concrete Barrier Type 26
B11-54
                Concrete Barrier Type 736
B11-56
RSP B11-60
                Concrete Barrier Type 80 (Sheet 1 of 2)
B11-61
                Concrete Barrier Type 80 (Sheet 2 of 2)
RSP B11-62
                Concrete Barrier Type 80SW (Sheet 1 of 3)
                Concrete Barrier Type 80SW (Sheet 2 of 3)
B11-63
RSP B11-64
                Concrete Barrier Type 80SW (Sheet 3 of 3)
B14-5
                Water Supply Line (Details) (Pipe Sizes Less Than 4")
RS1
                Roadside Signs, Typical Installation Details No. 1
                Roadside Signs – Wood Post, Typical Installation Details No. 2
RS2
RS4
                Roadside Signs, Typical Installation Details No. 4
S1
                Overhead Signs - Truss, Instructions and Examples
S2
                Overhead Signs – Truss, Single Post Type – Post Type II thru IX
S3
                Overhead Signs – Truss, Single Post Type – Base Plate and Anchorage Details
                Overhead Signs – Truss, Single Post Type – Structural Frame Members Details No. 1
S4
S5
                Overhead Signs – Truss, Single Post Type – Structural Frame Members Details No. 2
                Overhead Signs - Truss, Gusset Plate Details
S6
S8
                Overhead Signs - Truss, Single Post Type - Round Pedestal Pile Foundation
S12
                Overhead Signs – Truss, Structural Frame Details
S13
                Overhead Signs – Truss, Frame Juncture Details
                Overhead Signs - Walkway Details No. 1
S16
S17
                Overhead Signs - Walkway Details No. 2
S17A
                Overhead Signs - Walkway Details No. 3
                Overhead Signs - Walkway Safety Railing Details
S18
S19
                Overhead Signs – Truss, Sign Mounting Details – Laminated Panel – Type A
S43
                Overhead Signs – Lightweight, Type A, Connection Details
S46
                Overhead Signs - Lightweight, Sign Panel Mounting Details, Laminated Panel - Type A
S47
                Overhead Signs – Lightweight, Light Fixture Mounting Details
```

S48	Overhead Signs – Lightweight Post Details
S81	Overhead Laminated Sign – Single or Multiple Panel, Type A (1" Thick)
S85	Seam Closure, "H" Section Extrusion and Post Spacing Tables, Multi-Horizontal
006	Laminated Panel Aluminum Signs
S86	Laminated Panel Details – Extrusions for Type A, B and H Panels
S87	Type A-1 Mounting Hardware – Overhead Laminated Type A Panel, Truss and
COO	Lightweight Sign Structures
S88	Type A-2 Mounting Hardware – Overhead Laminated Type A Panel, Bridge Mounted and Tubular Sign Structures
S93	Framing Details for Framed Single Sheet Aluminum Signs, Rectangular Shape
S94	Roadside Framed Single Sheet Aluminum Signs, Rectangular Shape
S95	Roadside Single Sheet Aluminum Signs, Rectangular Shape
RSP ES-1A	Electrical Systems (Symbols and Abbreviations)
RSP ES-1B	Electrical Systems (Symbols and Abbreviations)
RSP ES-1C	Electrical Systems (Symbols and Abbreviations)
ES-2A	Electrical Systems (Service Equipment)
RSP ES-2C	Electrical Systems (Service Equipment Notes, Type III Series)
RSP ES-2E	Electrical Systems (Service Equipment and Typical Wiring Diagram, Type III – B Series)
RSP ES-2F	Electrical Systems (Service Equipment and Typical Wiring Diagram Type III – C Series)
ES-3B	Electrical Systems (Controller Cabinet Details)
ES-3C	Electrical Systems (Controller Cabinet Details)
ES-3H	Electrical Systems (Electric Service Irrigation)
ES-4A	Electrical Systems (Signal Heads and Mountings)
ES-4B	Electrical Systems (Signal Heads and Mountings)
RSP ES-4C	Electrical Systems (Signal Heads and Mountings)
RSP ES-4D	Electrical Systems (Signal Heads and Mountings)
ES-4E	Electrical Systems (Signal Faces and Mountings)
RSP ES-5A	Electrical Systems (Detectors)
ES-5B	Electrical Systems (Detectors)
ES-5C	Electrical Systems (Detectors)
ES-5D	Electrical Systems (Detectors)
RSP ES-6A	Electrical Systems (Lighting Standard, Types 15 and 21)
ES-6B	Electrical Systems (Lighting Standard, Types 15 and 21, Barrier Rail Mounted Details)
RSP ES-6E	Electrical Systems (Lighting Standard, Types 30 and 31)
ES-6F	Electrical Systems (Lighting Standard, Types 30 and 31, Slip Base Plate Details)
ES-6G	Electrical Systems (Lighting Standard, Type 32)
ES-7A	Electrical Systems (Signal and Lighting Standards, Push Button Posts and Type 15TS
	Standard)
RSP ES-7B	Electrical Systems (Signal and Lighting Standard - Type 1 Standards and Equipment
	Numbering)
RSP ES-7F	Electrical Systems (Signal and Lighting Standard – Case 4 Arm Loading, Wind Velocity =
	100 mph, Arm Lengths 25' to 45')
RSP ES-7G	Electrical Systems (Signal And Lighting Standard – Case 5 Arm Loading, Wind Velocity =
EC ZII	100 mph, Arm Lengths 50' to 55')
ES-7H	Electrical Systems (Signal and Lighting Standard – Case 5 Arm Loading, Wind Velocity =
EC 7M	100 mph, Arm Lengths 60' to 65')
ES-7M	Electrical Systems (Signal and Lighting Standards – Details No. 1)
ES-7N	Electrical Systems (Signal and Lighting Standards – Details No. 2)
ES-70 ES-7P	Electrical Systems (Sign Illumination – Internally Illumination Street Name Sign)
	Electrical Systems (Pedestrian Barricades)
ES-8 (CANCELED)	CANCELED ON JANUARY 20, 2012
NSP ES-8A	Electrical Systems (Pull Box)
NSP ES-8B	Electrical Systems (Traffic Rated Pull Box)
RSP ES-9A	Electrical Systems (Flarical Details, Structure Installations)
ES-9B	Electrical Systems (Electrical Details, Structure Installations)
_~ , _	

RSP ES-9C	Electrical Systems (Electrical Details, Structure Installations)
ES-9D	Electrical Systems (Electrical Details, Structure Installations)
ES-10	Electrical Systems (Isofootcandle Diagrams)
ES-11	Electrical Systems (Foundation Installations)
ES-13A	Electrical Systems (Splicing Details)
ES-13B	Electrical Systems (Wiring Details and Fuse Ratings)
ES-15A	Electrical Systems (Sign Illumination Equipment)
ES-15C	Electrical Systems (Sign Illumination Equipment)
RSP ES-15D	Electrical Systems (Lighting and Sign Illumination Control)
ES-10 ES-11 ES-13A ES-13B ES-15A ES-15C	Electrical Systems (Isofootcandle Diagrams) Electrical Systems (Foundation Installations) Electrical Systems (Splicing Details) Electrical Systems (Wiring Details and Fuse Ratings) Electrical Systems (Sign Illumination Equipment) Electrical Systems (Sign Illumination Equipment)

NOTICE TO BIDDERS

Bids open Thursday, August 2, 2012

Dated June 4, 2012

General work description: Replace bridge and widen ramp.

The Department will receive sealed bids for CONSTRUCTION ON STATE HIGHWAY IN ORANGE COUNTY AT VARIOUS LOCATIONS.

District-County-Route-Post Mile: 12-Ora-5, 74-9.3/10.0, 0.0/0.2

Contract No. 12-0E3104

The Contractor must have either a Class A license or a combination of Class C licenses which constitutes a majority of the work.

The Department establishes no DVBE Contract goal but encourages bidders to obtain DVBE participation.

Bids must be on a unit price basis.

Complete the work, including plant establishment work, within 800 working days.

The estimated cost of the project is \$32,000,000.

No prebid meeting is scheduled for this project.

The Department will receive bids until 2:00 p.m. on the bid open date at 3347 Michelson Drive, Suite 100, Irvine, CA 92612-1692. Bids received after this time will not be accepted.

The Department will open and publicly read the bids at the above location immediately after the specified closing time.

District office addresses are provided in the Standard Specifications.

Present bidders' inquiries to the Department and view the Department's responses at:

http://www.dot.ca.gov/hq/esc/oe/project_status/bid_inq.html

Questions about alleged patent ambiguity of the plans, specifications, or estimate must be asked before bid opening. After bid opening, such questions will not be treated as bid protests.

Submit your bid with bidder's security equal to at least 10 percent of the bid.

Under Govt Code § 14835 et seq. and 2 CA Code of Regs § 1896 et seq., the Department gives preference to certified small businesses and non-small businesses who commit to 25 percent certified small business participation.

Under Pub Cont Code § 6107, the Department gives a reciprocal preference to a California company for bid comparison purposes over a nonresident contractor from any state that provides a preference to contractors from that state on construction contracts.

Prevailing wages are required on this Contract. The Director of the California Department of Industrial Relations determines the general prevailing wage rates. Obtain the wage rates at the DIR Web site, http://www.dir.ca.gov, or from the Department's Labor Compliance Office of the district in which the work is located.

The Department has made available Notices of Suspension and Proposed Debarment from the Federal Highway Administration. For a copy of the notices go to http://www.dot.ca.gov/hq/esc/oe/contractor_info. Additional information is listed in the Excluded Parties List System at https://www.epls.gov.

DEPARTMENT OF TRANSPORTATION

EMW

COPY OF BID ITEM LIST

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
1	070012	PROGRESS SCHEDULE (CRITICAL PATH METHOD)	LS	LUMP SUM
2	070018	TIME-RELATED OVERHEAD	WDAY	550
3	072006	TEMPORARY SUPPORT	LS	LUMP SUM
4	043817	TEMPORARY PEDESTRIAN SIDEWALK	LS	LUMP SUM
5	074016	CONSTRUCTION SITE MANAGEMENT	LS	LUMP SUM
6	074019	PREPARE STORM WATER POLLUTION PREVENTION PLAN	LS	LUMP SUM
7	074028	TEMPORARY FIBER ROLL	LF	20,100
8	074029	TEMPORARY SILT FENCE	LF	640
9	074031	TEMPORARY GRAVEL BAG BERM	LF	4,870
10	074033	TEMPORARY CONSTRUCTION ENTRANCE	EA	3
11	074038	TEMPORARY DRAINAGE INLET PROTECTION	EA	86
12	074040	TEMPORARY HYDRAULIC MULCH (BONDED FIBER MATRIX)	SQYD	30,700
13	074041	STREET SWEEPING	LS	LUMP SUM
14	074042	TEMPORARY CONCRETE WASHOUT (PORTABLE)	LS	LUMP SUM
15	074056	RAIN EVENT ACTION PLAN	EA	55
16	074057	STORM WATER ANNUAL REPORT	EA	3
17	074058	STORM WATER SAMPLING AND ANALYSIS DAY	EA	22
18	120090	CONSTRUCTION AREA SIGNS	LS	LUMP SUM
19	120100	TRAFFIC CONTROL SYSTEM	LS	LUMP SUM
20	120120	TYPE III BARRICADE	EA	36

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
21	120165	CHANNELIZER (SURFACE MOUNTED)	EA	190
22	128650	PORTABLE CHANGEABLE MESSAGE SIGN	LS	LUMP SUM
23	129000	TEMPORARY RAILING (TYPE K)	LF	15,100
24	129100	TEMPORARY CRASH CUSHION MODULE	EA	220
25	023551	TEMPORARY CRASH CUSHION (TYPE ADIEM)	EA	15
26	129150	TEMPORARY TRAFFIC SCREEN	LF	15,100
27	141103	REMOVE YELLOW THERMOPLASTIC TRAFFIC STRIPE (HAZARDOUS WASTE)	LF	28,500
28	141104	REMOVE YELLOW THERMOPLASTIC PAVEMENT MARKING (HAZARDOUS WASTE)	SQFT	480
29	150608	REMOVE CHAIN LINK FENCE	LF	910
30	150662	REMOVE METAL BEAM GUARD RAILING	LF	1,650
31	150711	REMOVE PAINTED TRAFFIC STRIPE	LF	96,300
32	150712	REMOVE PAINTED PAVEMENT MARKING	SQFT	3,690
33	150714	REMOVE THERMOPLASTIC TRAFFIC STRIPE	LF	36,800
34	150715	REMOVE THERMOPLASTIC PAVEMENT MARKING	SQFT	5,280
35	150722	REMOVE PAVEMENT MARKER	EA	6,690
36	150742	REMOVE ROADSIDE SIGN	EA	61
37	150747	REMOVE ROADSIDE SIGN (STRAP AND SADDLE BRACKET METHOD)	EA	13
38	150748	REMOVE ROADSIDE SIGN PANEL	EA	1
39	150760	REMOVE SIGN STRUCTURE	EA	1
40	150767	REMOVE BRIDGE MOUNTED SIGN	EA	2

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
41	150768	REMOVE ASPHALT CONCRETE PAVEMENT (CY)	CY	2,060
42	023552	REMOVAL OF HYDRAULIC LIFT	EA	3
43	150805	REMOVE CULVERT	LF	1,660
44	150820	REMOVE INLET	EA	24
45	150821	REMOVE HEADWALL	EA	3
46	023553	REMOVAL OF REMEDIATION/VAPOR EXTRACTION SYSTEM	EA	1
47	023554	DESTRUCTION OF MONITORING WELL OR REMEDIATION WELL	EA	12
48	023555	REMOVAL OF UNDERGROUND STORAGE TANK SYSTEM	EA	7
49	150829	REMOVE RETAINING WALL	SQFT	120
50	023556	REMOVAL OF UNDERGROUND WASTE OIL TANK SYSTEM	EA	1
51	023557	REMOVE CRIB WALL	SQFT	2,860
52	023558	REMOVE BLOCK WALL	SQFT	2,480
53	151224	REMOVE DELINEATOR	EA	76
54	152316	RESET ROADSIDE SIGN (ONE POST)	EA	2
55	152386	RELOCATE ROADSIDE SIGN-ONE POST	EA	1
56	152430	ADJUST INLET	EA	1
57	153103	COLD PLANE ASPHALT CONCRETE PAVEMENT	SQYD	5,060
58	153211	REMOVE CONCRETE SIDEWALK AND DRIVEWAY	CY	310
59	153214	REMOVE CONCRETE CURB	LF	5,660
60	153220	REMOVE CONCRETE (CHANNEL)	CY	210

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
61	153230	REMOVE CONCRETE BARRIER (TYPE 50)	LF	120
62	023559	REMOVE CONCRETE BARRIER (TYPE 60E)	LF	200
63	023560	REMOVE CONCRETE CROSS GUTTER	CY	26
64	023561	REMOVE CONCRETE BOX PORTION	CY	17
65	157550	BRIDGE REMOVAL	LS	LUMP SUM
66	160102	CLEARING AND GRUBBING (LS)	LS	LUMP SUM
67	190101	ROADWAY EXCAVATION	CY	66,200
68	190110	LEAD COMPLIANCE PLAN	LS	LUMP SUM
69	023562	REMOVAL AND DISPOSAL OF PETROLEUM HYDROCARBON CONTAMINATED SOIL	CY	4,500
70	023563	REMOVAL AND DISPOSAL OF PEA GRAVEL	CY	520
71 (F)	192003	STRUCTURE EXCAVATION (BRIDGE)	CY	1,525
72 (F)	192037	STRUCTURE EXCAVATION (RETAINING WALL)	CY	6,780
73	192502	SAND BEDDING	CY	2,200
74 (F)	193003	STRUCTURE BACKFILL (BRIDGE)	CY	785
75 (F)	193013	STRUCTURE BACKFILL (RETAINING WALL)	CY	3,060
76 (F)	193031	PERVIOUS BACKFILL MATERIAL (RETAINING WALL)	CY	161
77	023564	BACKFILLING AND COMPACTION OF SOIL	CY	4,500
78 (F)	193119	LEAN CONCRETE BACKFILL	CY	41
79	194001	DITCH EXCAVATION	CY	590
80 (F)	043818	RETAINING STRUCTURE	SQFT	6,625

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
81	198001	IMPORTED BORROW	CY	33,500
82	023565	SURCHARGE EMBANKMENT	CY	5,220
83	023566	LIGHTWEIGHT FILL (EPS BLOCK)	CY	21,400
84	200001	HIGHWAY PLANTING	LS	LUMP SUM
85	200114	ROCK BLANKET	SQYD	3,990
86	023567	INTERLOCKING PAVERS	SQFT	18,100
87	203002	EROSION CONTROL (COMPOST BLANKET)	CY	310
88	204096	MAINTAIN EXISTING PLANTED AREAS	LS	LUMP SUM
89	204099	PLANT ESTABLISHMENT WORK	LS	LUMP SUM
90	208000	IRRIGATION SYSTEM	LS	LUMP SUM
91	208304	WATER METER	LS	LUMP SUM
92	208310	IRRIGATION SLEEVE	LF	110
93	208738	8" CORRUGATED HIGH DENSITY POLYETHYLENE PIPE CONDUIT	LF	300
94	208739	10" CORRUGATED HIGH DENSITY POLYETHYLENE PIPE CONDUIT	LF	550
95	250201	CLASS 2 AGGREGATE SUBBASE	CY	600
96	250301	CLASS 3 AGGREGATE SUBBASE	CY	36,200
97	260201	CLASS 2 AGGREGATE BASE	CY	640
98	280000	LEAN CONCRETE BASE	CY	230
99	390131	HOT MIX ASPHALT	TON	26,500
100	390137	RUBBERIZED HOT MIX ASPHALT (GAP GRADED)	TON	9,180

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
101	023568	GASOLINE RESISTANT GEOMEMBRANE	SQYD	12,900
.02	394073	PLACE HOT MIX ASPHALT DIKE (TYPE A)	LF	1,430
103	394074	PLACE HOT MIX ASPHALT DIKE (TYPE C)	LF	130
04	394075	PLACE HOT MIX ASPHALT DIKE (TYPE D)	LF	2,860
105	394077	PLACE HOT MIX ASPHALT DIKE (TYPE F)	LF	2,140
106	394090	PLACE HOT MIX ASPHALT (MISCELLANEOUS AREA)	SQYD	480
107	397005	TACK COAT	TON	0.3
108	400050	CONTINUOUSLY REINFORCED CONCRETE PAVEMENT	CY	1,900
109	023569	CONTINUOUSLY REINFORCED CONCRETE PAVEMENT (RAPID STRENGTH CONCRETE)	СҮ	480
110	023570	JOINTED PLAIN CONCRETE PAVEMENT (RAMP TERMINI)	CY	520
111	405034	CONCRETE PAVEMENT TRANSITION PANEL	СҮ	36
112	490508	FURNISH STEEL PILING (HP 10 X 57)	LF	5,798
113	490509	DRIVE STEEL PILE (HP 10 X 57)	EA	100
114	490528	FURNISH STEEL PILING (HP 14 X 89)	LF	4,800
115	490529	DRIVE STEEL PILE (HP 14 X 89)	EA	80
116	043819	FURNISH 36" STEEL PIPE PILING	LF	440
117	043820	DRIVE 36" STEEL PIPE PILE	EA	8
118	490590	48" PERMANENT STEEL CASING	LF	200
119	490742	FURNISH PILING (CLASS 90) (ALTERNATIVE W)	LF	5,915
120	490743	DRIVE PILE (CLASS 90) (ALTERNATIVE W)	EA	140

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
121	495133	FURNISH 36" CAST-IN-STEEL SHELL CONCRETE PILING	LF	82
122	495134	DRIVE 36" CAST-IN-STEEL SHELL CONCRETE PILE	EA	2
123	500001	PRESTRESSING CAST-IN-PLACE CONCRETE	LS	LUMP SUM
124 (F)	510051	STRUCTURAL CONCRETE, BRIDGE FOOTING	CY	325
125 (F)	510053	STRUCTURAL CONCRETE, BRIDGE	CY	3,070
126 (F)	510060	STRUCTURAL CONCRETE, RETAINING WALL	CY	2,387
127 (F)	510072	STRUCTURAL CONCRETE, BARRIER SLAB	CY	375
128 (F)	510085	STRUCTURAL CONCRETE, APPROACH SLAB (TYPE EQ)	CY	70
129	510090	STRUCTURAL CONCRETE, BOX CULVERT	CY	470
130 (F)	510502	MINOR CONCRETE (MINOR STRUCTURE)	СҮ	188
131 (F)	043821	ARCHITECTURAL TEXTURE (ROCK STRATA)	SQFT	22,735
132 (F)	043822	ARCHITECTURAL TEXTURE (FRACTURED RIB)	SQFT	1,381
133	023571	PORTLAND CEMENT PLASTER	SQFT	690
134	515020	REFINISH BRIDGE DECK	SQFT	900
135	519091	JOINT SEAL (MR 1 1/2")	LF	129
136	519100	JOINT SEAL (MR 2")	LF	126
137 (F)	520102	BAR REINFORCING STEEL (BRIDGE)	LB	704,000
138 (F)	520103	BAR REINFORCING STEEL (RETAINING WALL)	LB	291,380
139 (F)	520107	BAR REINFORCING STEEL (BOX CULVERT)	LB	96,600
140 (F)	560203	FURNISH SIGN STRUCTURE (BRIDGE MOUNTED WITH WALKWAY)	LB	8,832

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
141 (F)	560204	INSTALL SIGN STRUCTURE (BRIDGE MOUNTED WITH WALKWAY)	LB	8,832
142 (F)	560213	FURNISH SIGN STRUCTURE (LIGHTWEIGHT)	LB	8,553
143 F)	560214	INSTALL SIGN STRUCTURE (LIGHTWEIGHT)	LB	8,553
44 F)	560218	FURNISH SIGN STRUCTURE (TRUSS)	LB	22,130
145 F)	560219	INSTALL SIGN STRUCTURE (TRUSS)	LB	22,130
46	560244	FURNISH LAMINATED PANEL SIGN (1"-TYPE A)	SQFT	530
147	560248	FURNISH SINGLE SHEET ALUMINUM SIGN (0.063"-UNFRAMED)	SQFT	810
148	560249	FURNISH SINGLE SHEET ALUMINUM SIGN (0.080"-UNFRAMED)	SQFT	210
49	560251	FURNISH SINGLE SHEET ALUMINUM SIGN (0.063"-FRAMED)	SQFT	230
150	560252	FURNISH SINGLE SHEET ALUMINUM SIGN (0.080"-FRAMED)	SQFT	170
151	561005	36" CAST-IN-DRILLED-HOLE CONCRETE PILE (SIGN FOUNDATION)	LF	50
152	561016	60" CAST-IN-DRILLED-HOLE CONCRETE PILE (SIGN FOUNDATION)	LF	25
153	566011	ROADSIDE SIGN - ONE POST	EA	75
154	566012	ROADSIDE SIGN - TWO POST	EA	11
155	568001	INSTALL SIGN (STRAP AND SADDLE BRACKET METHOD)	EA	9
156	568017	INSTALL ROADSIDE SIGN PANEL ON EXISTING POST	EA	1
157	597601	PREPARE AND STAIN CONCRETE	SQFT	32,015
158	650014	18" REINFORCED CONCRETE PIPE	LF	670
159	650018	24" REINFORCED CONCRETE PIPE	LF	2,020
160	650022	30" REINFORCED CONCRETE PIPE	LF	430

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
161	681132	GEOCOMPOSITE DRAIN	SQFT	8,560
162	682022	CLASS 1 PERMEABLE MATERIAL (BLANKET)	CY	770
163	043823	PREFABRICATED VERTICAL DRAIN	LF	15,925
164	700617	DRAINAGE INLET MARKER	EA	9
165	703317	18" BITUMINOUS COATED CORRUGATED STEEL PIPE RISER (.079" THICK)	LF	33
166	703450	WELDED STEEL PIPE CASING (BRIDGE)	LF	49
167	705206	24" CONCRETE FLARED END SECTION	EA	7
168	023572	INSTALLATION OF MONITORING WELL	EA	12
169	707217	36" PRECAST CONCRETE PIPE MANHOLE	LF	35
170	721009	ROCK SLOPE PROTECTION (FACING, METHOD B)	CY	43
171 (F)	043824	SLOPE PAVING (SPLIT FACE PAVERS)	SQFT	8,100
172	727901	MINOR CONCRETE (DITCH LINING)	CY	79
173	729010	ROCK SLOPE PROTECTION FABRIC	SQYD	240
174	731502	MINOR CONCRETE (MISCELLANEOUS CONSTRUCTION)	CY	560
175 (F)	750001	MISCELLANEOUS IRON AND STEEL	LB	16,474
176 (F)	750501	MISCELLANEOUS METAL (BRIDGE)	LB	1,190
177 (F)	750505	BRIDGE DECK DRAINAGE SYSTEM	LB	1,130
178	023573	MANAGEMENT OF CONTAMINATED GROUNDWATER	GAL	70,000
179	023574	MOBILIZATION/DEMOBILIZATION FOR PUMPING OF CONTAMINATED GROUNDWATER	EA	3
180	800360	CHAIN LINK FENCE (TYPE CL-6)	LF	620

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
181	820107	DELINEATOR (CLASS 1)	EA	71
182	820118	GUARD RAILING DELINEATOR	EA	280
183	820134	OBJECT MARKER (TYPE P)	EA	7
84	832003	METAL BEAM GUARD RAILING (WOOD POST)	LF	2,720
185	832070	VEGETATION CONTROL (MINOR CONCRETE)	SQYD	1,620
186 (F)	833033	CHAIN LINK RAILING (TYPE 7 MODIFIED)	LF	610
187 (F)	833142	CONCRETE BARRIER (TYPE 26 MODIFIED)	LF	610
188	839521	CABLE RAILING	LF	780
189	839541	TRANSITION RAILING (TYPE WB)	EA	4
190	839576	END CAP (TYPE A)	EA	2
191	839581	END ANCHOR ASSEMBLY (TYPE SFT)	EA	6
192	839584	ALTERNATIVE IN-LINE TERMINAL SYSTEM	EA	2
193	839585	ALTERNATIVE FLARED TERMINAL SYSTEM	EA	2
194	839601	CRASH CUSHION (TYPE CAT)	EA	1
195	839602	CRASH CUSHION (TYPE CAT) BACKUP	EA	1
196	839604	CRASH CUSHION (REACT 9CBB)	EA	1
197	839701	CONCRETE BARRIER (TYPE 60)	LF	470
198	839703	CONCRETE BARRIER (TYPE 60C)	LF	170
199	839704	CONCRETE BARRIER (TYPE 60D)	LF	520
200	839705	CONCRETE BARRIER (TYPE 60E)	LF	230

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
201 (F)	043825	CONCRETE BARRIER (TYPE 60D MODIFIED 1)	LF	58
202 (F)	043826	CONCRETE BARRIER (TYPE 60D MODIFIED)	LF	188
203 (F)	839714	CONCRETE BARRIER (TYPE 80)	LF	751
204 (F)	043827	CONCRETE BARRIER (TYPE 80A)	LF	1,040
205 (F)	043828	CONCRETE BARRIER (TYPE 80A MODIFIED)	LF	210
206 (F)	839726	CONCRETE BARRIER (TYPE 736A)	LF	445
207	840504	4" THERMOPLASTIC TRAFFIC STRIPE	LF	46,900
208	840506	8" THERMOPLASTIC TRAFFIC STRIPE	LF	5,110
209	840508	8" THERMOPLASTIC TRAFFIC STRIPE (BROKEN 12-3)	LF	490
210	840515	THERMOPLASTIC PAVEMENT MARKING	SQFT	5,850
211	840521	4" THERMOPLASTIC TRAFFIC STRIPE (BROKEN 6-1)	LF	1,400
212	840525	4" THERMOPLASTIC TRAFFIC STRIPE (BROKEN 36-12)	LF	16,500
213	840526	4" THERMOPLASTIC TRAFFIC STRIPE (BROKEN 17-7)	LF	7,540
214	840550	8" THERMOPLASTIC TRAFFIC STRIPE (BROKEN 36-12)	LF	3,230
215	840656	PAINT TRAFFIC STRIPE (2-COAT)	LF	95,200
216	023575	PAINT TRAFFIC STRIPE (2-COAT) DETAIL 11/13 MOD 4" BLACK BROKEN (36-12)	LF	16,500
217	840666	PAINT PAVEMENT MARKING (2-COAT)	SQFT	4,390
218	850101	PAVEMENT MARKER (NON-REFLECTIVE)	EA	2,000
219	850111	PAVEMENT MARKER (RETROREFLECTIVE)	EA	4,700
220	860090	MAINTAINING EXISTING TRAFFIC MANAGEMENT SYSTEM ELEMENTS DURING CONSTRUCTION	LS	LUMP SUM

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
221	023576	TEMPORARY SIGNAL AND LIGHTING (CITY) (STAGE 1D)	LS	LUMP SUM
222	023577	SIGNAL AND LIGHTING (REMOVE)	LS	LUMP SUM
223	860251	SIGNAL AND LIGHTING (LOCATION 1)	LS	LUMP SUM
224	860252	SIGNAL AND LIGHTING (LOCATION 2)	LS	LUMP SUM
225	860297	SIGNAL AND LIGHTING (CITY)	LS	LUMP SUM
226	023578	TEMPORARY SIGNAL AND LIGHTING (LOCATION 1) (STAGE 1A, 1B, 1C)	LS	LUMP SUM
227	023579	TEMPORARY SIGNAL AND LIGHTING (LOCATION 1) (STAGE 1D)	LS	LUMP SUM
228	023580	TEMPORARY SIGNAL AND LIGHTING (LOCATION 1) (STAGE 1E)	LS	LUMP SUM
229	023581	TEMPORARY SIGNAL AND LIGHTING (LOCATION 1) (STAGE 2A, 2B)	LS	LUMP SUM
230	023582	TEMPORARY SIGNAL AND LIGHTING (LOCATION 2) (STAGE 1A.1B)	LS	LUMP SUM
231	023583	TEMPORARY SIGNAL AND LIGHTING (LOCATION 2) (STAGE 1C)	LS	LUMP SUM
232	023584	TEMPORARY SIGNAL AND LIGHTING (LOCATION 2) (STAGE 1D, 1E)	LS	LUMP SUM
233	023585	TEMPORARY SIGNAL AND LIGHTING (LOCATION 2) (STAGE 2A)	LS	LUMP SUM
234	023586	TEMPORARY SIGNAL AND LIGHTING (LOCATION 3) (STAGE 1D, 1E)	LS	LUMP SUM
235	023587		LS	LUMP SUM
236	023588	TEMPORARY SIGNAL AND LIGHTING (LOCATION 3) (STAGE 2B)	LS	LUMP SUM
237	023589	TEMPORARY SIGNAL AND LIGHTING (LOCATION 3) (STAGE 2C)	LS	LUMP SUM
238	860402	LIGHTING (CITY STREET)	LS	LUMP SUM
239	860460	LIGHTING AND SIGN ILLUMINATION	LS	LUMP SUM
240	023590	LIGHTING AND SIGN ILLUMINATION (TEMPORARY)	LS	LUMP SUM

Item	Item Code	Item Description	Unit of Measure	Estimated Quantity
No.				
241	023591	FLASHING BEACON (TEMPORARY)	LS	LUMP SUM
242	023592	COMMUNICATION SYSTEM	LS	LUMP SUM
243	023593	COMMUNICATION SYSTEM (TEMPORARY)	LS	LUMP SUM
244	023594	ELECTRICAL SERVICE (IRRIGATION) (CITY)	LS	LUMP SUM
245	023595	ELECTRIC SERVICE (IRRIGATION) (LOCATION 1)	LS	LUMP SUM
246	023596	ELECTRIC SERVICE (IRRIGATION) (LOCATION 2)	LS	LUMP SUM
247	860990	CLOSED CIRCUIT TELEVISION SYSTEM	LS	LUMP SUM
248	023597	CLOSED CIRCUIT TELEVISION SYSTEM (CITY)	LS	LUMP SUM
249	861101	RAMP METERING SYSTEM (LOCATION 1)	LS	LUMP SUM
250	023598	RAMP METERING SYSTEM (LOCATIONS 2 AND 3)	LS	LUMP SUM
251	023599	RAMP METERING SYSTEM (LOCATION 1) (REMOVE)	LS	LUMP SUM
252	023600	RAMP METERING SYSTEM (LOCATION 2) (REMOVE)	LS	LUMP SUM
253	999990	MOBILIZATION	LS	LUMP SUM

SPECIAL PROVISIONS

SECTION 1 (BLANK)

SECTION 2 BIDDING

2-1.01 SMALL BUSINESS AND NON-SMALL BUSINESS SUBCONTRACTOR PREFERENCES

General

The Department applies Small Business Preference or Non–Small Business Preference under Govt Code § 14835 et seq. and 2 CA Code of Regs § 1896 et seq.

Contractors, subcontractors, suppliers, and service providers who qualify as small businesses are encouraged to apply for certification as a small business by submitting their application to the Department of General Services, Office of Small Business and DVBE Services.

Contract award is based on the total bid, not the reduced bid.

Small Business Preference

The Department allows a bidder certified as a small business by the Office of Small Business and DVBE Services, Department of General Services, a preference if:

- 1. The bidder submitted a completed Request for Small Business Preference or Non-Small Business Preference form with its bid
- 2. The low bidder did not request the preference or is not certified as a small business

The bidder's signature on the Request for Small Business Preference or Non–Small Business Preference form certifies that the bidder is certified as a small business at the time and day of bid or has submitted a complete application to the Department of General Services. The complete application and any required substantiating documentation must be received by the Department of General Services by 5:00 p.m. on bid opening date.

The Department of General Services determines if a bidder was certified on bid opening date. The Department confirms the bidder's status as a small business before applying the small business preference.

The small business preference is a reduction for bid comparison in the total bid submitted by the small business contractor by the lesser of:

- 1. 5 percent of the verified total bid of the low bidder
- 2. \$50,000

If after the application of the small business preference the Department determines that a certified small business bidder is the low bidder, the Department does not consider a request for non–small business preference.

Non-Small Business Subcontractor Preference

The Department allows a bidder not certified as a small business by the Office of Small Business and DVBE Services, Department of General Services, a preference if:

- 1. The bidder submitted a completed Request for Small Business Preference or Non–Small Business Preference form with its bid.
- 2. The Certified Small Business Listing for the Non–Small Business Preference form shows that you are subcontracting at least 25 percent to certified small businesses. You may submit this information with your bid. If you do not, submit it so that it is received by the Office Engineer no later than 4:00 p.m. on the 2nd business day after bid opening.

Each listed subcontractor and supplier must be certified as a small business at the time and day of bid or must have submitted a complete application to the Department of General Services. The complete application and any required substantiating documentation must be received by the Department of General Services by 5:00 p.m. on bid opening date.

The non-small business subcontractor preference is a reduction for bid comparison in the total bid submitted by the non-small business contractor requesting the preference by the lesser of:

- 1. 5 percent of the verified total bid of the low bidder
- 2. \$50,000

2-1.02 DISABLED VETERAN BUSINESS ENTERPRISES

General

Take necessary and reasonable steps to ensure that DVBEs have opportunity to participate in the contract. Comply with Mil & Vet Code § 999 et seq.

The Department encourages bidders to obtain DVBE participation in order to ensure the Department achieves its State-mandated overall DVBE goal.

If you obtain DVBE participation:

- 1. Complete and submit the Certified DVBE Summary form. List all DVBE participation on this form.
- 2. List each 1st tier DVBE subcontractor on the Subcontractor List form regardless of percentage of the total bid.

DVBE Incentive

The Department grants a DVBE incentive to each bidder who achieves a DVBE participation of 1 percent or greater (Mil & Vet Code 999.5 and Code of Regs § 1896.98 et seq).

To receive this incentive, submit the Certified DVBE Summary form. If you do not submit this form with your bid and you are the low bidder or the 2nd or 3rd low bidder, submit it so that it is received by the Office Engineer no later than 4:00 p.m. on the 4th business day after bid opening. If a DVBE joint venture is used, submit the joint venture agreement with the Certified DVBE Summary form. Other bidders may be required to submit this form if bid ranking changes.

Incentive Evaluation

The Department applies the Small Business and Non–Small Business preference during bid verification and proceeds with the following evaluation for DVBE incentive.

The DVBE incentive is a reduction, for bid comparison only, in the total bid submitted by the lesser of:

- 1. Percentage of DVBE achievement, rounded to 2 decimal places, of the verified total bid of the low bidder
- 2. 5 percent of the verified total bid of the low bidder
- 3. \$250,000

The Department applies DVBE incentive and determines if bid ranking changes.

A non-small business bidder cannot displace a small business bidder. However, a small business bidder with higher DVBE achievement can displace another small business bidder.

The Department proceeds with awarding the contract to the new low bidder and posts the new verified bid results at its Office Engineer Web site.

2-1.03 CALIFORNIA COMPANIES

Under Pub Cont Code § 6107, the Department gives preference to a "California company," as defined, for bid comparison purposes over a nonresident contractor from any state that gives or requires a preference to be given to contractors from that state on its public entity construction contracts.

Complete a California Company Preference form.

The California company reciprocal preference amount is equal to the preference amount applied by the state of the nonresident contractor with the lowest responsive bid unless the California company is eligible for a small business preference or a non–small business subcontractor preference; in which case the preference amount is the greater of the two, but not both.

If the low bidder is not a California company and a California company's bid with reciprocal preference is equal to or less than the lowest bid, the Department awards the contract to the California company on the basis of its total bid.

2-1.04 TIE BID RESOLUTION

If a small business bidder and a non-small business bidder request preferences and the reductions result in a tied bid, the Department awards the contract to the small business bidder.

If a DVBE small business bidder and a non-DVBE small business bidder request preferences and the reduction results in a tied bid, the Department awards the contract to the DVBE small business bidder.

After bid verification, if there is a tie between 2 or more bidders, the Department breaks the tie by tossing a coin.

2-1.05 OPT OUT OF PAYMENT ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS

You may opt out of the payment adjustments for price index fluctuations as specified in "Payment Adjustments for Price Index Fluctuations" of these special provisions. If you elect to opt out of the provisions of this specification, you must complete the "Opt Out of Payment Adjustments for Price Index Fluctuations" form. The completed form must be submitted with your bid.

SECTION 3 CONTRACT AWARD AND EXECUTION

3-1.01 SMALL BUSINESS PARTICIPATION REPORT

The Department has established an overall 25 percent small business participation goal. To determine if the goal is achieved, the Department is tracking small business participation on all contracts.

Complete and sign the Small Business (SB) Participation Report form included in the contract documents even if no small business participation is reported. Submit it with the executed contract.

SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION, AND LIQUIDATED DAMAGES

The 1st working day is the 55th day after contract approval.

Do not start work at the job site until the Engineer approves your submittal for:

- 1. Storm Water Pollution Prevention Plan (SWPPP)
- 2. Notification of Dispute Resolution Advisor (DRA) or Dispute Review Board (DRB) nominee and disclosure statement as specified in Section 5-1.15, "Dispute Resolution," of the Standard Specifications

You may enter the job site only to measure controlling field dimensions and locating utilities. Do not start other work activities until all the submittals from the above list are approved and the following information is submitted:

- 1. Notice of Materials To Be Used.
- 2. Contingency plan for reopening closures to public traffic.
- 3. Written statement from the vendor that the order for the sign panels has been received and accepted by the vendor. The statement must show the dates that the materials will be shipped.
- 4. Written statement from the vendor that the order for electrical material has been received and accepted by the vendor. The statement must show the dates that the materials will be shipped.
- 5. Written statement from the vendor that the order for structural steel has been received and accepted by the vendor. The statement must show the dates that the materials will be shipped.

You may start work at the job site before the 55th day after contract approval if:

- 1. You obtain required approval for each submittal before the 55th day
- 2. The Engineer authorizes it in writing

The Department grants a time extension if a delay is beyond your control and prevents you from starting work at the job site on the 1st working day.

Complete the work, except plant establishment work, within 550 working days.

Complete the work, including plant establishment work, within 800 working days.

INCENTIVES AND DISINCENTIVES

Incentive payments and disincentive deductions apply to the completion of the work specified in the Incentive / Disincentive table.

Comply with "Maintaining Traffic" and "Closure Requirements and Conditions" of these special provisions.

Incentive payments and disincentive deductions are independent of liquidated damages and damages specified in "Closure Requirements and Conditions" of these special provisions.

Complete the work specified within the time specified in the Incentive / Disincentive table. If you complete the work within the specified time, you will receive the incentive shown for each day less than the time specified. If you do not complete the work within the specified time, the Department will deduct the disincentive shown for each day needed to complete the work.

The start date for the staged work specified in the Incentive / Disincentive table shall be included in the Contractor's Progress Schedule (Critical Path Method).

Incentive / Disincentive

Work	Time (Working Days)	Incentive Payment per Day	Disincentive Deduction per Day	Maximum Incentive Disincentive
Stage 1C, the northbound Interstate 5 off-ramp "G" line to State Route 74 "B" line	15	\$5,200.00	\$5,200.00	\$26,000.00
Stage 1E, the southbound Interstate 5 on-ramp "C" line from State Route 74 "B" line	26	\$3,750.00	\$3,750.00	\$30,000.00
Stage 1F, Ortega Highway between Del Obispo Street and the southbound Interstate 5 off ramp "D" line, including the southbound Interstate 5 on ramp "C" line, within 10 working days. One left hand turn lane on southbound Interstate 5 off ramp "D" line and at least one right hand turn lane on northbound Interstate 5 off ramp "G" line shall be open for public use during this closure	10	\$8,000.00	\$8,000.00	\$32,000.00
Stage 2B, Ortega Highway "H" line between El Camino Real and Del Obispo Street, within 21 working days	21	\$2,400.00	\$2,400.00	\$12,000.00

Stage 1C, Stage 1E, Stage 1F, and Stage 2B shall not be closed concurrently, except the southbound on-ramp "C" line and Ortega Highway may be closed concurrently as described in Stage 1F.

No closure of Stage 1C, Stage 1E, Stage 1F, and Stage 2B will be allowed from the day before Thanksgiving to the day after New Year's Day, and during the last two weeks in March.

Total incentive payment will not exceed \$100,000.00.

Total disincentive deduction will not exceed \$100,000.00.

Actions required by the Engineer to perform normal inspection and testing duties will not be considered as contributing to any delay in awarding incentives or to any delay that will require charging disincentives.

Full compensation for any additional costs incurred by compliance with the provisions in this section is included in the prices paid for the various contract items of work and no additional compensation will be allowed.

DESIGNATED PORTIONS OF WORK

The driveways of businesses shall remain open to the public during their business hours. When work activities are present supply flaggers to control vehicle and pedestrian traffic. Comply with Section 7-1.09, "Public Safety," of the Standard Specifications. The Department does not pay for the flaggers.

During non-working activities the driveways shall be accessible for the full width of the driveways.

SECTION 5 GENERAL

5-1.01 EMISSIONS REDUCTION

Contract execution constitutes submittal of the following certification:

I am aware of the emissions reduction regulations being mandated by the California Air Resources Board. I will comply with such regulations before commencing the performance of the work and maintain compliance throughout the duration of this contract.

5-1.02 NON-SMALL BUSINESSES

Use each subcontractor as shown on the Certified Small Business Listing for the Non–Small Business Preference form unless you receive authorization for a substitution.

The requirement that small businesses be certified by the bid opening date does not apply to small business substitutions after contract award.

Maintain records of subcontracts made with certified small business subcontractors and records of materials purchased from certified small business suppliers. Include in the records:

- 1. Name and business address of each business
- 2. Total amount paid to each business

For the purpose of determining compliance with 2 CA Code of Regs § 1896 et seq.:

- 1. Provide the Department relevant information requested.
- 2. Upon reasonable notice and during normal business hours, permit access to its premises for the purpose of::
 - 2.1. Interviewing employees
 - 2.2. Inspecting and copying books, records, accounts and other material that may be relevant to a matter under investigation

5-1.03 DISABLED VETERAN BUSINESS ENTERPRISES

Use each DVBE as shown on the Certified DVBE Summary form unless you receive authorization for a substitution.

The requirement that DVBEs be certified by the bid opening date does not apply to DVBE substitutions after contract award.

Maintain records of subcontracts made with certified DVBEs. Include in the records:

- 1. Name and business address of each business
- 2. Total amount paid to each business

For the purpose of determining compliance with Pub Cont Code § 10115 et seq.:

- 1. Upon contract completion, complete and submit Final Report Utilization of Disabled Veteran Business Enterprises (DVBE) State Funded Projects Only form
- 2. Upon reasonable notice and during normal business hours, permit access to its premises for the purpose of:
 - 2.1. Interviewing employees
 - 2.2. Inspecting and copying books, records, accounts and other material that may be relevant to a matter under investigation

5-1.04 PARTNERING DISPUTE RESOLUTION

The Department encourages the project team to exhaust the use of partnering in dispute resolution before engagement of an objective third party. Comply with Section 5-1.012, "Partnering," of the Standard Specifications.

For certain disputes, facilitated partnering session or facilitated dispute resolution session may be appropriate and effective in clarifying issues and resolving all or part of a dispute.

To afford the project team enough time to plan and hold the session, a maximum of 20 days may be added to the dispute resolution board (DRB) referral time following the Engineer's written response to a supplemental potential claim record as specified in Section 5-1.15, "Dispute Resolution," of the Standard Specifications.

To allow this additional referral time, the project team must document its agreement and intention in the dispute resolution plan of the partnering charter. The team may further document agreement of any associated criteria to be met for use of the additional referral time.

If the session is not held, the DRB referral time remains in effect as specified in Section 5-1.15, "Dispute Resolution," of the Standard Specifications.

5-1.05 PAYMENT ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS

GENERAL

Summary

This section applies to asphalt contained in materials for pavement structural sections and pavement surface treatments such as hot mix asphalt (HMA), tack coat, asphaltic emulsions, bituminous seals, asphalt binders, and modified asphalt binders placed in the work. This section does not apply if you opted out of payment adjustment for price index fluctuations at the time of bid.

The Engineer adjusts payment if the California Statewide Crude Oil Price Index for the month the material is placed is more than 5 percent higher or lower than the price index at the time of bid.

The California Statewide Crude Oil Price Index is determined each month on or about the 1st business day of the month by the Department using the average of the posted prices in effect for the previous month as posted by Chevron, ExxonMobil, and ConocoPhillips for the Buena Vista, Huntington Beach, and Midway Sunset fields.

If a company discontinues posting its prices for a field, the Department determines the index from the remaining posted prices. The Department may include additional fields to determine the index.

For the California Statewide Crude Oil Price Index, go to:

http://www.dot.ca.gov/hq/construc/crudeoilindex/

If the adjustment is a decrease in payment, the Department deducts the amount from the monthly progress payment.

The Department includes payment adjustments for price index fluctuations when making adjustments under Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications.

If you do not complete the work within the contract time, payment adjustments during the overrun period are determined using the California Statewide Crude Oil Price Index in effect for the month in which the overrun period began.

If the price index at the time of placement increases:

- 1. 50 percent or more over the price index at bid opening, notify the Engineer.
- 2. 100 percent or more over the price index at bid opening, do not furnish material containing asphalt until the Engineer authorizes you to proceed with that work. The Department may decrease Bid item quantities, eliminate Bid items, or terminate the contract.

Submittals

Before placing material containing asphalt, submit the current sales and use tax rate in effect in the tax jurisdiction where the material is to be placed.

Submit certified weight slips for HMA, tack coat, asphaltic emulsions, and modified asphalt binders, including those materials not paid for by weight, as specified in Section 9-1.01, "Measurement of Quantities," of the Standard Specifications. For slurry seals, submit certified weight slips separately for the asphaltic emulsion.

ASPHALT QUANTITIES

General

Interpret the term "ton" as "tonne" for projects using metric units.

Hot Mix Asphalt

The Engineer calculates the quantity of asphalt in HMA using the following formula:

Qh = HMATT x [Xa / (100 + Xa)]

where:

Qh = quantity in tons of asphalt used in HMA

HMATT = HMA total tons placed

Xa = theoretical asphalt content from job mix formula expressed as percentage of the

weight of dry aggregate

Rubberized Hot Mix Asphalt

The Engineer calculates the quantity of asphalt in rubberized HMA (RHMA) using the following formula:

 $Qrh = RHMATT \times 0.80 \times [Xarb / (100 + Xarb)]$

where:

Qrh = quantity in tons of asphalt in asphalt rubber binder used in RHMA

RHMATT = RHMA total tons placed

Xarb = theoretical asphalt rubber binder content from the job mix formula expressed as

percentage of the weight of dry aggregate

Modified Asphalt Binder in Hot Mix Asphalt

The Engineer calculates the quantity of asphalt in modified asphalt binder using the following formula:

Qmh = MHMATT x [(100 - Xam) / 100] x [Xmab / (100 + Xmab)]

where:

Qmh = quantity in tons of asphalt in modified asphalt binder used in HMA

MHMATT = modified asphalt binder HMA total tons placed

Xam = specified percentage of asphalt modifier

Xmab = theoretical modified asphalt binder content from the job mix formula expressed as

percentage of the weight of dry aggregate

Hot Mix Asphalt Containing Reclaimed Asphalt Pavement (RAP)

The Engineer calculates the quantity of asphalt in HMA containing RAP using the following formulas:

 $Qrap = HMATT \times [Xaa / (100 + Xaa)]$

where:

 $Xaa = Xta - [(100 - Xnew) \times (Xra / 100)]$

and

Qrap = quantity in tons of asphalt used in HMA containing RAP

HMATT = HMA total tons placed

Xaa = asphalt content of HMA adjusted to account for the asphalt content in RAP expressed

as percentage of the weight of dry aggregate

Xta = total asphalt content of HMA expressed as percentage of the weight of dry aggregate

Xnew = theoretical percentage of new aggregate in the HMA containing RAP determined from RAP percentage in the job mix formula

Xra = asphalt content of RAP expressed as percentage

Tack Coat

The Engineer calculates the quantity of asphalt in tack coat (Qtc) as either:

- 1. Asphalt binder using the asphalt binder total tons placed as tack coat
- 2. Asphaltic emulsion by applying the formula in "Asphaltic Emulsion" to the asphaltic emulsion total tons placed as tack coat

Asphaltic Emulsion

The Engineer calculates the quantity of asphalt in asphaltic emulsions, including fog seals and tack coat, using the following formula:

$$Qe = AETT \times (Xe / 100)$$

where:

Qe = quantity in tons of asphalt used in asphaltic emulsions

AETT = undiluted asphaltic emulsions total tons placed

Xe = minimum percent residue specified in Section 94, "Asphaltic Emulsions," of the Standard

Specifications based on the type of emulsion used

You may, as an option, determine "Xe" by submitting actual daily test results for asphalt residue for the asphaltic emulsion used. If you choose this option, you must:

- 1. Take 1 sample every 200 tons but not less than 1 sample per day in the presence of the Engineer from the delivery truck, at midload from a sampling tap or thief, and in the following order:
 - 1.1. Draw and discard the 1st gallon
 - 1.2. Take two separate 1/2-gallon samples
- 2. Submit 1st sample at the time of sampling
- 3. Provide 2nd sample within 3 business days of sampling to an independent testing laboratory that participates in the AASHTO Proficiency Sample Program
- 4. Submit test results from independent testing laboratory within 10 business days of sample date

Slurry Seal

The Engineer calculates the quantity of asphalt in slurry seals (Qss) by applying the formula in "Asphaltic Emulsion" to the actual quantity of asphaltic emulsion used in producing the slurry seal mix.

Modified Asphalt Binder

The Engineer calculates the quantity of asphalt in modified asphalt binder using the following formula:

```
Qmab = MABTT \times [(100 - Xam) / 100]
```

where:

Qmab = quantity in tons of asphalt used in modified asphalt binder

MABTT = modified asphalt binder total tons placed Xam = specified percentage of asphalt modifier

Other Materials

For other materials containing asphalt not covered above, the Engineer determines the quantity of asphalt (Qo).

PAYMENT ADJUSTMENTS

The Engineer includes payment adjustments for price index fluctuations in progress pay estimates. If material containing asphalt is placed within 2 months during 1 estimate period, the Engineer calculates 2 separate adjustments. Each adjustment is calculated using the price index for the month in which the quantity of material containing asphalt subject to adjustment is placed in the work. The sum of the 2 adjustments is used for increasing or decreasing payment in the progress pay estimate.

The Engineer calculates each payment adjustment as follows:

$$PA = Qt \times A$$

where:

PA = Payment adjustment in dollars for asphalt contained in materials placed in the work for a given month.

Qt = Sum of quantities of asphalt (Qh + Qrh + Qmh + Qrap + Qtc + Qe + Qss + Qmab + Qo).

A = Adjustment in dollars per ton of asphalt used to produce materials placed in the work rounded to the nearest \$0.01.

For US Customary projects, use:

$$A = [(Iu / Ib) - 1.05] \times Ib \times [1 + (T / 100)]$$
 for an increase in the crude oil price index exceeding 5 percent $A = [(Iu / Ib) - 0.95] \times Ib \times [1 + (T / 100)]$ for a decrease in the crude oil price index exceeding 5 percent

For metric projects, use:

- A = 1.1023 x [(Iu / Ib) 1.05] x Ib x [1 + (T / 100)] for an increase in the crude oil price index exceeding 5 percent
- A = $1.\overline{1023}$ x [(Iu / Ib) 0.95] x Ib x [1 + (T / 100)] for a decrease in the crude oil price index exceeding 5 percent
- Iu = California Statewide Crude Oil Price Index for the month in which the quantity of asphalt subject to adjustment was placed in the work.
- Ib = California Statewide Crude Oil Price Index for the month in which the bid opening for the project occurred
- T = Sales and use tax rate, expressed as a percent, currently in effect in the tax jurisdiction where the material is placed. If the tax rate information is not submitted timely, the statewide sales and use tax rate is used in the payment adjustment calculations until the tax rate information is submitted.

5-1.06 SURFACE MINING AND RECLAMATION ACT

Imported borrow or aggregate material must come from a surface mine permitted under the Surface Mining and Reclamation Act of 1975 (SMARA), Pub Res Code § 2710, et seq., or from an exempt site.

The Department of Conservation, Office of Mine Reclamation maintains a list of permitted mine sites. For the list of permitted sites, go to:

http://www.conservation.ca.gov/omr/ab_3098_list

If you import borrow or aggregate material from a surface mine not on this list, submit proof the mine is exempt from SMARA.

5-1.07 ELECTRONIC SUBMISSION OF PAYROLL RECORDS

In lieu of submitting weekly payroll records to the Engineer as specified in Section 7-1.01A(3), "Payroll Records," of the Standard Specifications, you may submit weekly payroll records electronically.

Before submitting payroll records electronically, you must complete and sign the Contractor's Acknowledgement and submit it to the District where your project is located. Submit your signed acknowledgement to the corresponding District electronic mailbox shown in the following table:

Electronic Mailboxes

District	Address
1	district1.payrolls@dot.ca.gov
2	district2.payrolls@dot.ca.gov
3	district3.payrolls@dot.ca.gov
4	district4.payrolls@dot.ca.gov
5	district5.payrolls@dot.ca.gov
6	district6.payrolls@dot.ca.gov
7	district7.payrolls@dot.ca.gov
8	district8.payrolls@dot.ca.gov
9	district9.payrolls@dot.ca.gov
10	district10.payrolls@dot.ca.gov
11	district11.payrolls@dot.ca.gov
12	district12.payrolls@dot.ca.gov

The Department responds with an e-mail containing a Caltrans Internet Certificate to be used for the electronic submission of payroll records. You must agree to accept this certificate and reply to the e-mail. After you accept the certificate and reply to the e-mail, the Department is ready to accept your electronic submissions.

Each electronic submission must:

- Include payroll records in a nonmodifiable PDF image format. No spreadsheets, word documents, or password protected documents are accepted.
- 2. Include payroll records with all data elements required by the Labor Code § 1776.
- 3. Include a signed Statement of Compliance form with each weekly record.
- Be received by the Department by close of business on the 15th day of the month for the prior month's work.
- 5. Be encrypted before submission.
- 6. Contain the following information in the subject line:
 - 6.1. Contract number
 - 6.2. Week ending date as W/E mm/dd/yy
- 7. Contain 1 contract number and week ending date per submission.

For additional information on electronic submission of payroll records, go to:

http://www.dot.ca.gov/hq/construc/LaborCompliance/index.htm

5-1.08 FORCE ACCOUNT PAYMENT

Payment for extra work at force account will be determined by either non-subcontracted or subcontracted force account payment unless otherwise specified.

Non-Subcontracted Force Account Payment

When extra work to be paid for on a force account basis is performed by the Contractor, compensation will be determined as specified in Section 9-1.03, "Force Account Payment," of the Standard Specifications except for the markups. The markups specified in Section 9-1.03B, "Labor," Section 9-1.03C, "Materials," and Section 9-1.03D, "Equipment Rental" are changed to the following markups:

Cost	Percent Markup	
Labor	30	
Materials	10	
Equipment Rental	10	

The above markups shall be applied to work performed on a force account basis, regardless of whether the work revises the current contract completion date.

The above markups, together with payments made for time-related overhead under "Time-Related Overhead" of these special provisions, shall constitute full compensation for all overhead costs for work performed on a force account basis.

Full compensation for overhead costs for work performed on a force account basis, and for which no adjustment is made to the quantity for time-related overhead conforming to the provisions in "Time-Related Overhead" of these special provisions, shall be considered as included in the markups specified above, and no additional compensation will be allowed therefor.

Subcontracted Force Account Payment

When extra work to be paid for on a force account basis is performed by a subcontractor approved in conformance with the provisions in Section 5-1.055, "Subcontracting," of the Standard Specifications, compensation will be determined in accordance with the provisions in Section 9-1.03, "Force Account Payment," of the Standard Specifications.

5-1.09 AREAS FOR CONTRACTOR'S USE

Attention is directed to the provisions in Section 7-1.19, "Rights in Land and Improvements," of the Standard Specifications and these special provisions.

The highway right of way shall be used only for purposes that are necessary to perform the required work. The Contractor shall not occupy the right of way, or allow others to occupy the right of way, for purposes which are not necessary to perform the required work.

No State-owned parcels adjacent to the right of way are available for the exclusive use of the Contractor within the contract limits. The Contractor shall secure, at the Contractor's own expense, areas required for plant sites, storage of equipment or materials, or for other purposes.

No area is available within the contract limits for the exclusive use of the Contractor. However, temporary storage of equipment and materials on State property may be arranged with the Engineer, subject to the prior demands of State maintenance forces and to other contract requirements. Use of the Contractor's work areas and other State-owned property shall be at the Contractor's own risk, and the State shall not be held liable for damage to or loss of materials or equipment located within such areas.

5-1.10 PAYMENTS

In determining the partial payments to be made to the Contractor, only the following listed materials will be considered for inclusion in the payment as materials furnished but not incorporated in the work:

- A. Retaining Structure
- B. Permanent Steel Casing
- C. Steel Pipe Piling
- D. Steel Piling
- E. Cast-In-Steel-Shell Concrete Piling
- F. Prestressing steel (sealed packages only), prestressing ducts, and anchorages
- G. Joint Seal (MR less than 2")
- H. Bar Reinforcing Steel
- I. Bridge Deck Drainage System
- J. Chain Link Railing
- K. Miscellaneous Metal (Bridge)
- L. Irrigation System
- M. Metal Sign Structures (including contractor furnished sign panels).
- N. Miscellaneous Drainage Facilities.
- O. Miscellaneous Iron and Steel.
- P. Fences.
- O. Railings.
- R. Crash Cushions.
- S. Pavement Marker.
- T. Lighting Fixtures
- U. Luminaires
- V. Signal and Lighting Standards
- W. Signal Heads and Mounting Brackets
- X. Splice Vaults
- Y. Fiber Optic Cable
- Z. Innerduct
- ZA. Fiber Optic Conduit

5-1.11 SUPPLEMENTAL PROJECT INFORMATION

The Department makes the following supplemental project information available:

Supplemental Project Information

Means	Description	
Included in the Information Handout	1 Foundation Report for Route 74/5 Seperation	
	(Replace) -Br No. 55-1104 dated November 9, 2011	
	2. Foundation Report for Retaining Wall 513 at Route	
	74/I-5 Interchange dated November 10, 2011	
	3. Foundation Report for Retaining Walls Nos. 10, 83	
	and 533A dated November 9, 2011	
	4. Foundation Report for Retaining Walls No. 96 dated	
	November 9, 2011	
	5. Aerially Deposited Lead Site Investigation.	
	6. Foundation Reports for Sign 205 & Signal Pole of	
	Route 5-74 Separation.	
	7. Geotech Design Report.	
	8. Material Report-Driveway	
	9. Material Report-EPS 08-09-11	
	10. Material Report Revised Thickness 03-17-11	
	11. Material Report SR 74 & I-5	
	12. Storm Water Information Handout	
	13. Chevron Station Well Information and Mediation	
	System information	
	14. Battery Backup System	
	15 USACOE Nationwide 404 Permit	
Available as specified in the Standard Specifications	Cross sections	
	Bridge as-built drawings	

5-1.12 RELATIONS WITH CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD

This project lies within the boundaries of the San Diego Regional Water Quality Control Board (RWQCB).

The State Water Resources Control Board (SWRCB) has issued to the Department a permit that governs storm water and non-storm water discharges from the Department's properties, facilities, and activities. The Department's permit is entitled "Order No. 99 - 06 - DWQ, NPDES No. CAS000003, National Pollutant Discharge Elimination System (NPDES) Permit, Statewide Storm Water Permit and Waste Discharge Requirements (WDRs) for the State of California, Department of Transportation (Caltrans)." Copies of the Department's permit are available for review from the SWRCB, Division of Water Quality, 1001 "I" Street, P.O. Box 100, Sacramento, California 95812-0100, Telephone fax: (916) 341-5463 and may also be obtained at:

http://www.waterboards.ca.gov/water issues/programs/stormwater/caltrans.shtml

The Department's permit references and incorporates by reference the current statewide general permit issued by the SWRCB entitled "Order No. 2009-0009-DWQ, National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000002, Waste Discharge Requirements for Discharges of Storm Water Runoff Associated with Construction and Land Disturbance Activities" that regulates discharges of storm water and non-storm water from construction activities disturbing one acre or more of soil in a common plan of development. Copies of the statewide permit and modifications thereto are available for review from the SWRCB, Division of Water Quality, 1001 "I" Street, P.O. Box 100, Sacramento, California 95812-0100, Telephone fax: (916) 341-5463 and may also be obtained at:

http://www.waterboards.ca.gov/water_issues/programs/stormwater/construction.shtml

The San Diego RWQCB has issued a permit which governs storm water and non-storm water discharges resulting from construction activities in the project area. The RWQCB permit is entitled General Waste Discharge Requirements for Discharges Surface Waters that Pose an Insignificant (DeMinimus) Threat to Water Quality, Order No. R9-2008-0002, NPDES No. CAG919002" Copies of the RWQCB permit are available for review from the CCO Desk, 3347 Michelson Drive, Suite 100, Irvine, CA 92612

The NPDES permits that regulate this project, as referenced above, are collectively referred to in this section as the "permits."

This project shall conform to the permits and modifications thereto. The Contractor shall maintain copies of the permits at the project site and shall make them available during construction.

The Contractor shall know and comply with provisions of Federal, State, and local regulations and requirements that govern the Contractor's operations and storm water and non-storm water discharges from the project site and areas of disturbance outside the project limits during construction. Attention is directed to Sections 7-1.01, "Laws to be Observed," 5-1.18, "Property and Facility Preservation," 7-1.12, "Indemnification and Insurance," and 9-1.07E(5), "Penalty Withholds," of the Standard Specifications.

The Contractor shall notify the Engineer immediately upon request from the regulatory agencies to enter, inspect, sample, monitor, or otherwise access the project site or the Contractor's records pertaining to water pollution control work. The Contractor and the Department shall provide copies of correspondence, notices of violation, enforcement actions, or proposed fines by regulatory agencies to the requesting regulatory agency.

5-1.13 MATERIAL SITES

Local material sites used by the Contractor shall be graded so that, at the time of final inspection of the contract, the sites will drain and will blend in with the surrounding terrain.

5-1.14 NONHIGHWAY FACILITIES (INCLUDING UTILITIES)

The utility owner will relocate a utility shown in the following table before the corresponding date shown:

Utility Relocation and Date of the Relocation

Utility Relocation and Date of the Relocation				
Utility	Location	Date		
City of San Juan Capistrano-12" AC	Sta 514+16 to Sta 520+03 "G" Line	Nov 30, 2012		
Water Line.				
Relocate by City of San Juan				
Capistrano		AV 00 05:-		
American Telephone and Telegraph	Between Sta 15+22 to Sta 18+06 "B"	Nov 30, 2012		
Company-Telephone Underground	Line			
Relocate by American Telephone and				
Telegraph Company	117.6.1	N. 20 2012		
American Telephone and Telegraph	117 ft Lt of Sta 17+20 to 46 ft Lt of Sta	Nov 30, 2012		
Company-Telephone Overhead Relocate by American Telephone and	18+25 "B" Line			
Telegraph Company				
American Telephone and Telegraph	30 ft Rt of Sta 518+88 "G" Line	Nov 30, 2012		
Company-Telephone Cabinet	30 it Kt 01 Sta 318+88 G Line	100 30, 2012		
Relocate by American Telephone and				
Telegraph Company				
American Telephone and Telegraph	25 ft Rt of Sta 518+83 to 25 ft Rt of Sta	Nov 30, 2012		
Company-Telephone Overhead	519+80 "G" Line			
Relocate by American Telephone and				
Telegraph Company				
American Telephone and Telegraph	At Sta 18+58 and at Sta 20+66 "B" Line	Nov 30, 2012		
Company-Telephone Underground				
Relocate by American Telephone and				
Telegraph Company				
San Diego Gas & Electric-Overhead	Between Sta 15+10 to Sta 17+05 "B"	Nov 30, 2012		
Power Lines	Line			
Relocate by San Diego Gas & Electric				
San Diego Gas & Electric-Power Pole	82 ft Lt of Sta 17+05 "B" Line	Nov 30, 2012		
No 25755				
/Conduit/Risers/Transformer/Anchor				
Relocate by San Diego Gas & Electric				
San Diego Gas & Electric-Power Pole	45 ft Lt of Sta 17+69 "B" Line	Nov 30, 2012		
No 165947	TO IL DI DIM I / TU) D LINE	1107 30, 2012		
/Conduit/Risers/ Anchor				
Relocate by San Diego Gas & Electric				
San Diego Gas & Electric-Overhead	Between Sta 17+05 to Sta 19+83 "B"	Nov 30, 2012		
Power Lines	Line			
Relocate by San Diego Gas & Electric				
San Diego Gas & Electric-Power Pole	45 ft Lt of Sta 18+27 "B" Line	Nov 30, 2012		
No 124813				
/Conduit/Risers/ Anchor				
Relocate by San Diego Gas & Electric				
San Diego Gas & Electric-Underground	Sta 18+26 to Sta 18+32 "B" Line	Nov 30, 2012		
Electric				
Relocate by San Diego Gas & Electric		27 20 2015		
San Diego Gas & Electric-Power Pole	50 ft Lt of Sta 19+06 "B" Line	Nov 30, 2012		
No 162230				
Relocate by San Diego Gas & Electric	50 C D C C 17 . 01 IIDII 1 '	N. 20 2012		
San Diego Gas & Electric-Power Pole	56 ft Rt of Sta 17+91 "B" Line	Nov 30, 2012		
No 127253				
Remove by San Diego Gas & Electric	Trayersa Dto 74 from DDN - 124012	Nov. 20, 2012		
San Diego Gas & Electric-Overhead Power Lines	Traverse Rte 74 from PPNo 124813 to PPNo 109505	Nov 30, 2012		
Remove by San Diego Gas & Electric	11110 107303			
Remove by San Diego Gas & Electric				

16 ft Rt of Sta 518+41 "G" Line	Nov 30, 2012
22 ft Rt of Sta 518+53 "G" Line	Nov 30, 2012
Between Sta 518+41 to Sta 519+13 "G"	Nov 30, 2012
Line	
25 ft Rt of Sta 519+84 "G" Line	Nov 30, 2012
34 ft Rt of Sta 519+14 "G" Line	Nov 30, 2012
25 ft Rt of Sta 519+90 "G" Line	Nov 30, 2012
From Sta 514+16 to Sta 520+03 "G"	Nov 30, 2012
Line	
	22 ft Rt of Sta 518+53 "G" Line Between Sta 518+41 to Sta 519+13 "G" Line 25 ft Rt of Sta 519+84 "G" Line 34 ft Rt of Sta 519+14 "G" Line 25 ft Rt of Sta 519+90 "G" Line From Sta 514+16 to Sta 520+03 "G"

Installation of the utilities shown in the following table requires coordination with your activities. Make the necessary arrangements with the utility company through the Engineer and submit a schedule:

- Verified by a representative of the utility company
 Allowing at least the time shown for the utility owner to complete its work

Utility Relocation and Contractor-Arranged Time for the Relocation			
Utility	Utility Address	Location	Days
City of San Juan Capistrano Water Meter Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	41 ft Lt of Sta 6+11. "H" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Fire Hydrant Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	25 ft Lt of Sta 8+84. "H" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Valve Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	29 ft Lt of Sta 8+92 "H" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Meter Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	56 ft Lt of Sta 7+54. "H" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Valve Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	43 ft Lt of Sta 7+50. "H" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Valve Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	22 ft Lt of Sta 6+62. "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Meter Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	33 ft Lt of Sta 6+37 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Meter and backflow preventer Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	45 ft Rt of Sta 6+62 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Valve Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	53 ft Rt of Sta 6+75 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Sewer Handhole Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	27 ft Lt of Sta 8+20. "B" Line	8 weeks notification 15 days to complete

Courthours California C	Southern California Gas	25 ft Dt of Ct of (172 to 76	0 wasta ==4:fi==4:
Southern California Gas		25 ft Rt of Sta 6+73 to 56	8 weeks notification
Company GAS Line	Company	ft Rt of Sta 6+88 "B"	15 days to complete
(Service Lateral to Del	1919 S. State College	Line	
Taco Restaurant)	Blvd SCB321		
Relocate lower for	Anaheim, CA 92806		
Retaining Wall 80		20.0. 46.0.7. 3.7	
Southern California Gas	Southern California Gas	28 ft to 46 ft Rt of Sta	8 weeks notification
Company GAS Line	Company	5+45 "B" Line	15 days to complete
(Service Lateral to	1919 S. State College		
McDonald Restaurant)	Blvd SCB321		
Relocate lower for X-	Anaheim, CA 92806		
section		25.0 0 25.0 25.0	0 1 12 1
American Telephone and	American Telephone and	25 ft Rt of Sta 9+05 "H"	8 weeks notification
Telegraph Company	Telegraph Company	Line	15 days to complete
Telephone Booth	1265 Van Buren Street,		
Relocate	RM 180		
	Anaheim, CA 92807		
American Telephone and	American Telephone and	45 ft Rt of Sta 9+21 "H"	8 weeks notification
Telegraph Company Pull	Telegraph Company	Line	15 days to complete
Box	1265 Van Buren Street,		
Relocate	RM 180		
	Anaheim, CA 92807		
American Telephone and	American Telephone and	9 ft Lt of Sta 8+13 "B"	8 weeks notification
Telegraph Company	Telegraph Company	Line to 25 ft Rt of Sta	15 days to complete
Telephone Underground	1265 Van Buren Street,	9+05 "H" Line	
Relocate	RM 180		
	Anaheim, CA 92807		
American Telephone and	American Telephone and	9 ft Lt of Sta 8+13 "B"	8 weeks notification
Telegraph Company	Telegraph Company	Line	15 days to complete
Relocate	1265 Van Buren Street,		
	RM 180		
	Anaheim, CA 92807		
American Telephone and	American Telephone and	32 ft Rt of Sta 5+05 to 19	8 weeks notification
Telegraph Company	Telegraph Company	ft Lt of Sta 8+35 "B"	15 days to complete
Telephone Underground	1265 Van Buren Street,	Line	
Relocate	RM 180		
	Anaheim, CA 92807		
American Telephone and	American Telephone and	25 ft to 32 ft Rt of Sta	8 weeks notification
Telegraph Company	Telegraph Company	6+45 "B" Line	15 days to complete
Telephone Underground	1265 Van Buren Street,		
Relocate	RM 180		
	Anaheim, CA 92807		
American Telephone and	American Telephone and	35 ft Lt of Sta 8+48. "B"	8 weeks notification
Telegraph Company Pull	Telegraph Company	Line	15 days to complete
Box	1265 Van Buren Street,		
Adjust to grade	RM 180		
	Anaheim, CA 92807		
American Telephone and	American Telephone and	33 ft Rt of Sta 6+20 to 36	8 weeks notification
Telegraph Company	Telegraph Company	ft Rt of Sta 6+27 "B"	15 days to complete
Telephone Underground	1265 Van Buren Street,	Line	
Lower to avoid Retaining	RM 180		
Wall foundation	Anaheim, CA 92807		
American Telephone and	American Telephone and	33 ft Rt of Sta 6+20 "B"	8 weeks notification
Telegraph Company Pull-	Telegraph Company	Line	15 days to complete
Box	1265 Van Buren Street,		
Lower to avoid Retaining	RM 180		
Wall foundation	Anaheim, CA 92807		

G D' G . 0 E1	G., D., C. 0 El . :	F C 7 . 56 . 71 C	01
San Diego Gas & Electric	San Diego Gas & Electric	From Sta 7+56 to 71 ft Lt	8 weeks notification
Underground Electric	8315 Century Park Court,	of Sta 9+30 "H" Line	15 days to complete
Relocate	CP22A		
	San Diego, CA 92807		
San Diego Gas &	San Diego Gas & Electric	16 ft Rt of Sta 6+80. "H"	8 weeks notification
Electric-Manhole	8315 Century Park Court,	Line	15 days to complete
Adjust to grade	CP22A		
	San Diego, CA 92807		
San Diego Gas &	San Diego Gas & Electric	32 ft Lt of Sta 6+17 "B"	8 weeks notification
Electric-Pull Box	8315 Century Park Court,	Line	15 days to complete
Adjust to grade	CP22A	Eine	13 days to complete
Adjust to grade	San Diego, CA 92807		
San Diago Gos & Floatria	San Diego Gas & Electric	35 ft Lt of Sta 8+72 "B"	8 weeks notification
San Diego Gas & Electric	_		
Transformer	8315 Century Park Court,	Line	15 days to complete
Relocate	CP22A		
	San Diego, CA 92807		
San Diego Gas & Electric	San Diego Gas & Electric	31 ft Lt of Sta 8+67 "B"	8 weeks notification
Vault	8315 Century Park Court,	Line	15 days to complete
Relocate	CP22A		
	San Diego, CA 92807		
San Diego Gas & Electric	San Diego Gas & Electric	39 ft Rt of Sta 6+24 to 30	8 weeks notification
Underground Electric	8315 Century Park Court,	ft Lt of Sta 8+64 "B"	15 days to complete
Relocate	CP22A	Line	
Refocute	San Diego, CA 92807	Eme	
San Diego Gas & Electric	San Diego Gas & Electric	Between Sta6+24 to Sta	8 weeks notification
Underground Electric	8315 Century Park Court,	6+70 "B" Line	15 days to complete
	CP22A	0+70 B Line	13 days to complete
Relocate			
G Di G O FI	San Diego, CA 92807	24 C D CC C 20 HDH	0 1 .:
San Diego Gas & Electric	San Diego Gas & Electric	34 ft Rt of Sta 6+20 "B"	8 weeks notification
Vault	8315 Century Park Court,	Line	15 days to complete
Relocate	CP22A		
	San Diego, CA 92807		
San Diego Gas & Electric	San Diego Gas & Electric	Sta 6+25 "B" Line	8 weeks notification
Underground Electric	8315 Century Park Court,		15 days to complete
Relocate	CP22A		
	San Diego, CA 92807		
San Diego Gas & Electric	San Diego Gas & Electric	Between Sta 5+45 to Sta	8 weeks notification
Underground Electric	8315 Century Park Court,	6+20 "B" Line	15 days to complete
Relocate	CP22A	0.20 2 20	To days to complete
Resource	San Diego, CA 92807		
City of San Juan	City of San Juan	10.5 ft Lt of Sta 12+95 to	8 weeks notification
City of San Juan Capistrano 8" Water Line	Capistrano	10.5 ft Lt of Sta 12+95 to	
-	32400 Paseo Adelento		15 days to complete
in		"B" Line	
12" Casing.	San Juan Capistrano, CA		
Relocate	92675		
City of San Juan	City of San Juan	12ft Lt of Sta 15+30 "B"	8 weeks notification
Capistrano Manhole.	Capistrano	Line	15 days to complete
Relocate	32400 Paseo Adelento		
	San Juan Capistrano, CA		
	92675		
City of San Juan	City of San Juan	12ft Lt of Sta 13+45 "B"	8 weeks notification
Capistrano Manhole.	Capistrano	Line	15 days to complete
Relocate	32400 Paseo Adelento		
Refocute	San Juan Capistrano, CA		
	92675		
1	1 7407.)	l .	i e

City of San Juan Capistrano Fire Hydrant Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	66 ft Lt of Sta 18+45 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano-2 Water Valves . Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	Between Sta 18+32 to Sta 18+61 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano-4 Water Valves . Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	Between Sta 18+32 to Sta 18+61 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano-Water Meter Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	44 ft Lt of Sta 17+14 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano-Water Valve. Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	15 ft Lt of Sta 17+14 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Fire Hydrant Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	78 ft Rt of Sta 18+73 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Meter Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	57 ft Rt of Sta 18+73 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Meter Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	57 ft Rt of Sta 18+75 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano -2 Water Valve. Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	Between Sta 18+68 to Sta 18+84 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Meter Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	45 ft Rt of Sta 19+45 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano Water Meter Relocate	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	47 ft Rt of Sta 20+14 "B" Line	8 weeks notification 15 days to complete

City of San Juan Capistrano-Water Meter Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	53 ft Rt of Sta 21+13 "B" Line	8 weeks notification 15 days to complete
City of San Juan Capistrano-Sewer Manhole Adjust to grade	City of San Juan Capistrano 32400 Paseo Adelento San Juan Capistrano, CA 92675	16 ft Rt of Sta 18+32 "B" Line	8 weeks notification 15 days to complete
Southern California Gas Company-6" GAS in 10" Casing Relocate	Southern California Gas Company 1919 S. State College Blvd SCB321 Anaheim, CA 92806	Sta 12+85 to Sta 15+87 "B" Line	8 weeks notification 15 days to complete
Southern California Gas Company-GAS Valve Relocate	Southern California Gas Company 1919 S. State College Blvd SCB321 Anaheim, CA 92806	29 ft Lt of Sta 12+94 "B" Line	8 weeks notification 15 days to complete
Southern California Gas Company-Electronic Test Station Adjust to grade	Southern California Gas Company 1919 S. State College Blvd SCB321 Anaheim, CA 92806	22 ft Rt of Sta 17+43 "B" Line	8 weeks notification 15 days to complete
American Telephone and Telegraph Company- Manhole Adjust to grade	American Telephone and Telegraph Company 1265 Van Buren Street, RM 180 Anaheim, CA 92807	38 ft Lt of Sta 18+06 "B" Line	8 weeks notification 15 days to complete
American Telephone and Telegraph Company- Telephone Underground Relocate	American Telephone and Telegraph Company 1265 Van Buren Street, RM 180 Anaheim, CA 92807	39 ft Rt to 64 ft Rt of Sta 20+68 "B" Line	8 weeks notification 15 days to complete
American Telephone and Telegraph Company Vault Relocate	American Telephone and Telegraph Company 1265 Van Buren Street, RM 180 Anaheim, CA 92807	71 ft Rt of Sta 20+66 "B" Line	8 weeks notification 15 days to complete
American Telephone and Telegraph Company Vault Relocate	American Telephone and Telegraph Company 1265 Van Buren Street, RM 180 Anaheim, CA 92807	61 ft Rt of Sta 20+68 "B" Line	8 weeks notification 15 days to complete
American Telephone and Telegraph Company Telephone Underground Relocate	American Telephone and Telegraph Company 1265 Van Buren Street, RM 180 Anaheim, CA 92807	At Sta 20+68 "B" Line	8 weeks notification 15 days to complete
COX Communications Pull Box Relocate	COX Communications 29947 Avenida De Las Banderas Rancho Santa Margarita, CA 92688	53 ft Lt of Sta 18+24 "B" Line	8 weeks notification 15 days to complete

COX Communications Underground Relocate	COX Communications 29947 Avenida De Las Banderas Rancho Santa Margarita, CA 92688	53 ft Lt of Sta 18+24 to 80 ft Lt of Sta 18+50 "B" Line	8 weeks notification 15 days to complete
COX Communications Underground Relocate	COX Communications 29947 Avenida De Las Banderas Rancho Santa Margarita, CA 92688	38 ft to 51 ft Rt of Sta 30+74 "B" Line	8 weeks notification 15 days to complete
COX Communications Vault Relocate	COX Communications 29947 Avenida De Las Banderas Rancho Santa Margarita, CA 92688	53 ft Rt of Sta 20+74 "B" Line	8 weeks notification 15 days to complete
COX Communications Pull Box Adjust to grade	COX Communications 29947 Avenida De Las Banderas Rancho Santa Margarita, CA 92688	51 ft Rt of Sta 20+82 "B" Line	8 weeks notification 15 days to complete
COX Communications Pull Box Relocate	COX Communications 29947 Avenida De Las Banderas Rancho Santa Margarita, CA 92688	48 ft Rt of Sta 21+05 "B" Line	8 weeks notification 15 days to complete
COX Communications Underground Relocate	COX Communications 29947 Avenida De Las Banderas Rancho Santa Margarita, CA 92688	From 39 ft to 49 ft Rt of Sta 20+52 "B" Line	8 weeks notification 15 days to complete
San Diego Gas & Electric -Manhole Adjust to grade	San Diego Gas & Electric 8315 Century Park Court, CP22A San Diego, CA 92807	34 ft Lt of Sta 19+40 "B" Line	8 weeks notification 15 days to complete
San Diego Gas & Electric Vent Relocate	San Diego Gas & Electric 8315 Century Park Court, CP22A San Diego, CA 92807	56 ft Rt of Sta 20+90 "B" Line	8 weeks notification 15 days to complete
San Diego Gas & Electric At grade Vault Relocate	San Diego Gas & Electric 8315 Century Park Court, CP22A San Diego, CA 92807	56 ft Rt of Sta 20+95 "B" Line	8 weeks notification 15 days to complete
San Diego Gas & Electric Transformer Relocate	San Diego Gas & Electric 8315 Century Park Court, CP22A San Diego, CA 92807	56 ft Rt of Sta 21+05 "B" Line	8 weeks notification 15 days to complete

5-1.15 RELIEF FROM MAINTENANCE AND RESPONSIBILITY

The Contractor may be relieved of the duty of maintenance and protection for those items not directly connected with plant establishment work in conformance with the provisions in Section 7-1.15, "Relief From Maintenance and Responsibility," of the Standard Specifications. Water pollution control, maintain existing planted areas, maintain existing irrigation facilities, transplant trees, and transplant palm trees shall not be relieved of maintenance.

SECTION 6. (BLANK)

SECTION 7. (BLANK)

SECTION 8. MATERIALS

SECTION 8-1. MISCELLANEOUS

8-1.01 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS

The Department maintains the following list of Prequalified and Tested Signing and Delineation Materials. The Engineer shall not be precluded from sampling and testing products on the list of Prequalified and Tested Signing and Delineation Materials.

The manufacturer of products on the list of Prequalified and Tested Signing and Delineation Materials shall furnish the Engineer a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each type of traffic product supplied.

For those categories of materials included on the list of Prequalified and Tested Signing and Delineation Materials, only those products shown within the listing may be used in the work. Other categories of products, not included on the list of Prequalified and Tested Signing and Delineation Materials, may be used in the work provided they conform to the requirements of the Standard Specifications.

Materials and products may be added to the list of Prequalified and Tested Signing and Delineation Materials if the manufacturer submits a New Product Information Form to the New Product Coordinator at the Transportation Laboratory. Upon a Departmental request for samples, sufficient samples shall be submitted to permit performance of required tests. Approval of materials or products will depend upon compliance with the specifications and tests the Department may elect to perform.

PAVEMENT MARKERS, PERMANENT TYPE

Retroreflective With Abrasion Resistant Surface (ARS)

- 1. Apex, Model 921AR (4" x 4")
- 2. Ennis Paint, Models C88 (4" x 4"), 911 (4" x 4") and C80FH
- 3. Ray-O-Lite, Models "AA" ARC II (4" x 4") and ARC Round Shoulder (4" x 4")
- 4. 3M Series 290 (3.5" x 4")
- 5. 3M Series 290 PSA
- 6. Glowlite, Inc Model 988AR (4" x 4")

Retroreflective With Abrasion Resistant Surface (ARS)

(for recessed applications only)

- 1. Ennis Paint, Model 948 (2.3" x 4.7")
- 2. Ennis Paint, Model 944SB (2" x 4")*
- 3. Ray-O-Lite, Model 2002 (2" x 4.6")
- 4. Ray-O-Lite, Model 2004 (2" x 4")*

*For use only in 4.5 inch wide (older) recessed slots

Non-Reflective, 4-inch Round

- 1. Apex Universal (Ceramic)
- 2. Apex Universal, Models 929 (ABS) and 929PP (Polypropylene)
- 3. Glowlite, Inc. (Ceramic) and PP (Polypropylene)
- 4. Hi-Way Safety, Inc., Models P20-2000W and 2001Y (ABS)
- 5. Interstate Sales, "Diamond Back" (Polypropylene)
- 6. Novabrite Models Cdot (White) Cdot-y (Yellow), Ceramic
- 7. Novabrite Models Pdot-w (White) Pdot-y (Yellow), Polypropylene
- 8. Three D Traffic Works TD10000 (ABS), TD10500 (Polypropylene)
- 9. Ray-O-Lite, Ray-O-Dot (Polypropylene)

PAVEMENT MARKERS, TEMPORARY TYPE

Temporary Markers For Long Term Day/Night Use (180 days or less)

- 1. Vega Molded Products "Temporary Road Marker" (3" x 4")
- 2. Pexco LLC, Halftrack model 25, 26 and 35

Temporary Markers For Short Term Day/Night Use (14 days or less)

(For seal coat or chip seal applications, clear protective covers are required)

- 1. Apex Universal, Model 932
- 2. Pexco LLC, Models T.O.M., T.R.P.M., and "HH" (High Heat)
- 3. Hi-Way Safety, Inc., Model 1280/1281
- 4. Glowlite, Inc., Model 932

STRIPING AND PAVEMENT MARKING MATERIAL

Permanent Traffic Striping and Pavement Marking Tape

- 1. Advanced Traffic Marking, Series 300 and 400
- 2. Brite-Line, Series 1000
- 3. Brite-Line, "DeltaLine XRP"
- 4. Swarco Industries, "Director 35" (For transverse application only)
- 5. Swarco Industries, "Director 60"
- 6. 3M, "Stamark" Series 380 and 270 ES
- 7. 3M, "Stamark" Series 420 (For transverse application only)

Temporary (Removable) Striping and Pavement Marking Tape (180 days or less)

- 1. Advanced Traffic Marking, Series 200
- 2. Brite-Line, Series 100
- 3. Garlock Rubber Technologies, Series 2000
- 4. P.B. Laminations, Aztec, Grade 102
- 5. Swarco Industries, "Director-2"
- 6. Trelleborg Industries, R140 Series
- 7. 3M Series 620 "CR", and Series 780
- 8. 3M Series A145, Removable Black Line Mask (Black Tape: for use only on Hot mix asphalt surfaces)
- 9. Advanced Traffic Marking Black "Hide-A-Line"
- (Black Tape: for use only on Hot mix asphalt surfaces)
- 10. Brite-Line "BTR" Black Removable Tape
 - (Black Tape: for use only on Hot mix asphalt surfaces)
- 11. Trelleborg Industries, RB-140
 - (Black Tape: for use only on Hot mix asphalt surfaces)

Preformed Thermoplastic (Heated in place)

- 1. Flint Trading Inc., "Hot Tape"
- 2. Flint Trading Inc., "Premark Plus"
- 3. Ennis Paint Inc., "Flametape"

Ceramic Surfacing Laminate, 6" x 6"

1. Highway Ceramics, Inc.

CLASS 1 DELINEATORS

One Piece Driveable Flexible Type, 66-inch

- 1. Pexco LLC, "Flexi-Guide Models 400 and 566"
- 2. Carsonite, Curve-Flex CFRM-400
- 3. Carsonite, Roadmarker CRM-375
- 4. FlexStake, Model 654 TM
- 5. GreenLine Model CGD1-66

Special Use Type, 66-inch

- 1. Pexco LLC, Model FG 560 (with 18-inch U-Channel base)
- 2. Carsonite, "Survivor" (with 18-inch U-Channel base)
- 3. Carsonite, Roadmarker CRM-375 (with 18-inch U-Channel base)
- 4. FlexStake, Model 604
- 5. GreenLine Model CGD (with 18-inch U-Channel base)
- 6. Impact Recovery Model D36, with #105 Driveable Base
- 7. Safe-Hit with 8-inch pavement anchor (SH248-GP1)
- 8. Safe-Hit with 15-inch soil anchor (SH248-GP2) and with 18-inch soil anchor (SH248-GP3)
- 9. Safe-Hit RT 360 Post with Soil Mount Anchor (GPS)
- 10. Shur-Tite Products, Shur-Flex Drivable

Surface Mount Type, 48-inch

- 1. Bent Manufacturing Company, Masterflex Model MFEX 180-48
- 2. Carsonite, "Channelizer"
- 3. FlexStake, Models 704, 754 TM, and EB4
- 4. Impact Recovery Model D48, with #101 Fixed (Surface-Mount) Base
- 5. Three D Traffic Works "Channelflex" ID No. 522248W
- 6. Flexible Marker Support, Flexistiff Model C-9484
- 7. Safe-Hit, SH 248 SMR

CHANNELIZERS

Surface Mount Type, 36-inch

- Bent Manufacturing Company, Masterflex Models MF-360-36 (Round) MF-180-36 (Flat) and MFEX 180—36
- 2. Pexco LLC, Flexi-Guide Models FG300PE, FG300UR, and FG300EFX
- 3. Carsonite, "Super Duck" (Round SDR-336)
- 4. Carsonite, Model SDCF03601MB "Channelizer"
- 5. FlexStake, Models 703, 753 TM, and EB3
- 6. GreenLine, Model SMD-36
- 7. Hi-way Safety, Inc. "Channel Guide Channelizer" Model CGC36
- 8. Impact Recovery Model D36, with #101 Fixed (Surface-Mount) Base
- 9. Safe-Hit, Guide Post, Model SH236SMA and Dura-Post, Model SHL36SMA
- 10. Three D Traffic Works "Boomerang" 5200 Series
- 11. Flexible Marker Support, Flexistiff Model C-9484-36
- 12. Shur-Tite Products, Shur-Flex

Lane Separation System

- 1. Pexco LLC, "Flexi-Guide (FG) 300 Curb System"
- 2. Qwick Kurb, "Klemmfix Guide System"
- 3. Dura-Curb System
- 4. Tuff Curb
- 5. FG 300 Turnpike Curb

CONICAL DELINEATORS, 42-inch

(For 28-inch Traffic Cones, see Standard Specifications)

- 1. Bent Manufacturing Company "T-Top"
- 2. Plastic Safety Systems "Navigator-42"
- 3. TrafFix Devices "Grabber"
- 4. Three D Traffic Works "Ringtop" TD7000, ID No. 742143
- 5. Three D Traffic Works, TD7500
- 6. Work Area Protection Corp. C-42

OBJECT MARKERS

Type "K", 18-inch

1. Pexco LLC, Model FG318PE

- 2. Carsonite, Model SMD 615
- 3. FlexStake, Model 701 KM
- 4. Safe-Hit, Model SH718SMA

Type "Q" Object Markers, 24-inch

- 1. Bent Manufacturing "Masterflex" Model MF-360-24
- 2. Pexco LLC, Model FG324PE
- 3. Carsonite, "Channelizer"
- 4. FlexStake, Model 701KM
- 5. Safe-Hit, Models SH824SMA WA and SH824GP3 WA
- 6. Three D Traffic Works ID No. 531702W and TD 5200
- 7. Three D Traffic Works ID No. 520896W
- 8. Safe-Hit, Dura-Post SHLQ-24 inch

CONCRETE BARRIER MARKERS AND

TEMPORARY RAILING (TYPE K) REFLECTORS

Impactable Type

- 1. ARTUK, "FB"
- 2. Pexco LLC, Models PCBM-12 and PCBM-T12
- 3. Duraflex Corp., "Flexx 2020" and "Electriflexx"
- 4. Hi-Way Safety, Inc., Model GMKRM100
- 5. Plastic Safety Systems "BAM" Models OM-BARR and OM-BWAR
- Three D Traffic Works "Roadguide" Model TD 9300

Non-Impactable Type

- 1. ARTUK, JD Series
- 2. Plastic Safety Systems "BAM" Models OM-BITARW and OM-BITARA
- 3. Vega Molded Products, Models GBM and JD
- 4. Plastic Vacuum Forming, "Cap-It C400"

METAL BEAM GUARD RAIL POST MARKERS

(For use to the left of traffic)

- 1. Pexco LLC, "Mini" (3" x 10")
- 2. Creative Building Products, "Dura-Bull, Model 11201"
- 3. Duraflex Corp., "Railrider"
- 4. Plastic Vacuum Forming, "Cap-It C300"

CONCRETE BARRIER DELINEATORS, 16-inch

(For use to the right of traffic)

- 1. Pexco LLC, Model PCBM T-16
- 2. Safe-Hit, Model SH216RBM
- 3. Three D Traffic Works "Roadguide" Model 9400

CONCRETE BARRIER-MOUNTED MINI-DRUM (10" x 14" x 22")

1. Stinson Equipment Company "SaddleMarker"

GUARD RAILING DELINEATOR

(Place top of reflective element at 48 inches above plane of roadway)

Wood Post Type, 27-inch

- 1. Pexco LLC, FG 427 and FG 527
- 2. Carsonite, Model 427
- 3. FlexStake, Model 102 GR
- 4. GreenLine GRD 27
- 5. Safe-Hit, Model SH227GRD
- 6. Three D Traffic Works "Guardflex" TD9100
- 7. New Directions Mfg, NDM27

8. Shur-Tite Products, Shur-Tite Flat Mount

Steel Post Type

1. Carsonite, Model CFGR-327

RETROREFLECTIVE SHEETING

Channelizers, Barrier Markers, and Delineators

- 1. Avery Dennison T-6500 Series (For rigid substrate devices only)
- 2. Avery Dennison WR-7100 Series
- 3. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II
- 4. Reflexite, PC-1000 Metalized Polycarbonate
- 5. Reflexite, AC-1000 Acrylic
- 6. Reflexite, AP-1000 Metalized Polyester
- 7. Reflexite, Conformalight, AR-1000 Abrasion Resistant Coating
- 8. 3M, High Intensity

Traffic Cones, 4-inch and 6-inch Sleeves

- 1. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II
- 2. Reflexite, Vinyl, "TR" (Semi-transparent) or "Conformalight"
- 3. 3M Series 3840
- 4. Avery Dennison S-9000C

Drums

- 1. Avery Dennison WR-6100
- 2. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II
- 3. Reflexite, "Conformalight", "Super High Intensity" or "High Impact Drum Sheeting"
- 4. 3M Series 3810

Barricades: Type I, Medium-Intensity (Typically Enclosed Lens, Glass-Bead Element)

- 1. Nippon Carbide Industries, CN8117
- 2. Avery Dennison, W 1100 series
- 3. 3M Series CW 44

Barricades: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element)

1. Avery Dennison, W-2100 Series

Vertical Clearance Signs: Structure Mounted

1. 3M Model 4061, Diamond Grade DG3, Fluorescent Yellow

Signs: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element)

- 1. Avery Dennison, T-2500 Series
- 2. Nippon Carbide Industries, Nikkalite 18000

Signs: Type III, High-Intensity (Typically Encapsulated Glass-Bead Element)

- 1. Avery Dennison, T-5500A and T-6500 Series
- 2. Nippon Carbide Industries, Nikkalite Brand Ultralite Grade II
- 3. 3M 3870 and 3930 Series

Signs: Type IV, High-Intensity (Typically Unmetallized Microprismatic Element)

- 1. Avery Dennison, T-6500 Series
- 2. Nippon Carbide Industries, Crystal Grade, 94000 Series
- 3. Nippon Carbide Industries, Model No. 94847 Fluorescent Orange
- 4. 3M Series 3930 and Series 3924S

Signs: Type VI, Elastomeric (Roll-Up) High-Intensity, without Adhesive

- 1. Avery Dennison, WU-6014
- 2. Novabrite LLC, "Econobrite"
- 3. Reflexite "Vinyl"
- 4. Reflexite "SuperBright"
- 5. Reflexite "Marathon"
- 6. 3M Series RS20

Signs: Type VII, Super-High-Intensity (Typically Unmetallized Microprismatic Element)

- 1. 3M Series 3924S, Fluorescent Orange
- 2. 3M LDP Series 3970

Signs: Type VIII, Super-High-Intensity (Typically Unmetallized Microprismatic Element)

- 1. Avery Dennison, T-7500 Series
- 2. Avery Dennison, T-7511 Fluorescent Yellow
- 3. Avery Dennison, T-7513 Fluorescent Yellow Green
- 4. Avery Dennison, W-7514 Fluorescent Orange
- 5. Nippon Carbide Industries, Nikkalite Crystal Grade Series 92800
- 6. Nippon Carbide Industries, Nikkalite Crystal Grade Model 92847 Fluorescent Orange

Signs: Type IX, Very-High-Intensity (Typically Unmetallized Microprismatic Element)

- 1. 3M VIP Series 3981 Diamond Grade Fluorescent Yellow
- 2. 3M VIP Series 3983 Diamond Grade Fluorescent Yellow/Green
- 3. 3M VIP Series 3990 Diamond Grade
- 4. Avery Dennison T-9500 Series
- 5. Avery Dennison, T9513, Fluorescent Yellow Green
- 6. Avery Dennison, W9514, Fluorescent Orange
- 7. Avery Dennison, T-9511 Fluorescent Yellow

SPECIALTY SIGNS

1. Reflexite "Endurance" Work Zone Sign (with Semi-Rigid Plastic Substrate)

ALTERNATIVE SIGN SUBSTRATES

Fiberglass Reinforced Plastic (FRP) and Expanded Foam PVC

- 1. Fiber-Brite (FRP)
- 2. Sequentia, "Polyplate" (FRP)
- 3. Inteplast Group "InteCel" (0.5 inch for Post-Mounted CZ Signs, 48-inch or less)(PVC)

Aluminum Composite, Temporary Construction Signs and Permanent Signs up to 4 foot, 7 Inches

- 1. Alcan Composites "Dibond Material, 80 mils"
- 2. Mitsubishi Chemical America, Alpolic 350
- 3. Bone Safety Signs, Bone Light ACM (temporary construction signs only)

8-1.02 STATE-FURNISHED MATERIALS

The State furnishes you with:

- Model 2070L controller assemblies, including controller unit, completely wired controller cabinet, and detector sensor units
- Model 170 controller assemblies, including controller unit, completely wired controller cabinet, and detector sensor units
- Components of battery backup system as follows:

Inverter/charger unit

Power transfer relay

Manually-operated bypass switch

Battery harness

Utility interconnect wires

Battery temperature probe Relay contact wires

The State furnishes you with completely wired controller cabinets with auxiliary equipment but without controller unit at Department of Transportation, District 12 Warehouse, 691 South Tustin St., Orange, CA 92666, Telephone (714) 288-4053. At least 48 hours before you pick up the materials, inform the Engineer what you will pick up and when you will pick it up.

8-1.03 SLAG AGGREGATE

Air-cooled iron blast furnace slag shall not be used to produce aggregate for:

- 1. Structure backfill material.
- 2. Pervious backfill material.
- 3. Permeable material.
- 4. Reinforced or prestressed portland cement concrete component or structure.

Aggregate produced from slag resulting from a steel-making process shall not be used for a highway construction project except for the following items:

- 1. Imported Borrow.
- 2. Aggregate Subbase.
- 3. Class 2 Aggregate Base.
- 4. Hot Mix Asphalt.

Steel slag to be used to produce aggregate for aggregate subbase and Class 2 aggregate base shall be crushed so that 100 percent of the material will pass a 3/4-inch sieve and then shall be control aged for a period of at least 3 months under conditions that will maintain all portions of the stockpiled material at a moisture content in excess of 6 percent of the dry weight of the aggregate.

A supplier of steel slag aggregate shall provide separate stockpiles for controlled aging of the slag. An individual stockpile shall contain not less than 10,000 tons nor more than 50,000 tons of slag. The material in each individual stockpile shall be assigned a unique lot number and each stockpile shall be identified with a permanent system of signs. The supplier shall maintain a permanent record of the dates on which stockpiles are completed and controlled aging begun, of the dates when controlled aging was completed, and of the dates tests were made and the results of these tests. Moisture tests shall be made at least once each week. No credit for aging will be given for the time period covered by tests which show a moisture content of 6 percent or less. The stockpiles and records shall be available to the Engineer during normal working hours for inspection, check testing and review.

The supplier shall notify the Transportation Laboratory when each stockpile is completed and controlled aging begun. No more aggregate shall be added to the stockpile unless a new aging period is initiated. A further notification shall be sent when controlled aging is completed.

The supplier shall provide a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. Each stockpile or portion of a stockpile that is used in the work will be considered a lot. The Certificates of Compliance shall state that the steel slag aggregate has been aged in a stockpile for at least 3 months at a moisture content in excess of 6 percent of the dry weight of the aggregate.

Steel slag used for imported borrow shall be weathered for at least 3 months. Prior to the use of steel slag as imported borrow, the supplier shall furnish a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall state that the steel slag has been weathered for at least 3 months.

Each delivery of aggregate containing steel slag for use as aggregate subbase or Class 2 aggregate base shall be accompanied by a delivery tag for each load which will identify the lot of material by stockpile number, where the slag was aged, and the date that the stockpile was completed and controlled aging begun.

Air-cooled iron blast furnace slag or natural aggregate may be blended in proper combinations with steel slag aggregate to produce the specified gradings, for those items for which steel slag aggregate is permitted, unless otherwise provided.

Aggregate containing slag shall meet the applicable quality requirements for the items in which the aggregate is used.

The combined slag aggregate shall conform to the specified grading for the item in which it is used. The grading will be determined by California Test 202, modified by California Test 105 when there is a difference in specific gravity of 0.2 or more between the coarse and fine portion of the aggregate or between blends of different aggregates.

No aggregate produced from slag shall be placed within one foot, measured in any direction, of a non-cathodically protected pipe or structure unless the aggregate is incorporated in portland cement concrete pavement, in hot mix asphalt, or in treated base.

When slag is used as aggregate in hot mix asphalt, the K_c factor requirements, as determined by California Test 303, will not apply.

When slag aggregate is used for imported borrow, a layer of not less than 1.5 feet of topsoil, measured after compaction, shall be placed over the slag aggregate in areas where highway planting is to be performed. In other areas, slag aggregate used for embankment construction shall not be placed within 18 inches of finished slope lines, measured normal to the plane of the slope. Full compensation for furnishing and placing topsoil and cover, as provided herein, shall be considered as included in the contract price paid per cubic yard for imported borrow and no additional compensation will be allowed therefor.

If steel slag aggregates are used to make hot mix asphalt, there shall be no other aggregates used in the mixture, except that up to 50 percent of the material passing the No. 4 sieve may consist of iron blast furnace slag aggregates or natural aggregates, or a combination thereof. If iron blast furnace aggregates or natural aggregates or a combination thereof are used in the mix, each type of aggregate shall be fed to the drier at a uniform rate. The rate of feed of each type of aggregate shall be maintained within 10 percent of the amount set. Adequate means shall be provided for controlling and checking the accuracy of the feeder.

Steel slag aggregate shall be stored separately from iron blast furnace slag aggregate and each type of slag aggregate shall also be stored separately from natural aggregate.

Hot mix asphalt produced from more than one of the following shall not be placed in the same layer: steel slag aggregates, iron blast furnace slag aggregates, natural aggregates or any combination thereof. Once a type of aggregate or aggregates is selected, it shall not be changed without prior approval by the Engineer.

If steel slag aggregates are used to produce hot mix asphalt, and if the specific gravity of a compacted stabilometer test specimen is in excess of 2.40, the quantity of hot mix asphalt to be paid for will be reduced. The stabilometer test specimen will be fabricated in conformance with the procedures in California Test 304 and the specific gravity of the specimen will be determined in conformance with Method C of California Test 308. The pay quantity of hot mix asphalt will be determined by multiplying the quantity of hot mix asphalt placed in the work by 2.40 and dividing the result by the specific gravity of the compacted stabilometer test specimen. Such reduction in quantity will be determined and applied as often as is necessary to ensure accurate results as determined by the Engineer.

SECTION 8-2. CONCRETE

8-2.01 PORTLAND CEMENT CONCRETE

Portland cement concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions.

STRENGTH DEVELOPMENT TIME

The time allowed to obtain the minimum required compressive strength as specified in Section 90-1.01, "Description," of the Standard Specifications will be 56 days when the Contractor chooses cementitious material that satisfies the following equation:

$$\frac{(41 \text{ x UF}) + (19 \text{ x F}) + (11 \text{ x SL})}{\text{TC}} \ge 7.0$$

Where:

- F = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N, including the amount in blended cement, pounds per cubic yard. F is equivalent to either FA or FB as defined in Section 90-2.01C, "Required Use of Supplementary Cementitious Materials," of the Standard Specifications
- SL = GGBFS, including the amount in blended cement, pounds per cubic yard
- UF = Silica fume, metakaolin, or UFFA, including the amount in blended cement, pounds per cubic yard

For concrete satisfying the equation above, the Contractor shall test for the modulus of rupture or compressive strength specified for the concrete involved, at least once every 500 cubic yards, at 28, 42, and 56 days. The Contractor shall submit test results to the Engineer and the Transportation Laboratory, Attention: Office of Concrete Materials.

SUPPLEMENTARY CEMENTITIOUS MATERIALS

The Contractor may use rice hull ash as a supplementary cementitious material (SCM) to make minor concrete. Rice hull ash shall conform to the requirements in AASHTO Designation: M 321 and the following chemical and physical requirements:

Chemical Requirements	Percent
Silicon Dioxide (SiO ₂) ^a	90 min.
Loss on ignition	5.0 max.
Total Alkalies (as Na ₂ O) equivalent	3.0 max.

Physical Requirements	Percent
Particle size distribution	
Less than 45 microns	95
Less than 10 microns	50
Strength Activity Index with portland cement b	
7 days	95 (minimum % of control)
28 days	110 (minimum % of control)
Expansion at 16 days when testing job materials in	0.10 max.
conformance with ASTM C 1567 c	
Surface Area when testing by nitrogen adsorption in	$40.0 \text{ m}^2/\text{g min.}$
conformance with ASTM D 5604	

Notes

Rice hull ash will be considered as a Type UF SCM for the purposes of calculating cementitious material requirements in Section 90-2.01C, "Required Use of Supplementary Cementitious Materials," of the Standard Specifications and these special provisions.

8-2.02 PRECAST CONCRETE QUALITY CONTROL

GENERAL

Precast concrete quality control shall conform to these special provisions.

Unless otherwise specified, precast concrete quality control shall apply when any precast concrete members are fabricated in conformance with the provisions in Section 49, "Piling," or Section 51, "Concrete Structures," of the Standard Specifications.

Precast concrete quality control shall not apply to precast concrete members that are fabricated from minor concrete.

Quality Control (QC) shall be the responsibility of the Contractor. The Contractor's QC inspectors shall perform inspection and testing prior to precasting, during precasting, and after precasting, and as specified in this section and additionally as necessary to ensure that materials and workmanship conform to the details shown on the plans, and to the specifications.

Quality Assurance (QA) is the prerogative of the Engineer. Regardless of the acceptance for a given precast element by the Contractor, the Engineer will evaluate the precast element. The Engineer will reject any precast element that does not conform to the approved Precast Concrete Quality Control Plan (PCQCP), the details shown on the plans, or to these special provisions.

^a A maximum of 1.0% of the SiO₂ may exist in crystalline form.

^b When tested in conformance with the requirements for strength activity testing of silica fume in AASHTO Designation: M 307

 $^{^{\}rm c}$ In the test mix, Type II or Type V portland cement shall be replaced with at least 12% RHA by weight.

The Contractor shall designate in writing a precast Quality Control Manager (QCM) for each precasting facility. The QCM shall be responsible directly to the Contractor for the quality of precasting, including materials and workmanship, performed by the Contractor and all subcontractors. The QCM shall be the sole individual responsible to the Contractor for submitting, receiving, and approving all correspondence, required submittals, and reports to and from the Engineer. The QCM shall not be employed or compensated by any subcontractor, or other persons or entities hired by subcontractors, or suppliers, who will provide other services or materials for the project. The QCM may be an employee of the Contractor.

Prior to submitting the PCQCP required herein, a meeting between the Engineer, the Contractor's QCM, and a representative from each entity performing precast concrete operations for this project, shall be held to discuss the requirements for precast quality control.

QC Inspectors shall either be 1) licensed as Civil Engineers in the State of California, or 2) have a current Plant Quality Personnel Certification, Level II, from the Precast/Prestressed Concrete Institute. A QC Inspector shall witness all precast concrete operations.

PRECAST CONCRETE QUALIFICATION AUDIT

Unless otherwise specified, no Contractors or subcontractors performing precast concrete operations for the project shall commence work without having successfully completed the Department's Precast Fabrication Qualification Audit, hereinafter referred to as the audit. Copies of the audit form, along with procedures for requesting and completing the audit, are available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbresources.htm

An audit that was previously approved by the Department no more than 3 years before the award of this contract will be acceptable for the entire period of this contract, provided the Engineer determines the audit is for the same type of work that is to be performed on this contract.

A list of facilities who have successfully completed the audit and are authorized to provide material for this contract is available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smdocuments/Internet_auditlisting.pdf

Successful completion of an audit shall not relieve the Contractor of the responsibility for furnishing materials or producing finished work of the quality specified in these special provisions and as shown on the plans.

PRECAST CONCRETE QUALITY CONTROL PLAN

Prior to performing any precasting operations, the Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 3 copies of a separate PCQCP for each item of work to be precast. A separate PCQCP shall be submitted for each facility. As a minimum, each PCQCP shall include the following:

- A. The name of the precasting firm, the concrete plants to be used, and any concrete testing firm to be used;
- B. A manual prepared by the precasting firm that includes equipment, testing procedures, safety plan, and the names, qualifications, and documentation of certifications for all personnel to be used;
- C. The name of the QCM and the names, qualifications, and documentation of certifications for all QC inspection personnel to be used;
- D. An organizational chart showing all QC personnel and their assigned QC responsibilities;
- E. The methods and frequencies for performing all required quality control procedures, including all inspections, material testing, and any required survey procedures for all components of the precast elements including prestressing systems, concrete, grout, reinforcement, steel components embedded or attached to the precast member, miscellaneous metal, and formwork;
- F. A system for identification and tracking of required precast element repairs, and a procedure for the reinspection of any repaired precast element. The system shall have provisions for a method of reporting nonconforming precast elements to the Engineer; and
- G. Forms to be used for Certificates of Compliance, daily production logs, and daily reports.

The Engineer shall have 4 weeks to review the PCQCP submittal after a complete plan has been received. No precasting shall be performed until the PCQCP is approved in writing by the Engineer.

A PCQCP that was previously approved by the Engineer no more than one year prior to the beginning of work on this contract will be acceptable for the entire period of this contract, provided the Engineer determines the PCQCP is for the same type of work that is to be performed on this contract.

An amended PCQCP or addendum shall be submitted to, and approved in writing by the Engineer, for any proposed revisions to the approved PCQCP. An amended PCQCP or addendum will be required for any revisions to the PCQCP, including but not limited to changes in concrete plants or source materials, changes in material testing procedures and testing labs, changes in procedures and equipment, changes in QC personnel, or updated systems for tracking and identifying precast elements. The Engineer shall have 2 weeks to complete the review of the amended PCQCP or addendum, once a complete submittal has been received. Work that is affected by any of the proposed revisions shall not be performed until the amended PCQCP or addendum has been approved.

After final approval of the PCQCP, amended PCQCP, or addendum, the Contractor shall submit 7 copies to the Engineer of each of these approved documents.

It is expressly understood that the Engineer's approval of the Contractor's PCQCP shall not relieve the Contractor of any responsibility under the contract for the successful completion of the work in conformance with the requirements of the plans and specifications. The Engineer's approval shall neither constitute a waiver of any of the requirements of the plans and specifications nor relieve the Contractor of any obligation thereunder; and defective work, materials, and equipment may be rejected notwithstanding approval of the PCOCP.

REPORTING

The QC Inspector shall provide reports to the QCM on a daily basis for each day that precasting operations are performed.

A daily production log for precasting shall be kept by the QCM for each day that precasting operations, including setting forms, placing reinforcement, setting prestressing steel, casting, curing, post tensioning, and form release, are performed. The log shall include the facility location, and shall include a specific description of casting or related operations, any problems or deficiencies discovered, any testing or repair work performed, and the names of all QC personnel and the specific QC inspections they performed that day. The daily report from each QC Inspector shall also be included in the log. This daily log shall be available for viewing by the Engineer, at the precasting facility.

All reports regarding material tests and any required survey checks shall be signed by the person who performed the test or check, and then submitted directly to the QCM for review and signature prior to submittal to the Engineer. Corresponding names shall be clearly printed or type-written next to all signatures.

The Engineer shall be notified immediately in writing when any precasting problems or deficiencies are discovered and of the proposed repair or process changes required to correct them. The Engineer shall have 4 weeks to review these procedures. No remedial work shall begin until the Engineer approves these procedures in writing.

The following items shall be included in a precast report that is to be submitted to the Engineer following the completion of any precast element:

- A. Reports of all material tests and any required survey checks;
- B. Documentation that the Contractor has evaluated all tests and corrected all rejected deficiencies, and all repairs have been re-examined with the required tests and found acceptable; and
- C. A daily production log.

At the completion of any precast element, and if the QCM determines that element is in conformance with these special provisions, the QCM shall sign and furnish to the Engineer, a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. This Certificate of Compliance shall be submitted with the precast report. The certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in conformance with the details shown on the plans and the provisions of the Standard Specifications and these special provisions.

PAYMENT

In the event the Engineer fails to complete the review of 1) a PCQCP, 2) an amended PCQCP or addendum, or 3) a proposed repair or process change, within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

All required repair work or process changes required to correct precasting operation deficiencies, whether discovered by the QCM, QC Inspector, or by the Engineer, and any associated delays or expenses to the Contractor caused by performing these repairs, shall be at the Contractor's expense.

Full compensation for conforming to the requirements of this section shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor.

8-2.03 SELF-CONSOLIDATING CONCRETE FOR PRECAST ELEMENTS

GENERAL

Summary

This section includes specifications for self-consolidating concrete (SCC). You may use SCC for only the following cases:

- 1. For precast concrete
- 2. Where the specifications allow the use of SCC

Definitions

self-consolidating concrete: Flowing concrete capable of spreading to a level state without segregation and without the use of internal or external vibrators.

Submittals

Submit the following for approval before placing SCC:

- 1. SCC mix design and placement procedures
- 2. Trial batch test report
- 3. Details and placement procedures for the mock-up
- 4. Test samples and test results from the mock-up

Quality Control and Assurance

General

Prepare SCC specimens for compressive strength testing under California Test 540 except fabricate test specimens as follows:

- 1. Place test molds on a firm, flat surface to prevent distortion of the bottom surface. When more than 1 specimen is to be made from the same batch, make all specimens simultaneously. Fill the mold in 1 lift, pouring the concrete from a larger container. Pat sides of the mold lightly by hand, or jig by rocking the mold from side to side.
- 2. Strike off the surface of the concrete even with the top edge of the mold. Wipe the sides of the mold free of excess concrete and press the lid on.

Prequalification of SCC Mix Design

Prequalify the SCC mix design with a trial batch using the same materials, mix proportions, mixing equipment, procedures, and size of batch to be used in the production of SCC. The trial batch test report for the SCC mix design must include the following tests and results:

SCC Mix Design Requirements

Propety	Requirement	Test Method
Slump Flow	At least 20 inches	ASTM C 1611
Flow Rate - T ₅₀	Between 2 and 7 seconds	ASTM C 1611
Visual Stability Index	1 or less	ASTM C 1611
J-Ring Flow	The difference between J-Ring flow and the slump flow must not exceed 2 inches	ASTM C 1621
Column Segregation	Static segregation must not exceed 15%	ASTM C 1610
Bleeding	Bleeding capacity must not exceed 2.5%	ASTM C 232
Compressive Strength	The average of 5 test cylinders must be at least 600 psi greater than the specified strength. ^a	California Test 521
Minimum Compressive Strength	The minimum for an individual test cylinder must not be less than the specified strength. ^a	California Test 521

Note:

Field Quality Control

Determine the fine aggregate moisture content for each batch of SCC.

Determine slump flow and visual stability index (VSI) under ASTM C 1611 at the beginning of SCC placement and whenever a set of concrete cylinders is prepared. The slump flow must not vary by more than 3 inches from the mix design slump flow, and the minimum allowable slump flow is 20 inches. VSI must be 1.0 or less. If the Engineer rejects SCC for slump flow and VSI, make corrective changes in the SCC mix design or placement procedures before placing additional SCC. Submit revised SCC mix design or placement procedures for approval.

MATERIALS

SCC must comply with Section 90, "Portland Cement Concrete," of the Standard Specifications except Section 90-3, "Aggregate Gradings," of the Standard Specifications does not apply.

PAYMENT

The Department measures and pays for SCC under the specifications requiring or allowing its use.

^a At the maximum age specified or allowed

SECTION 8-3. WELDING

8-3.01 WELDING

GENERAL

Unless otherwise specified, Section 8-3, "Welding," shall apply to any welding that is specified to conform to an AWS welding code.

Requirements of the AWS welding codes shall apply unless otherwise specified in the Standard Specifications, on the plans, or in these special provisions. Wherever the abbreviation AWS is used, it shall be equivalent to the abbreviations ANSI/AWS or AASHTO/AWS.

Wherever reference is made to the following AWS welding codes in the Standard Specifications, on the plans, or in these special provisions, the year of adoption for these codes shall be as listed:

AWS Code	Year of Adoption
D1.1	2008
D1.3	2008
D1.4	2005
D1.5	2008
D1.6	2007
D1.8	2009

Flux cored welding electrodes conforming to the requirements of AWS A5.20 E6XT-4 or E7XT-4 shall not be used to perform welding for this project.

Unless otherwise specified, Clause 6.1.3 of AWS D1.1, paragraph 1 of Section 7.1.2 of AWS D1.4, and Clause 6.1.1.2 of AWS D1.5, are replaced with the following:

The QC Inspector shall be the duly designated person who acts for and on behalf of the Contractor for inspection, testing, and quality related matters for all welding.

Quality Assurance (QA) is the prerogative of the Engineer. The QA Inspector is the duly designated person who acts for and on behalf of the Engineer.

The QC Inspector shall be responsible for quality control acceptance or rejection of materials and workmanship.

When the term "Inspector" is used without further qualification, it shall refer to the QC Inspector.

Inspection and approval of all joint preparations, assembly practices, joint fit-ups, welding techniques, and the performance of each welder, welding operator, and tack welder shall be documented by the QC Inspector on a daily basis for each day welding is performed. For each inspection, including fit-up, Welding Procedure Specification (WPS) verification, and final weld inspection, the QC Inspector shall confirm and document compliance with the requirements of the AWS or other specified code criteria and the requirements of these special provisions on all welded joints before welding, during welding, and after the completion of each weld.

The Engineer shall have the authority to verify the qualifications or certifications of any welder, QC Inspector, or NDT personnel to specified levels by retests or other means approved by the Engineer.

When joint weld details that are not prequalified to the details of Clause 3 of AWS D1.1 or to the details of Figure 2.4 or 2.5 of AWS D1.5 are proposed for use in the work, the joint details, their intended locations, and the proposed welding parameters and essential variables, shall be approved by the Engineer. The Contractor shall allow the Engineer 15 days to complete the review of the proposed joint detail locations.

In addition to the requirements of AWS D1.1, welding procedure qualifications for work welded in conformance with this code shall conform to the following:

When a nonstandard weld joint is to be made using a combination of WPSs, a single test may be conducted combining the WPSs to be used in production, provided the essential variables, including weld bead placement, of each process are limited to those established in Table 4.5.

Upon approval of the proposed joint detail locations and qualification of the proposed joint details, welders and welding operators using these details shall perform a qualification test plate using the WPS variables and the joint detail to be used in production. The test plate shall have the maximum thickness to be used in production and a minimum length of 18 inches. The test plate shall be mechanically and radiographically tested. Mechanical and radiographic testing and acceptance criteria shall be as specified in the applicable AWS codes.

The Engineer will witness all qualification tests for WPSs that were not previously approved by the Department.

In addition to the requirements specified in the applicable code, the period of effectiveness for a welder's or welding operator's qualification shall be a maximum of 3 years for the same weld process, welding position, and weld type. If welding will be performed without gas shielding, then qualification shall also be without gas shielding. Excluding welding of fracture critical members, a valid qualification at the beginning of work on a contract will be acceptable for the entire period of the contract, as long as the welder's or welding operator's work remains satisfactory.

The Contractor shall notify the Engineer 7 days prior to performing any procedure qualification tests. Witnessing of qualification tests by the Engineer shall not constitute approval of the intended joint locations, welding parameters, or essential variables. The Contractor shall notify the Engineer using the "Standard TL-38 Inspection Form" located at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbforms.htm

Clause 6.14.6, "Personnel Qualification," of AWS D1.1, Section 7.8, "Personnel Qualification," of AWS D1.4, and Clause 6.1.3.4, "Personnel Qualification," of AWS D1.5 are replaced with the following:

Personnel performing nondestructive testing (NDT) shall be qualified and certified in conformance with the requirements of the American Society for Nondestructive Testing (ASNT) Recommended Practice No. SNT-TC-1A and the Written Practice of the NDT firm. The Written Practice of the NDT firm shall meet or exceed the guidelines of the ASNT Recommended Practice No. SNT-TC-1A. Individuals who perform NDT, review the results, and prepare the written reports shall be either:

- A. Certified NDT Level II technicians, or;
- B. Level III technicians who hold a current ASNT Level III certificate in that discipline and are authorized and certified to perform the work of Level II technicians.

Clause 6.6.5, "Nonspecified NDT Other than Visual," of AWS D1.1, Section 7.6.5 of AWS D1.4 and Clause 6.6.5 of AWS D1.5 shall not apply.

For any welding, the Engineer may direct the Contractor to perform NDT that is in addition to the visual inspection or NDT specified in the AWS or other specified welding codes, in the Standard Specifications, or in these special provisions. Except as provided for in these special provisions, additional NDT required by the Engineer, and associated repair work, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. Prior to release of welded material by the Engineer, if testing by NDT methods other than those originally specified discloses an attempt to defraud or reveals a gross nonconformance, all costs associated with the repair of the deficient area, including NDT of the weld and of the repair, and any delays caused by the repair, shall be at the Contractor's expense. A gross nonconformance is defined as the sum of planar type rejectable indications in more than 20 percent of the tested length.

When less than 100 percent of NDT is specified for any weld, it is expected that the entire length of weld meet the specified acceptance-rejection criteria. Should any welding deficiencies be discovered by additional NDT directed or performed by the Engineer that utilizes the same NDT method as that originally specified, all costs associated with the repair of the deficient area, including NDT of the weld and of the weld repair, and any delays caused by the repair, shall be at the Contractor's expense.

Repair work to correct welding deficiencies discovered by visual inspection directed or performed by the Engineer, and any associated delays or expenses caused to the Contractor by performing these repairs, shall be at the Contractor's expense.

WELDING QUALITY CONTROL

Welding quality control shall conform to the requirements in the AWS or other specified welding codes, the Standard Specifications, and these special provisions.

Unless otherwise specified, welding quality control shall apply to work welded in conformance with the provisions in the following:

- A. Section 49, "Piling," Section 52, "Reinforcement," Section 55, "Steel Structures," and Section 75-1.035, "Bridge Joint Restrainer Units," of the Standard Specifications
- B. "Structural Steel for Building Work" of these special provisions

Unless otherwise specified, Clauses 6.1.4.1 and 6.1.4.3 of AWS D1.1, paragraph 2 of Section 7.1.2 of AWS D1.4, and Clauses 6.1.3.2 through 6.1.3.3 of AWS D1.5 are replaced with the following:

The QC Inspector shall be currently certified as an AWS Certified Welding Inspector (CWI) in conformance with the requirements in AWS QC1, "Standard for AWS Certification of Welding Inspectors."

The QC Inspector may be assisted by an Assistant QC Inspector provided that this individual is currently certified as an AWS Certified Associate Welding Inspector (CAWI) in conformance with the requirements in AWS QC1, "Standard for AWS Certification of Welding Inspectors." The Assistant QC Inspector may perform inspection under the direct supervision of the QC Inspector provided the assistant is always within visible and audible range of the QC Inspector. The QC Inspector shall be responsible for signing all reports and for determining if welded materials conform to workmanship and acceptance criteria. The ratio of QC Assistants to QC Inspectors shall not exceed 5 to 1.

The Contractor shall designate in writing a welding Quality Control Manager (QCM). The QCM shall be responsible directly to the Contractor for the quality of welding, including materials and workmanship, performed by the Contractor and subcontractors.

The QCM shall be the sole individual responsible to the Contractor for submitting, receiving, reviewing, and approving all correspondence, required submittals, and reports to and from the Engineer. The QCM shall be a registered professional engineer or shall be currently certified as a CWI.

Unless the QCM is hired by a subcontractor providing only QC services, the QCM shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project. The QCM may be an employee of the Contractor.

The QCM shall sign and furnish to the Engineer, a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each item of work for which welding was performed. The certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in conformance with the details shown on the plans, the Standard Specifications, and these special provisions.

Welding inspection personnel or NDT firms to be used in the work shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project, except for the following conditions:

- A. The work is welded in conformance with AWS D1.5 and is performed at a permanent fabrication or manufacturing facility that is certified under the AISC Quality Certification Program, Category CBR, Major Steel Bridges and Fracture Critical endorsement F, when applicable.
- B. Structural steel for building work is welded in conformance with AWS D1.1 and is performed at a permanent fabrication or manufacturing facility that is certified under the AISC Quality Certification Program, Category STD, Standard for Steel Building Structures.

For welding performed at such facilities, the inspection personnel or NDT firms may be employed or compensated by the facility performing the welding provided the facility maintains a QC program that is independent from production.

Unless otherwise specified, an approved independent third party will witness the qualification tests for welders or welding operators. The independent third party shall be a current CWI and shall not be an employee of the contractor performing the welding. The Contractor shall allow the Engineer 15 days to review the qualifications and copy of the current certification of the independent third party.

Prior to submitting the Welding Quality Control Plan (WQCP) required herein, a prewelding meeting between the Engineer, the Contractor's QCM, and a representative from each entity performing welding or inspection for this project, shall be held to discuss the requirements for the WQCP.

Information regarding the contents, format, and organization of a WQCP, is available at the Transportation Laboratory and at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbresources.htm

The Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 2 copies of a separate WQCP for each subcontractor or supplier for each item of work for which welding is to be performed.

The Contractor shall allow the Engineer 15 days to review the WQCP submittal after a complete plan has been received. No welding shall be performed until the WQCP is approved in writing by the Engineer.

An amended WQCP or any addendum to the approved WQCP shall be submitted to, and approved in writing by the Engineer, for proposed revisions to the approved WQCP. An amended WQCP or addendum will be required for revisions to the WQCP, including but not limited to a revised WPS; additional welders; changes in NDT firms, QC, or NDT personnel or procedures; or updated systems for tracking and identifying welds. The Engineer shall have 7 days to complete the review of the amended WQCP or addendum. Work affected by the proposed revisions shall not be performed until the amended WQCP or addendum has been approved.

After final approval of the WQCP, amended WQCP, or addendum, the Contractor shall submit 7 copies to the Engineer of the approved documents. A copy of the Engineer approved document shall be available at each location where welding is to be performed.

All welding will require inspection by the Engineer. The Contractor shall request inspection at least 3 business days prior to the beginning of welding for locations within California and 5 business days for locations outside of California. The Contractor shall request inspection at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbforms.htm

Continuous inspection shall be provided when any welding is being performed. Continuous inspection, as a minimum, shall include having a QC Inspector within such close proximity of all welders or welding operators so that inspections by the QC Inspector of each welding operation at each welding location does not lapse for a period exceeding 30 minutes.

A daily production log for welding shall be kept for each day that welding is performed. The log shall clearly indicate the locations of all welding. The log shall include the welders' names, amount of welding performed, any problems or deficiencies discovered, and any testing or repair work performed, at each location. The daily report from each QC Inspector shall also be included in the log.

The following items shall be included in a Welding Report that is to be submitted to the Engineer within 15 days following the performance of any welding:

- A. A daily production log.
- B. Reports of all visual weld inspections and NDT.
- C. Radiographs and radiographic reports, and other required NDT reports.
- D. A summary of welding and NDT activities that occurred during the reporting period.
- E. Reports of each application of heat straightening.
- F. A summarized log listing the rejected lengths of weld by welder, position, process, joint configuration, and piece number.
- G. Documentation that the Contractor has evaluated all radiographs and other nondestructive tests and corrected all rejectable deficiencies, and that all repaired welds have been reexamined using the required NDT and found acceptable.

The following information shall be clearly written on the outside of radiographic envelopes: name of the QCM, name of the nondestructive testing firm, name of the radiographer, date, contract number, complete part description, and all included weld numbers, report numbers, and station markers or views, as detailed in the WQCP. In addition, all interleaves shall have clearly written on them the part description and all included weld numbers and station markers or views, as detailed in the WQCP. A maximum of 2 pieces of film shall be used for each interleave.

Reports of all visual inspections and NDT shall be signed by the inspector or technician and submitted daily to the QCM for review and signature prior to submittal to the Engineer. Corresponding names shall be clearly printed or typewritten next to all signatures. Reports of all NDT, whether specified, additional, or informational, performed by the Contractor shall be submitted to the Engineer.

The Engineer will review the Welding Report to determine if the Contractor is in conformance with the WQCP. Except for field welded steel pipe piling, the Engineer shall be allowed 15 days to review the report and respond in writing after the complete Welding Report has been received. Prior to receiving notification from the Engineer of the Contractor's conformance with the WQCP, the Contractor may encase in concrete or cover welds for which the Welding Report has been submitted. However, should the Contractor elect to encase or cover those welds prior to receiving notification from the Engineer, it is expressly understood that the Contractor shall not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection.

For field welded steel pipe piling, including bar reinforcement in the piling, the Contractor shall allow the Engineer 2 business days to review the Welding Report and respond in writing after the required items have been received. No field welded steel pipe piling shall be installed, and no reinforcement in the piling shall be encased in concrete until the Engineer has approved the above requirements in writing.

In addition to the requirements in AWS D1.1 and AWS D1.5, third-time excavations of welds or base metal to repair unacceptable discontinuities, regardless of NDT method, and all repairs of cracks require prior approval of the Engineer.

The Engineer shall be notified immediately in writing when welding problems, deficiencies, base metal repairs, or any other type of repairs not submitted in the WQCP are discovered, and also of the proposed repair procedures to correct them. For requests to perform third-time excavations or repairs of cracks, the Contractor shall include an engineering evaluation of the proposed repair. The engineering evaluation, at a minimum, shall address the following:

- A. What is causing each defect?
- B. Why the repair will not degrade the material properties?
- C. What steps are being taken to prevent similar defects from happening again?

The Contractor shall allow the Engineer 7 days to review these procedures. No remedial work shall begin until the repair procedures are approved in writing by the Engineer.

Clause 6.5.4 of AWS D1.5 is replaced with the following:

The QC Inspector shall inspect and approve each joint preparation, assembly practice, welding technique, joint fit-up, and the performance of each welder, welding operator, and tack welder to make certain that the applicable requirements of this code and the approved Welding Procedure Specification (WPS) are met. The QC Inspector shall examine the work to make certain that it meets the requirements of Clauses 3 and 6.26. The size and contour of all welds shall be measured using suitable gages. Visual inspection for cracks in welds and base metal, and for other discontinuities shall be aided by strong light, magnifiers, or such other devices as may be helpful. Acceptance criteria different from those specified in this code may be used when approved by the Engineer.

In addition to the requirements of AWS D1.5, Clause 5.12 or 5.13, welding procedures qualification for work welded in conformance with that code shall conform to the following requirements:

- A. Unless considered prequalified, fillet welds shall be qualified in each position. The fillet weld soundness test shall be conducted using the essential variables of the WPS as established by the Procedure Qualification Record (PQR).
- B. For qualification of joints that do not conform to Figures 2.4 and 2.5 of AWS D1.5, a minimum of 2 WPS qualification tests are required. The tests shall be conducted using both Figure 5.1 and Figure 5.3. The test conforming to Figure 5.1 shall be conducted in conformance with AWS D1.5, Clause 5.12 or 5.13. The test conforming to Figure 5.3 shall be conducted using the welding electrical parameters that were established for the test conducted conforming to Figure 5.1. The ranges of welding electrical parameters established during welding per Figure 5.1 in conformance with AWS D1.5, Clause 5.12, shall be further restricted according to the limits in Table 5.3 during welding per Figure 5.3.
- C. Multiple zones within a weld joint may be qualified. The travel speed, amperage, and voltage values that are used for tests conducted per AWS D1.5 Clause 5.13 shall be consistent for each pass in a weld joint, and shall in no case vary by more than ±10 percent for travel speed, ±10 percent for amperage, and ±7 percent for voltage as measured from a predetermined target value or average within each weld pass or zone. The travel speed shall in no case vary by more than ±15 percent when using submerged arc welding.
- D. For a WPS qualified in conformance with AWS D1.5 Clause 5.13, the values to be used for calculating ranges for current and voltage shall be based on the average of all weld passes made in the test. Heat input shall be calculated using the average of current and voltage of all weld passes made in the test for a WPS qualified in conformance with Clause 5.12 or 5.13.
- E. Macroetch tests are required for WPS qualification tests, and acceptance shall be per AWS D1.5 Clause 5 19 3
- F. When a nonstandard weld joint is to be made using a combination of WPSs, a test conforming to Figure 5.3 may be conducted combining the WPSs to be used in production, provided the essential variables, including weld bead placement, of each process are limited to those established in Table 5.3.
- G. Prior to preparing mechanical test specimens, the PQR welds shall be inspected by visual and radiographic tests. Backing bar shall be 3 inches in width and shall remain in place during NDT testing. Results of the visual and radiographic tests shall comply with AWS D1.5 Clause 6.26.2, excluding Clause 6.26.2.2. Test plates that do not comply with both tests shall not be used.

WELDING FOR OVERHEAD SIGN AND POLE STRUCTURES

The Contractor shall meet the following requirements for any work welded in conformance with the provisions in Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications.

Welding inspection personnel or NDT firms to be used in the work shall not be employed or compensated by any subcontractor or by other persons or entities hired by subcontractors who will provide other services or materials for the project except for when the welding is performed at a permanent fabrication or manufacturing facility that is certified under the AISC Quality Certification Program. The AISC Certification category for overhead sign structures shall be Simple Steel Bridge Structures (SBR), and the AISC Certification category for pole structures shall be Simple Steel Bridge Structures (SBR) or Standard for Steel Building Structures (STD).

Welding Qualification Audit

Contractors or subcontractors performing welding operations for overhead sign and pole structures shall have successfully completed the Department's "Manufacturing Qualification Audit for Overhead Sign and Pole Structures." Copies of the audit form and procedures for requesting and completing the audit are available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbresources.htm

An audit that was approved by the Engineer no more than 3 years prior to the award of the contract will be acceptable for the entire period of this contract provided the Engineer determines the audit was for the same type of work that is to be performed on this contract.

A list of facilities that have successfully completed the audit and are authorized to provide material for this contract is available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smdocuments/Internet_auditlisting.pdf

Successful completion of an audit shall not relieve the Contractor of the responsibility for furnishing materials or producing finished work of the quality specified in these special provisions and as shown on the plans.

Welding Report

For work welded in conformance with the provisions in Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, a Welding Report shall be submitted in conformance with the provisions in "Welding Quality Control" of these special provisions.

STEEL PIPE PILING QUALIFICATION AUDIT

The Contractor shall submit documentation that one of the following steel pipe piling qualification audits has been successfully completed before welding operations are performed, other than field welding, for steel pipe piling:

- A. "Class R Steel Pipe Piling Qualification Audit"
- B. "Class N Steel Pipe Piling Qualification Audit"

An audit shall have been completed for each pipe pile diameter, thickness, grade of steel, and class of piling to be supplied for this project. The procedures for requesting and completing the audit are available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbresources.htm

An audit that was approved by the Department no more than 3 years prior to the award of the contract will be acceptable for the entire period of this contract provided the Engineer determines the audit was for the same type of work that is to be performed on this contract.

A list of facilities that have successfully completed the audit and are authorized to provide material for this contract is available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smdocuments/Internet_auditlisting.pdf

Successful completion of an audit shall not relieve the Contractor of the responsibility for furnishing materials or producing finished work of the quality specified in these special provisions and as shown on the plans.

PAYMENT

Full compensation for conforming to the requirements of "Welding" shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor.

SECTION 9. DESCRIPTION OF BRIDGE WORK

The bridge work to be done consists, in general, of constructing the following structures as shown on the plans for:

ROUTE 74/5 SEPARATION

(Bridge Number 55-1104)

A 2 span cast-in-place and pre-stressed (CIP/PS) concrete box girder bridge

RETAINING WALL NO. 10

(Bridge Number 55E0117)

Approximately 141-foot long retaining wall.

RETAINING WALL NO. 513

(Bridge Number 55E0118)

Approximately 360-foot long retaining wall.

RETAINING WALL NO. 83

(Bridge Number 55E0119)

Approximately 473-foot long retaining wall.

RETAINING WALL NO. 533A

(Bridge Number 55E0120)

Approximately 65-foot long retaining wall.

RETAINING WALL NO. 96

(Bridge Number 55E0121)

Approximately 390-foot long retaining wall.

SECTION 10. CONSTRUCTION DETAILS

SECTION 10-1. GENERAL

10-1.00 CONSTRUCTION PROJECT INFORMATION SIGNS

Before any major physical construction work readily visible to highway users is started on this contract, the Contractor shall furnish and erect 4 Type 2 Construction Project Information signs at the locations designated by the Engineer.

The signs and overlays shall be of a type and material consistent with the estimated time of completion of the project and shall conform to the details shown on the plans.

The sign letters, the border and the Department's construction logos shall conform to the colors (non-reflective) and details shown on the plans, and shall be on a white background (non-reflective). The colors blue and orange shall conform to PR Color Number 3 and Number 6, respectively, as specified in the Federal Highway Administration's Color Tolerance Chart.

The sign message to be used for fund types shall consist of the following, in the order shown:

STATE HIGHWAY FUNDS
MEASURE M COUNTY TRANSPORTATION FUNDS

The sign message to be used for type of work shall consist of the following:

HIGHWAY CONSTRUCTION

The sign message to be used for the Year of Completion of Project Construction will be furnished by the Engineer. The Contractor shall furnish and install the "Year" sign overlay within 10 working days of notification of the year date to be used.

The letter sizes to be used shall be as shown on the plans. The information shown on the signs shall be limited to that shown on the plans.

The signs shall be kept clean and in good repair by the Contractor.

Upon completion of the work, the signs shall be removed and disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13 of the Standard Specifications.

Full compensation for furnishing, erecting, maintaining, and removing and disposing of the construction project information signs shall be considered as included in the contract lump sum price paid for construction area signs and no additional compensation will be allowed therefor.

10-1.01 ORDER OF WORK

Order of work shall conform to the provisions in Section 5-1.05, "Order of Work," of the Standard Specifications and these special provisions.

Existing Route 74/5 Separation (Bridge No. 55-0229) is to remain operational during the construction of new temporary pedestrian sidewalk. After temporary pedestrian sidewalk is constructed (pedestrian sidewalk is attached to existing bridge, Bridge No. 55-0229) and opened to public, Stage 1 construction of new bridge (Bridge No. 55-1104) shall be started. Temporary pedestrian sidewalk shall be available for public traffic until new bridge (Bridge No. 55-1104) with sidewalk is constructed and opened to public.

Foundation of Retaining Wall No. 83 (Bridge No. 55 E0119) shall be completed prior to construction of Retaining Wall No. 96 (Bridge No. 55 E0121).

Work around area (Parcel 102499) as shown on the plans will be available to contractor to work on or before 12:00 AM, September 1, 2013.

Work around area (Parcel 102506) as shown on the plans will be available to contractor to work on or before 12:00 AM, September 1, 2013.

Work around area (Parcel 102502) as shown on the plans will be available to contractor to work on or before 12:00 AM, September 1, 2013.

Work around area (Parcel 102492) as shown on the plans will be available to contractor to work on or before 12:00 AM, July 1, 2013.

Work around area (Parcel 102494) as shown on the plans will be available to contractor to work on or before 12:00 AM, December 1, 2012.

Work around area (Parcel 102495) as shown on the plans will be available to contractor to work on or before 12:00 AM, December 1, 2012.

Work around area (Parcel 102497) as shown on the plans will be available to contractor to work on or before 12:00 AM, December 1, 2012.

Attention is directed to "Slope Paving" of these special provisions regarding constructing a 4' x 6' test panel prior to placing the permanent slope paving.

Attention is directed to "Miscellaneous Concrete Construction" of these special provisions regarding constructing a 2' x 2' test panel prior to constructing curb ramps with detectable warning surfaces.

The first order of work shall be to place the order for the electrical equipment and sign panels.

Prior to commencement of the traffic signal functional test at any location, all items of work related to signal control shall be completed and all roadside signs, pavement delineation, and pavement markings shall be in place at that location.

Attention is directed to "Maintaining Traffic" and "Temporary Pavement Delineation" of these special provisions and to the stage construction sheets of the plans.

Attention is directed to "Progress Schedule (Critical Path Method)" of these special provisions regarding the submittal of a general time-scaled logic diagram within 10 days after approval of the contract. The diagram shall be submitted prior to performing any work that may be affected by any proposed deviations to the construction staging of the project.

The work shall be performed in conformance with the stages of construction shown on the plans. Nonconflicting work in subsequent stages may proceed concurrently with work in preceding stages, provided satisfactory progress is maintained in the preceding stages of construction.

In each stage, after completion of the preceding stage, the first order of work shall be the removal of existing pavement delineation as directed by the Engineer. Pavement delineation removal shall be coordinated with new delineation so that lane lines are provided at all times on traveled ways open to public traffic.

Before obliterating any pavement delineation (traffic stripes, pavement markings, and pavement markers) that is to be replaced on the same alignment and location, as determined by the Engineer, the pavement delineation shall be referenced by the Contractor, with a sufficient number of control points to reestablish the alignment and location of the new pavement delineation. The references shall include the limits or changes in striping pattern, including one-and 2-way barrier lines, limit lines, crosswalks and other pavement markings. Full compensation for referencing existing pavement delineation shall be considered as included in the contract prices paid for new pavement delineation and no additional compensation will be allowed therefor.

Prior to applying tack coat, the Contractor shall cover all manholes, valve and monument covers, grates, or other exposed facilities located within the area of application, using a plastic or oil resistant construction paper secured to the facility being covered by tape or adhesive. The covered facilities shall be referenced by the Contractor, with a sufficient number of control points to relocate the facilities after the hot mix asphalt has been placed. After completion of the paving operation, all covers shall be removed and disposed of in a manner satisfactory to the Engineer. Full compensation for covering manholes, valve and monument covers, grates, or other exposed facilities, referencing, and removing temporary cover shall be considered as included in the contract price paid per ton for hot mix asphalt, and no additional compensation will be allowed therefor.

At those locations exposed to public traffic where guard railings or barriers are to be constructed, reconstructed, or removed and replaced, the Contractor shall schedule operations so that at the end of each working day there shall be no post holes open nor shall there be any railing or barrier posts installed without the blocks and rail elements assembled and mounted thereon.

At least 60 days before planting the plants, furnish the Engineer a statement from the vendor that the order for the plants required for this contract, including inspection plants, has been received and accepted by the vendor. The statement from the vendor must include the names, sizes, and quantities of plants ordered and the anticipated date of delivery.

Place orders for replacement plants with the vendor at the appropriate time so that the roots of the replacement plants are not in a root-bound condition.

At least 60 days before applying seeds, furnish the Engineer a statement from the vendor that the order for the seed required for this contract has been received and accepted by the vendor. The statement from the vendor must include the names and quantity of seed ordered and the anticipated date of delivery.

Before the start of irrigation work, check for deficiencies of existing plants that are to remain in place as specified under "Maintain Existing Planted Areas" of these special provisions.

Do not perform clearing, grubbing, and earthwork operations in areas where existing irrigation facilities are to remain in place until existing irrigation facilities have been checked for proper operation as specified under "Existing Highway Irrigation Facilities" of these special provisions.

Submittal of working drawings for electrical components must comply with Section 20-5.027B, "Wiring Plans and Diagrams," of the Standard Specifications.

Preinstall irrigation components in the irrigation controller enclosure cabinet before field installation as specified under "Irrigation Controller Enclosure Cabinet" of these special provisions.

When embankment settlement periods or surcharge embankment settlement periods are specified, the settlement periods and the deferment of portions of the work shall comply with the provisions in Section 19-6.025, "Settlement Period," of the Standard Specifications and in "Earthwork" of these special provisions.

10-1.02 WATER POLLUTION CONTROL

GENERAL

Summary

This work includes developing and implementing a storm water pollution prevention plan (SWPPP). This project is risk level 2.

A storm water information handout has been prepared for this contract and is available as described in "Supplemental Project Information" of these special provisions.

Discharges of stormwater from the project must comply with National Pollutant Discharge Elimination System (NPDES) General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activities (Order No. 2009-0009-DWQ, NPDES No. CAS000002) referred to herein as "Permit."

Information on forms, reports, and other documents can be found in the following Department manuals:

- 1. Field Guide for Construction Site Dewatering
- 2. Storm Water Pollution Prevention Plan (SWPPP) and Water Pollution Control Program (WPCP) Preparation Manual
- 3. Construction Site Best Management Practices (BMP) Manual

For the above-referenced manuals, go to the Department's Web site for the Division of Construction, Storm Water and Water Pollution Control Information, or the Department's Publication Distribution Unit.

Do not start job site activities until:

- 1. The SWPPP is approved.
- 2. The waste discharge identification number is issued.
- 3. SWPPP review requirements have been fulfilled. If the Regional Water Quality Control Board (RWQCB) requires time for review, allow 30 days for the review. For projects in the Lake Tahoe Hydrologic Unit and the Mammoth Lakes Hydrologic Unit, the Lahontan RWQCB will review the SWPPP.

If you operate a Contractor-support facility, protect stormwater systems and receiving waters from the discharge of potential pollutants by using water pollution control practices.

Contractor-support facilities include:

- 1. Staging areas
- 2. Storage yards for equipment and materials
- 3. Mobile operations
- 4. Batch plants for PCC and HMA
- 5. Crushing plants for rock and aggregate
- 6. Other facilities installed for your convenience, such as haul roads

Discharges from manufacturing facilities, such as batch plants and crushing plants, must comply with the general waste discharge requirements for Order No. 97-03-DWQ, NPDES General Permit No. CAS000001, issued by the State Water Resources Control Board (SWRCB) for "Discharge of Storm Water Associated with Industrial Activities Excluding Construction Activities" and referred to herein as "General Industrial Permit." For the General Industrial Permit, go to the Web site for the SWRCB.

If you operate a batch plant to manufacture PCC, HMA, or other material or a crushing plant to produce rock or aggregate, obtain coverage under the General Industrial Permit. You must be covered under the General Industrial Permit for batch plants and crushing plants located:

- 1. Outside of the job site
- 2. Within the job site that serve 1 or more contracts

If you obtain or dispose of material at a noncommercially operated borrow or disposal site, prevent water pollution due to erosion at the site during and after completion of your activities. Upon completion of your work, leave the site in a condition such that water will not collect or stand therein.

The Department does not pay for water pollution control practices at Contractor-support facilities and noncommercially operated borrow or disposal sites.

Definitions

active area: Area where soil-disturbing work activities have occurred at least once within 15 days.

construction phase: Includes (1) highway construction phase for building roads and structures, (2) plant establishment and maintenance phase for placing vegetation for final stabilization, and (3) suspension phase for suspension of work activities or winter shutdown. The construction phase continues from the start of work activities to contract acceptance.

inactive area: Area where soil-disturbing work activities have not occurred within 15 days.

normal working hours: Hours you normally work on the project.

qualifying rain event: Storm that produces at least 0.5 inch of precipitation with a 48-hour or greater period between rain events.

storm event: Storm that produces or is forecasted to produce at least 0.10 inch of precipitation within a 24-hour period.

Submittals

Storm Water Pollution Prevention Plan

General

Within 20 days of contract approval:

- 1. Submit 3 copies of your SWPPP for review. Allow 20 days for the Department's review. The Engineer provides comments and specifies the date when the review stopped if revisions are required.
- 2. Resubmit a revised SWPPP within 15 days of receiving the Engineer's comments. The Department's review resumes when a complete SWPPP has been resubmitted.
- 3. When the Engineer approves the SWPPP, submit an electronic copy and 4 printed copies of the approved SWPPP.
- 4. If the RWQCB requires review of the approved SWPPP, the Engineer submits the approved SWPPP to the RWQCB for its review and comment.
- 5. If the Engineer requests changes to the SWPPP based on the RWQCB's comments, amend the SWPPP within 10 days.

A qualified SWPPP developer (QSD) must develop the SWPPP.

The SWPPP must comply with the Department's Storm Water Pollution Prevention Plan (SWPPP) and Water Pollution Control Plan (WPCP) Preparation Manual. Include the following in the SWPPP:

- 1. Description of the work involved in the installation, maintenance, repair, and removal of temporary and permanent water pollution control practices.
- Maps showing:
 - 2.1. Locations of disturbed soil areas
 - 2.2. Water bodies and conveyances
 - Locations and types of water pollution control practices that will be used for each Contractorsupport facility
 - 2.4. Locations and types of temporary water pollution control practices that will be used in the work for each construction phase
 - 2.5. Locations and types of water pollution control practices that will be installed permanently under the contract
 - 2.6. Pollutant sampling locations
 - 2.7. Locations planned for storage and use of potential nonvisible pollutants
 - 2.8. Receiving water sampling locations
- 3. Copy of permits obtained by the Department, including Fish & Game permits, US Army Corps of Engineers permits, RWQCB 401 certifications, aerially deposited lead variance from the Department of Toxic Substance Control, aerially deposited lead variance notification, and RWQCB waste discharge requirements for aerially deposited lead reuse.

Include the following items in the SWPPP:

- 1. For all projects:
 - 1.1. Schedule
 - 1.2. Construction site monitoring program (CSMP)
- 2. For risk level 2 projects add:
 - 2.1. Adherence to effluent standards for numeric action levels (NALs)
 - 2.2. Rain event action plan (REAP)
- 3. For risk level 3 projects add:
 - 3.1. Adherence to effluent standards for NALs and numeric effluent levels (NELs)
 - 3.2. REAP

Schedule

The SWPPP schedule must show when:

- 1. Work activities will be performed that could cause the discharge of pollutants into stormwater
- 2. Water pollution control practices associated with each construction phase will be implemented
- 3. Soil stabilization and sediment control practices for disturbed soil areas will be implemented

Construction Site Monitoring Program

A QSD must prepare the CSMP. Change the program to reflect current job site activities as needed. The CSMP must include the following:

- 1. For all projects:
 - 1.1. Visual monitoring procedures
 - 1.2. Sampling and analysis plan (SAP) for nonvisible pollutants
 - 1.3. SAP for nonstormwater discharges
 - 1.4. SAP for monitoring required by RWQCB
- 2. For risk level 2 projects add SAP for pH and turbidity
- 3. For risk level 3 projects add:
 - 3.1. SAP for pH and turbidity
 - 3.2. SAP for temporary active treatment systems

Sampling and Analysis Plan

Include a SAP in the CSMP.

Describe the following water quality sampling procedures in the SAP:

- 1. Sampling equipment
- 2. Sample preparation
- Collection
- 4. Field measurement methods
- 5. Analytical methods
- 6. Quality assurance and quality control
- 7. Sample preservation and labeling
- 8. Collection documentation
- 9. Sample shipping
- 10. Chain of custody
- 11. Data management and reporting
- 12. Precautions from the construction site health and safety plan
- 13. Laboratory selection and certifications

The SAP must identify the State-certified laboratory, sample containers, preservation requirements, holding times, and analytical method. For a list of State-certified laboratories go to the CDPH Web site.

The SAP must include procedures for sample collection during precipitation.

The SAP must list conditions when you will not be required to physically collect samples such as:

- 1. Dangerous weather
- 2. Flooding or electrical storms
- 3. Times outside of normal working hours

Amend the SAP whenever discharges or sampling locations change because of changed work activities or knowledge of site conditions.

For a risk level 2 or risk level 3 project, include procedures in the SAP for collecting and analyzing at least 3 samples for each day of each qualifying rain event. Describe the collection of effluent samples at all locations where the stormwater is discharged off-site.

The SAP for nonvisible pollutants must describe the sampling and analysis strategy for monitoring nonvisible pollutants.

The SAP for nonvisible pollutants must identify potential nonvisible pollutants present at the job site associated with any of the following:

- 1. Construction materials and wastes
- 2. Existing contamination due to historical site usage
- 3. Application of soil amendments, including soil stabilization materials, with the potential to change pH or contribute toxic pollutants to stormwater

The SAP for nonvisible pollutants must include sampling procedures for the following conditions when observed during a stormwater visual inspection. Include a procedure for collecting at least 1 sample for each storm event for:

- 1. Materials or wastes containing potential nonvisible pollutants not stored under watertight conditions
- 2. Materials or wastes containing potential nonvisible pollutants stored under watertight conditions at locations where a breach, leak, malfunction, or spill occurred and was not cleaned up before the precipitation
- 3. Chemical applications occurring within 24 hours before precipitation or during precipitation that could discharge pollutants to surface waters or drainage systems, including fertilizer, pesticide, herbicide, methyl methacrylate concrete sealant, or nonpigmented curing compound
- 4. Applied soil amendments, including soil stabilization materials that could change pH levels or contribute toxic pollutants to stormwater runoff and discharge pollutants to surface waters or drainage systems, unless independent test data is available to indicate acceptable concentrations of nonvisible pollutants in the material
- 5. Stormwater runoff from an area contaminated by historical usage of the site that could discharge pollutants to surface waters or drainage systems

The SAP for nonvisible pollutants must provide sampling procedures and a schedule for:

- 1. Sample collection during the first 2 hours of rain events that generate runoff
- 2. Sample collection during normal working hours
- 3. Each nonvisible pollutant source
- 4. Uncontaminated control sample

The SAP for nonvisible pollutants must identify locations for sampling downstream and control samples and the reasons for selecting those locations. Select locations for control samples where the sample does not come in contact with materials, wastes, or areas associated with potential nonvisible pollutants or disturbed soil areas.

Amendments

Amend and resubmit the SWPPP:

- 1. Annually before July 15th
- 2. Whenever:
 - 2.1. Changes in work activities could affect the discharge of pollutants
 - 2.2. Water pollution control practices are added by Contract Change Order
 - 2.3. Water pollution control practices are added at your discretion
 - 2.4. Changes in the quantity of disturbed soil are substantial
 - 2.5. Objectives for reducing or eliminating pollutants in stormwater discharges have not been achieved
 - 2.6. You receive a written notice of a permit violation for the project from the RWQCB or any other regulatory agency

Allow the same review time for amendments to the SWPPP as for the original SWPPP.

Training Records

Submit water pollution control training records for all employees and subcontractors who will be working at the job site. Include the training subjects, training dates, ongoing training, and tailgate meetings with your submittal. Submit records for:

- 1. Existing employees within 5 business days of obtaining SWPPP approval
- 2. New employees within 5 business days of receiving the training
- 3. A subcontractor's employees at least 5 business days before the subcontractor starts work

Contractor-Support Facility

At least 5 business days before operating any Contractor-support facility, submit:

- 1. A plan showing the location and quantity of water pollution control practices associated with the Contractor-support facility
- 2. A copy of the notice of intent approved by the RWQCB and the SWPPP approved by the RWQCB if you will be operating a batch plant or a crushing plant under the General Industrial Permit

Annual Certification

Submit an annual certification of compliance as described in the Department's Storm Water Pollution Prevention Plan (SWPPP) and Water Pollution Control Plan (WPCP) Preparation Manual before July 15th of each year.

Site Inspection Reports

The water pollution control (WPC) manager must submit the following within 24 hours of completing a weekly inspection:

- 1. Completed Stormwater Site Inspection Report form.
- 2. Best management practices (BMP) status report. The WPC manager must oversee the preparation of the report. The report must include:
 - 2.1. Location and quantity of installed water pollution control practices
 - 2.2. Location and quantity of disturbed soil for active and inactive areas

Visual Monitoring Reports

Submit a visual monitoring report for:

- 1. Each storm event. Include:
 - 1.1. Date, time, and rain gauge reading
 - 1.2. Visual observations:
 - 1.2.1. Within 2 business days before the storm for:
 - 1.2.1.1. Spills, leaks, and uncontrolled pollutants in drainage areas
 - 1.2.1.2. Proper implementation of water pollution control practices
 - 1.2.1.3. Leaks and adequate freeboard in storage areas
 - 1.2.2. Every 24 hours during the storm for:
 - 1.2.2.1. Effective operation of water pollution control practices
 - 1.2.2.2. Water pollution control practices needing maintenance and repair
 - 1.2.3. Within 2 business days after a qualifying rain event for:
 - 1.2.3.1. Stormwater discharge locations

- 1.2.3.2. Evaluation of design, implementation, effectiveness, and locations of water pollution control practices including locations where additional water pollution control practices may be needed
- 2. Nonstormwater discharges during each of the following periods:
 - 2.1. January through March
 - 2.2. April through June
 - 2.3. July through September
 - 2.4. October through December

Use the Stormwater Site Inspection Report form to document visual monitoring. A visual monitoring report must include:

- 1. Name of personnel performing the inspection, inspection date, and date the inspection report is completed
- 2. Storm and weather conditions
- 3. Location of any:
 - 3.1. Floating and suspended material, sheen on the surface, discoloration, turbidity, odor, and source of observed pollutants for flowing and contained stormwater systems
 - 3.2. Nonstormwater discharges and their sources
- 4. Corrective action taken

Retain visual monitoring reports at the job site as part of the SWPPP.

Sampling and Analysis

Whenever sampling is required, submit a printed copy and electronic copy of water quality analysis results, and quality assurance and quality control reports within 48 hours of field sampling, and within 30 days of laboratory analysis. Electronic copies must be in one of the following formats: (1) xls, (2) .txt, (3) .cvs, (4) .dbs, or (5) .mdb. Include an evaluation of whether the downstream samples show levels of the tested parameter that are higher than the control sample. The evaluation must include:

- 1. Sample identification number
- 2. Contract number
- 3. Constituent
- 4. Reported value
- 5. Analytical method
- 6. Method detection limit
- 7. Reported limit

Numeric Action Level Exceedance Reports

Whenever a NAL is exceeded for a risk level 2 or risk level 3 project, notify the Engineer and submit a NAL exceedance report within 48 hours after conclusion of a storm event. The report must include:

- 1. Field sampling results and inspections, including:
 - 1.1. Analytical methods, reporting units, and detection limits
 - 1.2. Date, location, time of sampling, visual observations, and measurements
 - 1.3. Quantity of precipitation from the storm event
- 2. Description of BMP and corrective actions taken to manage NAL exceedance

Numeric Effluent Limit Violation Reports

Whenever a NEL is exceeded for a risk level 3 project, notify the Engineer and submit a NEL violation report within 6 hours. The report must include:

- 1. Field sampling results and inspections, including:
 - 1.1. Analytical methods, reporting units, and detection limits
 - 1.2. Date, location, time of sampling, visual observation and measurements
 - 1.3. Quantity of precipitation from the storm event
- 2. Description of BMP and corrective actions taken to manage NEL exceedance

Rain Event Action Plan

For a risk level 2 or risk level 3 project, submit a REAP whenever the National Weather Service is predicting a storm event with at least 50 percent probability of precipitation within 72 hours.

The WPC manager must submit the REAP at least 48 hours before a forecasted storm event.

The REAP must include:

- 1. Site location
- 2. Project risk level
- 3. Contact information including 24-hour emergency phone numbers for:
 - 3.1. WPC manager
 - 3.2. Erosion and sediment control providers or subcontractors
 - 3.3. Stormwater sampling providers or subcontractors
- 4. Storm information
- 5. Description of:
 - 5.1. Construction phase, including active and inactive areas
 - 5.2. Active work areas and activities
 - 5.3. Subcontractors and trades on the job site
 - 5.4. Prestorm activities including:
 - 5.4.1. Responsibilities of the WPC manager
 - 5.4.2. Responsibilities of the crew and crew size
 - 5.4.3. Stabilization practices for active and inactive disturbed soil areas
 - 5.4.4. Stockpile management practices
 - 5.4.5. Corrective actions taken for deficiencies identified during prestorm visual inspections
 - 5.5. Activities to be performed during storm events, including:
 - 5.5.1. Responsibilities of the WPC manager
 - 5.5.2. Responsibilities of the crew and crew size
 - 5.5.3. BMP for maintenance and repair
- 6. Flood contingency measures

Storm Water Annual Report

Submit 2 copies of a storm water annual report that covers the preceeding period from July 1st to June 30th. The report must be submitted before July 15th if construction occurs from July 1st to June 30th or within 15 days after contract acceptance if construction ends before June 30th. Allow 10 days for the Engineer's review. The Engineer provides comments and specifies the date when the review stopped if revisions are required.

Obtain approval for the format of the storm water annual report. The report must include:

- 1. Project information such as description and work locations
- 2. Stormwater monitoring information, including:

- 2.1. Summary and evaluation of sampling and analysis results and laboratory reports
- 2.2. Analytical methods, reporting units, and detections limits for analytical parameters
- 2.3. Summary of corrective actions taken
- 2.4. Identification of corrective actions taken and compliance activities not implemented
- 2.5. Summary of violations
- 2.6. Names of individuals performing stormwater inspections and sampling
- 2.7. Logistical information for inspections and sampling, including location, date, time, and precipitation
- 2.8. Visual observations and sample collection records
- 3. Documentation of training for individuals responsible for:
 - 3.1. Permit compliance
 - 3.2. BMP installation, inspection, maintenance, and repair
 - 3.3. Preparing, revising, and amending the SWPPP

Submit a revised storm water annual report within 5 business days of receiving the Engineer's comments. The Engineer's review resumes when a complete report has been resubmitted.

When the storm water annual report is approved, submit 1 electronic copy and 2 printed copies of the report signed by the WPC manager.

Information After Storm Event

Within 48 hours after the conclusion of a storm event resulting in a discharge, after a nonstormwater discharge, or after receiving a written notice or an order from the RWQCB or another regulatory agency, the WPC manager must submit the following information:

- 1. Date, time, location, and nature of the activity and the cause of the notice or order
- 2. Type and quantity of discharge
- 3. Water pollution control practices in use before the discharge or before receiving the notice or order
- Description of water pollution control practices and corrective actions taken to manage the discharge or cause of the notice

Quality Control and Assurance

Training

Employees must receive initial water pollution control training before starting work at the job site.

For your project managers, supervisory personnel, subcontractors, and employees involved in water pollution control work:

- 1. Provide stormwater training in the following subjects:
 - 1.1. Water pollution control rules and regulations
 - 1.2. Implementation and maintenance for:
 - 1.2.1. Temporary soil stabilization
 - 1.2.2. Temporary sediment control
 - 1.2.3. Tracking control
 - 1.2.4. Wind erosion control
 - 1.2.5. Material pollution prevention and control
 - 1.2.6. Waste management
 - 1.2.7. Nonstormwater management
- 2. Conduct weekly training meetings covering:
 - 2.1. Deficiencies and corrective actions for water pollution control practices
 - 2.2. Water pollution control practices required for work activities during the week
 - 2.3. Spill prevention and control
 - 2.4. Material delivery, storage, usage, and disposal

- 2.5. Waste management
- 2.6. Nonstormwater management procedures

Training for personnel who collect water quality samples must include:

- 1. CSMP review
- 2. Health and safety review
- 3. Sampling simulations

Water Pollution Control Manager

General

The WPC manager must be a QSD. Assign 1 WPC manager to implement the SWPPP. You may assign a QSD other than the WPC manager to develop the SWPPP.

Qualifications

A QSD must:

- 1. Have completed stormwater management training described in the Department's Web site for the Division of Construction, Storm Water and Water Pollution Control Information
- 2. Be one or more of the following:
 - 2.1. California registered civil engineer
 - 2.2. California registered professional geologist or engineering geologist
 - 2.3. California licensed landscape architect
 - 2.4. Professional hydrologist registered through the American Institute of Hydrology
 - 2.5. Certified Professional in Erosion and Sediment Control (CPESC)TM registered through Enviro Cert International, Inc.
 - 2.6. Certified Professional in Storm Water Quality (CPSWQ)™ registered through Enviro Cert International, Inc.
 - 2.7. Professional in erosion and sediment control registered through the National Institute for Certification in Engineering Technologies (NICET)
- 3. Have completed SWRCB approved QSD training and passed the QSD exam

Responsibilities

The WPC manager must:

- 1. Be responsible for water pollution control work
- 2. Be the primary contact for water pollution control work
- 3. Oversee:
 - 3.1. Maintenance of water pollution control practices
 - 3.2. Inspections of water pollution control practices identified in the SWPPP
 - 3.3. Inspections and reports for visual monitoring
 - 3.4. Preparation and implementation of REAPs
 - 3.5. Sampling and analysis
 - 3.6. Preparation and submittal of:
 - 3.6.1. NAL exceedance reports
 - 3.6.2. NEL violation reports
 - 3.6.3. SWPPP annual certification
 - 3.6.4. Annual reports
 - 3.6.5. BMP status reports
- 4. Oversee and enforce hazardous waste management practices including spill prevention and control measures
- 5. Have authority to mobilize crews to make immediate repairs to water pollution control practices

- 6. Ensure that all employees have current water pollution control training
- 7. Implement the approved SWPPP
- 8. Amend the SWPPP if required
- 9. Be at the job site within 2 hours of being contacted
- 10. Have the authority to stop construction activities damaging water pollution control practices or causing water pollution

Sampling and Analysis

Assign trained personnel to collect water quality samples. Document the personnel and training in the SAP.

Samples taken by assigned field personnel must comply with the equipment manufacturer's instructions for collection, analytical methods, and equipment calibration.

Samples taken for laboratory analysis must comply with water quality sampling procedures and be analyzed by a State-certified laboratory under 40 CFR part 136, Guidelines Establishing Test Procedures for the Analysis of Pollutants.

Whenever downstream samples show increased levels of pollutants, assess water pollution control practices, site conditions, and surrounding influences to determine the probable cause for the increase.

For a risk level 2 or risk level 3 project, obtain samples of pH and turbidity by the test methods shown in the following table:

Parameter	Test method	Detection limit (min)	Unit
рН	Field test with calibrated portable instrument	0.2	pH units
Turbidity	Field test with calibrated portable instrument	1	NTU

Whenever the turbidity NEL is exceeded for a risk level 3 project, obtain samples and analyze the suspended sediment concentration by the test method shown in the following table:

Parameter	Test method	Detection	Unit
		limit (min)	
Suspended sediment concentration	ASTM D 3977	5	Mg/L

For a risk level 3 project, obtain samples of pH and turbidity from representative and accessible locations upstream of the discharge point and downstream of the discharge point.

For multiple discharge points, obtain samples from a single upstream and a single downstream location.

Numeric Action Levels

For a risk level 2 or risk level 3 project, NALs must comply with the values shown in the following table:

Numeric Action Levels

Parameter	Test method	Detection	Unit	Value
		limit (min)		
pН	Field test with	0.2	рН	Lower NAL = 6.5
	calibrated			Upper NAL = 8.5
	portable			
	instrument			
Turbidity	Field test with	1	NTU	250 NTU max
	calibrated			
	portable			
	instrument			

The storm event daily average must not exceed the NAL for pH.

The storm event daily average must not exceed the NAL for turbidity.

Numeric Effluent Limits

For a risk level 3 project, NELs must comply with the values shown in the following table:

Numeric Effluent Limits

Parameter	Test method	Detection limit (min)	Unit	Value
рН	Field test with calibrated portable instrument	0.2	pН	Lower NEL = 6.0 Upper NEL = 9.0
Turbidity	Field test with calibrated portable instrument	1	NTU	500 NTU max

The storm event daily average for storms up to the 5-year, 24-hour storm must not exceed the NEL for turbidity. The daily average sampling results must not exceed the NEL for pH.

MATERIALS

Not Used

CONSTRUCTION

General

Manage work activities to reduce the discharge of pollutants to surface waters, groundwater, and municipal separate storm sewer systems.

Retain a printed copy of the approved SWPPP at the job site.

Install facilities and devices used for water pollution control practices before performing work activities. Install soil stabilization materials for water pollution control practices in all inactive areas or before storm events.

Repair or replace water pollution control practices within 24 hours of discovering any damage, unless a longer period is authorized.

The Department does not pay for the cleanup, repair, removal, disposal, or replacement of water pollution control practices due to improper installation or your negligence.

You may request changes to the water pollution control work or the Engineer may order changes to water pollution control work. Changes may include additional or new water pollution control practices. Additional water pollution control work is paid for as extra work under Section 4-1.03D, "Extra Work," of the Standard Specifications.

You may request or the Engineer may order laboratory analysis of stormwater samples. If ordered, laboratory analysis of stormwater samples is paid for as extra work under Section 4-1.03D, "Extra Work," of the Standard Specifications.

Continue SWPPP implementation during any suspension of work activities.

Monitoring

Monitor the National Weather Service's forecast on a daily basis. For the National Weather Service's forecast, go to the Web site for the National Weather Service.

Obtain, install, and maintain a rain gauge at the job site. Observe and record daily precipitation.

Inspections

Use the Stormwater Site Inspection Report form for documenting site inspections. The WPC manager must oversee:

- 1. Inspections of water pollution control practices identified in SWPPP:
 - 1.1. Before a forecasted storm event
 - 1.2. After a qualifying rain event that produces site runoff
 - 1.3. At 24-hour intervals during extended storm events

Contract No. 12-0E3104

- 1.4. On a predetermined schedule of at least once a week
- 2. Daily inspections of:
 - 2.1. Storage areas for hazardous materials and waste
 - 2.2. Hazardous waste disposal and transporting activities
 - 2.3. Hazardous material delivery and storage activities
- 3. Inspections of:
 - 3.1. Vehicle and equipment cleaning facilities:
 - 3.1.1. Daily if vehicle and equipment cleaning occurs daily
 - 3.1.2. Weekly if vehicle and equipment cleaning does not occur daily
 - 3.2. Vehicle and equipment maintenance and fueling areas:
 - 3.2.1. Daily if vehicle and equipment maintenance and fueling occurs daily
 - 3.2.2. Weekly if vehicle and equipment maintenance and fueling does not occur daily
 - 3.3. Vehicles and equipment at the job site for leaks and spills on a daily schedule. Verify that operators are inspecting vehicles and equipment each day of use.
 - 3.4. Demolition sites within 50 feet of storm drain systems and receiving waters daily.
 - 3.5. Pile driving areas for leaks and spills:
 - 3.5.1. Daily if pile driving occurs daily
 - 3.5.2. Weekly if pile driving does not occur daily
 - 3.6. Temporary concrete washouts:
 - 3.6.1. Daily if concrete work occurs daily
 - 3.6.2. Weekly if concrete work does not occur daily
 - 3.7. Paved roads at job site access points for street sweeping:
 - 3.7.1. Daily if earthwork and other sediment or debris-generating activities occur daily
 - 3.7.2. Weekly if earthwork and other sediment or debris-generating activities do not occur daily
 - 3.7.3. Within 24 hours of precipitation forecasted by the National Weather Service
 - 3.8. Dewatering work:
 - 3.8.1. Daily if dewatering work occurs daily
 - 3.8.2. Weekly if dewatering work does not occur daily
 - 3.9. Temporary active treatment system:
 - 3.9.1. Daily if temporary active treatment system activities occur daily
 - 3.9.2. Weekly if temporary active treatment system activities do not occur daily
 - 3.10. Work over water:
 - 3.10.1. Daily if work over water occurs daily
 - 3.10.2. Weekly if work over water does not occur daily

Deficiencies

Whenever you or the Engineer identify a deficiency in the implementation of the approved SWPPP, correct the deficiency:

- 1. Immediately, unless a later date is authorized
- 2. Before precipitation occurs

The Department may correct the deficiency and deduct the cost of correcting the deficiency from payment if you fail to correct the deficiency by the agreed date or before the onset of precipitation.

Rain Event Action Plan

For a risk level 2 or risk level 3 project, have the REAP at the job site at least 24 hours before a forecasted storm event. The WPC manager must submit the REAP on the following forms:

- 1. Rain Event Action Plan Highway Construction Phase
- 2. Rain Event Action Plan Plant Establishment Phase
- 3. Rain Event Action Plan For Inactive Project

Retain a printed copy of each REAP at the job site as part of the SWPPP.

Implement the REAP, including mobilizing crews to complete activities, within 24 hours before precipitation occurs.

Sampling and Analysis

Perform sample collection during:

- 1. Normal working hours
- 2. Each qualifying rain event
- 3. First 2 hours of each storm event

Do not physically collect samples during dangerous weather conditions, such as flooding or electrical storms. Document sample collection during precipitation.

Whenever downstream samples show increased levels of pH, turbidity, and other constituents, assess water pollution control practices, site conditions, and surrounding influences to determine the probable cause for the increase.

Collect samples:

- 1. During a storm event for:
 - 1.1. Each nonvisible pollutant source and a corresponding uncontaminated control sample
 - 1.2. All locations identified on the Storm Event Sampling and Analyses Plan form
- 2. During a qualifying rain event for:
 - 2.1. Each nonvisible pollutant source and a corresponding uncontaminated control sample
 - 2.2. pH, turbidity, and other constituents as required
 - 2.3. At least 3 samples for each day of a qualifying rain event
 - 2.4. All locations identified on the Qualifying Rain Event Sampling and Analyses Plan form

Collect receiving-water samples for a risk level 3 project and whenever a direct discharge to receiving waters occurs and NELs are violated.

Retain documentation of water quality sampling and analysis results with the SWPPP at the job site.

The Department does not pay for the preparation, collection, laboratory analysis, and reporting of stormwater samples for nonvisible pollutants if water pollution control practices are not implemented before precipitation or if you fail to correct a water pollution control practice before precipitation.

MEASUREMENT AND PAYMENT

The contract lump sum price for prepare storm water pollution prevention plan includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in developing and implementing a SWPPP, including providing a WPC manager, conducting water pollution control training, and monitoring, inspecting and correcting water pollution control practices at the job site, as shown on the plans, as specified in the Standard Specifications and these special provisions, and directed by the Engineer.

For projects with 60 working days or less, the Department pays you for prepare stormwater pollution prevention plan as follows:

- 1. A total of 75 percent of the item total upon approval of the SWPPP
- 2. A total of 100 percent of the item total upon contract acceptance

For projects with more than 60 working days, the Department pays you for prepare stormwater pollution prevention plan as follows:

- 1. A total of 50 percent of the item total upon approval of the SWPPP
- 2. A total of 90 percent of the item total over the life of the contract
- 3. A total of 100 percent of the item total upon contract acceptance

If risk level 2 or 3, the Department pays \$500 for each rain event action plan submitted. The contract unit price paid for rain event action plan includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in preparing REAPs, including preparing and submitting REAP forms, and monitoring weather forecasts, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The Department does not adjust payment for an increase or decrease in the quantity of rain event action plan. Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications does not apply.

The Department pays \$2,000 for each storm water annual report submitted. The contract unit price paid for storm water annual report includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing and submitting storm water annual reports, including annual certifications, monitoring reports, inspection, and sampling results, and obtaining acceptance of storm water annual reports, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The Department does not adjust payment for an increase or decrease in the quantity of storm water annual report. Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications does not apply.

The work to complete the final storm water annual report contract item is excluded from Section 7-1.17, "Acceptance of Contract," of the Standard Specifications.

If risk level 2 or 3, the contract unit price paid for storm water sampling and analysis day includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in reporting on stormwater quality per storm events and qualifying rain events, including preparation, collection, analysis of stormwater samples for pH, turbidity, and other constituents, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. A single day of sampling is counted as 1 unit.

The Department does not adjust payment for an increase or decrease in the quantity of storm water sampling and analysis day. Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications does not apply.

The Department does not pay for the preparation, collection, laboratory analysis, and reporting of stormwater samples for nonvisible pollutants if water pollution control practices are not implemented before precipitation or if you fail to correct a water pollution control practice before precipitation.

For each failure to submit a completed storm water annual report, the Department withholds \$10,000. This withhold is in addition to other withholds under Section 9-1.07E(3) "Performance Failure Withholds," of the Standard Specifications.

Each failure to comply with any part of these special provisions and each failure to implement water pollution control practices are considered separate performance failures.

10-1.03 CONSTRUCTION SITE MANAGEMENT

GENERAL

Summary

This work includes preventing and controlling spills, dewatering, and managing materials, waste, and nonstormwater.

Implement effective handling, storage, usage, and disposal practices to control material pollution and manage waste and nonstormwater at the job site before they come in contact with storm drain systems and receiving waters.

The following abbreviations are used in this special provision:

DTSC: Department of Toxic Substance Control.

ELAP: Environmental Laboratory Accreditation Program.

WPC: Water Pollution Control.

Submittals

Before you start dewatering, submit a dewatering and discharge work plan under Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications and "Water Pollution Control" of these special provisions. The dewatering and discharge work plan must include:

- 1. Title sheet and table of contents
- 2. Description of dewatering and discharge activities detailing locations, quantity of water, equipment, and discharge point
- 3. Estimated schedule for dewatering and discharge start and end dates of intermittent and continuous activities
- 4. Discharge alternatives, such as dust control or percolation
- 5. Visual monitoring procedures with inspection log
- 6. Copy of written approval to discharge into a sanitary sewer system at least 5 business days before starting discharge activities

Submit the following:

- 1. Material Safety Data Sheet at least 5 business days before material is used or stored
- 2. Monthly inventory records for material used or stored

Submit written approval from the local health agency, city, county, and sewer district before discharging from a sanitary or septic system directly into a sanitary sewer system.

MATERIALS

Not Used

CONSTRUCTION

Spill Prevention and Control

General

Keep material or waste storage areas clean, well organized, and equipped with enough cleanup supplies for the material being stored.

Implement spill and leak prevention procedures for chemicals and hazardous substances stored on the job site. Whenever you spill or leak chemicals or hazardous substances at the job site, you are responsible for all associated cleanup costs and related liability.

Report minor, semi-significant, and significant or hazardous spills to the WPC manager. The WPC manager must notify the Engineer immediately.

As soon as it is safe, contain and clean up spills of petroleum materials and sanitary and septic waste substances listed under 40 CFR, Parts 110, 117, and 302.

Minor Spills

Minor spills consist of quantities of oil, gasoline, paint, or other materials that are small enough to be controlled by a 1st responder upon discovery of the spill.

Clean up a minor spill using the following procedures:

- 1. Contain the spread of the spill
- 2. Recover the spilled material using absorption
- 3. Clean the contaminated area
- 4. Dispose of the contaminated material and absorbents promptly and properly under "Waste Management" of these special provisions

Semi-Significant Spills

Semi-significant spills consist of spills that can be controlled by a 1st responder with help from other personnel. Clean up a semi-significant spill immediately using the following procedures:

- 1. Contain the spread of the spill.
- 2. On paved or impervious surfaces, encircle and recover the spilled material with absorbent materials. Do not allow the spill to spread widely.
- 3. If the spill occurs on soil, contain the spill by constructing an earthen dike and dig up the contaminated soil for disposal.
- 4. If the spill occurs during precipitation, cover the spill with 10-mil plastic sheeting or other material to prevent contamination of runoff.
- 5. Dispose of the contaminated material promptly and properly under "Waste Management" of these special provisions.

Significant or Hazardous Spills

Significant or hazardous spills consist of spills that cannot be controlled by job site personnel. Immediately notify qualified personnel of a significant or hazardous spill. Take the following steps:

- 1. Do not attempt to clean up the spill until qualified personnel have arrived
- 2. Notify the Engineer and follow up with a report
- 3. Obtain the immediate services of a spill contractor or hazardous material team
- 4. Notify local emergency response teams by dialing 911 and county officials by using the emergency phone numbers retained at the job site
- 5. Notify the California Emergency Management Agency State Warning Center at (916) 845-8911
- 6. Notify the National Response Center at (800) 424-8802 regarding spills of Federal reportable quantities under 40 CFR 110, 119, and 302
- 7. Notify other agencies as appropriate, including:
 - 7.1. Fire Department
 - 7.2. Public Works Department
 - 7.3. Coast Guard
 - 7.4. Highway Patrol
 - 7.5. City Police or County Sheriff's Department
 - 7.6. Department of Toxic Substances
 - 7.7. California Division of Oil and Gas
 - 7.8. Cal/OSHA
 - 7.9. Regional Water Resources Control Board

Prevent a spill from entering stormwater runoff before and during cleanup activities. Do not bury or wash the spill with water.

Material Management

General

Minimize or eliminate discharge of material into the air, storm drain systems, and receiving waters while taking delivery of, using, or storing the following materials:

- 1. Hazardous chemicals, including acids, lime, glues, adhesives, paints, solvents, and curing compounds
- 2. Soil stabilizers and binders
- 3. Fertilizers

- 4. Detergents
- 5. Plaster
- 6. Petroleum materials, including fuel, oil, and grease
- 7. Asphalt and concrete components
- 8. Pesticides and herbicides

Employees trained in emergency spill cleanup procedures must be present during the unloading of hazardous materials or chemicals.

Use less hazardous materials if practicable.

The following activities must be performed at least 100 feet from concentrated flows of stormwater, drainage courses, and inlets if within the floodplain and at least 50 feet if outside the floodplain, unless otherwise approved by the Engineer:

- 1. Stockpiling materials
- 2. Storing pile-driving equipment and liquid waste containers
- 3. Washing vehicles and equipment in outside areas
- 4. Fueling and maintaining vehicles and equipment

Material Storage

If materials are stored:

- 1. Store liquids, petroleum materials, and substances listed in 40 CFR 110, 117, and 302 and place them in secondary containment facilities as specified by US DOT for storage of hazardous materials.
- 2. Secondary containment facilities must be impervious to the materials stored there for a minimum contact time of 72 hours.
- 3. Cover secondary containment facilities during non-working days and whenever precipitation is forecasted. Secondary containment facilities must be adequately ventilated.
- 4. Keep secondary containment facilities free of accumulated rainwater or spills. After precipitation, or in the event of spills or leaks, collect accumulated liquid and place it into drums within 24 hours. Handle the liquid as hazardous waste under "Waste Management" of these special provisions unless testing confirms that the liquid is nonhazardous.
- 5. Do not store incompatible materials, such as chlorine and ammonia, in the same secondary containment facility.
- 6. Store materials in their original containers with the original material labels maintained in legible condition. Immediately replace damaged or illegible labels.
- 7. Secondary containment facilities must have the capacity to contain precipitation from a 24-hour-long, 25-year storm, plus 10 percent of the aggregate volume of all containers or the entire volume of the largest container within the facility, whichever is greater.
- 8. Store bagged or boxed material on pallets. Protect bagged or boxed material from wind and rain during non-working days and whenever precipitation is forecasted.
- 9. Provide sufficient separation between stored containers to allow for spill cleanup or emergency response access. Storage areas must be kept clean, well organized, and equipped with cleanup supplies appropriate for the materials being stored.
- 10. Repair or replace perimeter controls, containment structures, covers, and liners as necessary. Inspect storage areas before and after precipitation and at least weekly during other times.

Stockpile Management

Minimize stockpiling of materials at the job site.

Implement water pollution control practices within 72 hours of stockpiling material or before a forecasted storm event, whichever occurs first. If stockpiles are being used, do not allow soil, sediment, or other debris to enter storm drains, open drainages, and watercourses.

Active and inactive soil stockpiles must be:

- 1. Covered with soil stabilization material or a temporary cover
- 2. Surrounded with a linear sediment barrier

Stockpiles of asphalt concrete and PCC rubble, HMA, aggregate base, or aggregate subbase must be:

- 1. Covered with a temporary cover
- 2. Surrounded with a linear sediment barrier

Stockpiles of pressure-treated wood must be:

- 1. Placed on pallets
- 2. Covered with impermeable material

Stockpiles of cold mix asphalt concrete must be:

- 1. Placed on an impervious surface
- 2. Covered with an impermeable material
- 3. Protected from stormwater run-on and runoff

Control wind erosion year round under Section 14-9.02, "Dust Control," of the Standard Specifications.

Repair or replace linear sediment barriers and covers as needed to keep them functioning properly. Whenever sediment accumulates to 1/3 of the linear sediment barrier height, remove the accumulated sediment.

Waste Management

Solid Waste

Do not allow litter, trash, or debris to accumulate anywhere on the job site, including storm drain grates, trash racks, and ditch lines. Pick up and remove litter, trash, and debris from the job site at least once a week. The WPC manager must monitor solid waste storage and disposal procedures on the job site.

If practicable, recycle nonhazardous job site waste and excess material. If recycling is not practicable, dispose of it under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way," of the Standard Specifications.

Furnish enough closed-lid dumpsters of sufficient size to contain the solid waste generated by work activities. When refuse reaches the fill line, empty the dumpsters. Dumpsters must be watertight. Do not wash out dumpsters at the job site. Furnish additional containers and pick up dumpsters more frequently during the demolition phase of construction.

Solid waste includes:

- 1. Brick
- 2. Mortar
- 3. Timber
- 4. Metal scraps
- 5. Sawdust
- 6. Pipe
- 7. Electrical cuttings
- 8. Nonhazardous equipment parts
- 9. Styrofoam and other packaging materials
- 10. Vegetative material and plant containers from highway planting
- 11. Litter and smoking material, including litter generated randomly by the public
- 12. Other trash and debris

Furnish and use trash receptacles in the job site yard, field trailers, and locations where workers gather for lunch and breaks.

Hazardous Waste and Contamination

If hazardous waste is, or will be, generated on the job site, the WPC manager must be thoroughly familiar with proper hazardous waste handling and emergency procedures under 40 CFR § 262.34(d)(5)(iii) and must have successfully completed training under 22 CA Code of Regs § 66265.16.

The WPC manager must:

1. Oversee and enforce hazardous waste management practices

- Inspect all hazardous waste storage areas daily, including all temporary containment facilities and satellite collection locations
- 3. Oversee all hazardous waste transportation activities on the job site

Submit a copy of uniform hazardous waste manifest forms to the Engineer within 24 hours of transporting hazardous waste.

Submit receiving landfill documentation of proper disposal to the Engineer within 5 business days of hazardous waste transport from the project.

Unanticipated Discovery of Asbestos and Hazardous Substances

Upon discovery of asbestos or a hazardous substance, comply with Section 14-11.02 "Asbestos and Hazardous Substances," of the Standard Specifications.

Hazardous Waste Management Practices

Handle, store, and dispose of hazardous waste under 22 CA Code of Regs Div 4.5. Use the following storage procedures:

- 1. Store hazardous waste and potentially hazardous waste separately from nonhazardous waste at the job site.
- 2. For hazardous waste storage, use metal containers approved by the United States Department of Transportation for the transportation and temporary storage of hazardous waste.
- 3. Store hazardous waste in sealed, covered containers labeled with the contents and accumulation start date under 22 CA Code of Regs, Div 4.5. Labels must comply with the provisions of 22 CA Code of Regs, Div 4.5.§ 66262.31 and § 66262.32. Immediately replace damaged or illegible labels.
- 4. Handle hazardous waste containers such that no spillage occurs.
- 5. Store hazardous waste away from storm drains, watercourses, moving vehicles, and equipment.
- 6. Furnish containers with adequate storage volume at convenient satellite locations for hazardous waste collection. Immediately move these containers to secure temporary containment facilities when no longer needed at the collection location or when full.
- 7. Store hazardous waste and potentially hazardous waste in secure temporary containment enclosures having secondary containment facilities impervious to the materials stored there for a minimum contact-time of 72 hours. Temporary containment enclosures must be located away from public access. Acceptable secure enclosures include a locked chain link fenced area or a lockable shipping container located within the project limits.
- 8. Design and construct secondary containment facilities with a capacity to contain precipitation from a 24-hour-long, 25-year storm; and 10 percent of the aggregate volume of all containers, or the entire volume of the largest container within the facility, whichever is greater.
- 9. Cover secondary containment facilities during non-working days and if a storm event is predicted. Secondary containment facilities must be adequately ventilated.
- 10. Keep secondary containment facility free of accumulated rainwater or spills. After a storm event, or in the event of spills or leaks, collect accumulated liquid and place into drums within 24 hours. Handle these liquids as hazardous waste unless testing determines them to be nonhazardous.
- 11. Do not store incompatible wastes, such as chlorine and ammonia, in the same secondary containment facility.
- 12. Provide sufficient separation between stored containers to allow for spill cleanup or emergency response access. Storage areas must be kept clean, well organized, and equipped with cleanup supplies appropriate for the wastes being stored.
- 13. Repair or replace perimeter controls, containment structures, covers, and liners as necessary. Inspect storage areas before and after a storm event, and at least weekly during other times.

Do not:

- 1. Overfill hazardous waste containers
- 2. Spill hazardous waste or potentially hazardous waste
- 3. Mix hazardous wastes
- 4. Allow hazardous waste or potentially hazardous waste to accumulate on the ground

Dispose of hazardous waste within 90 days of the start of generation. Use a hazardous waste manifest and a transporter registered with the DTSC and in compliance with the CA Highway Patrol Biennial Inspection of Contract No. 12-0E3104

Terminals Program to transport hazardous waste to an appropriately permitted hazardous waste management facility.

Dust Control for Hazardous Waste or Contamination

Excavation, transportation, and handling of material containing hazardous waste or contamination must result in no visible dust migration. Have a water truck or tank on the job site at all times while clearing and grubbing and performing earthwork operations in work areas containing hazardous waste or contamination.

Stockpiling of Hazardous Waste or Contamination

Do not stockpile material containing hazardous waste or contamination unless ordered. Stockpiles of material containing hazardous waste or contamination must not be placed where affected by surface run-on or run-off. Cover stockpiles with 13 mils minimum thickness of plastic sheeting or 1 foot of nonhazardous material. Do not place stockpiles in environmentally sensitive areas. Stockpiled material must not enter storm drains, inlets, or waters of the State.

Contractor-Generated Hazardous Waste

You are the generator of hazardous waste generated as a result of materials you bring to the job site. Use hazardous waste management practices if you generate waste on the job site from the following substances:

- 1. Petroleum materials
- 2. Asphalt materials
- 3. Concrete curing compound
- 4. Pesticides
- 5. Acids
- 6. Paints
- 7. Stains
- 8. Solvents
- 9. Wood preservatives
- 10. Roofing tar
- 11. Road flares
- 12. Lime
- 13. Glues and adhesives
- 14. Materials classified as hazardous waste under 22 CA Code of Regs, Div 4.5

If hazardous waste constituent concentrations are unknown, use a laboratory certified by the ELAP under the California Department Of Public Health to analyze a minimum of 4 discrete representative samples of the waste to determine whether it is a hazardous waste and to determine safe and lawful methods for storage and disposal. Perform sampling and analysis in compliance with US EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) and under 22 CA Code of Regs, Div 4.5.

Use your US EPA Generator Identification Number and sign hazardous waste manifests for the hazardous waste you generate.

Identify contaminated soil resulting from spills or leaks by noticing discoloration, or differences in soil properties. Immediately notify the Engineer of spills or leaks. Clean up spills and leaks under the Engineer's direction and to the satisfaction of the Engineer. Soil with evidence of contamination must be sampled and analysis performed by a laboratory certified by ELAP.

If sampling and analysis of contaminated soil demonstrates that it is a hazardous waste, handle and dispose of the soil as hazardous waste. You are the generator of hazardous waste created as the result of spills or leaks for which you are responsible.

Prevent the flow of water, including ground water, from mixing with contaminated soil by using one or a combination of the following measures:

- 1. Berms
- 2. Cofferdams
- 3. Grout curtains
- 4. Freeze walls
- 5. Concrete seal course

If water mixes with contaminated soil and becomes contaminated, sample and analyze the water using a laboratory certified by the ELAP. If analysis results demonstrate that the water is a hazardous waste, manage and dispose of the water as hazardous waste.

Department-Generated Hazardous Waste

If the Department is the generator of hazardous waste during the work performed on this project, use hazardous waste management practices.

Labels must comply with the provisions of 22 CA Code of Regs § 66262.31 and § 66262.32. Mark labels with:

- 1. Date the hazardous waste is generated
- 2. The words "Hazardous Waste"
- Composition and physical state of the hazardous waste (for example, asphalt grindings with thermoplastic or paint)
- 4. The word "Toxic"
- 5. Name, address, and telephone number of the Engineer
- 6. Contract number
- 7. Contractor or subcontractor name

Handle the containers such that no spillage occurs.

Hazardous Waste Transport and Disposal

Dispose of hazardous waste within California at a disposal site operating under a permit issued by the DTSC.

The Engineer will obtain the US EPA Generator Identification Number for hazardous waste disposal.

The Engineer will sign all hazardous waste manifests. Notify the Engineer 5 business days before the manifests are to be signed.

The Department will not consider you a generator of the hazardous waste and you will not be obligated for further cleanup, removal, or remedial action for such material if handled or disposed of under these specifications and the appropriate State and federal laws and regulations and county and municipal ordinances and regulations regarding hazardous waste.

Paint Waste

Clean water-based and oil-based paint from brushes or equipment within a contained area in a way that does not contaminate soil, receiving waters, or storm drain systems. Handle and dispose of the following as hazardous waste: paints, thinners, solvents, residues, and sludges that cannot be recycled or reused. When thoroughly dry, dispose of the following as solid waste: dry latex paint, paint cans, used brushes, rags, absorbent materials, and drop cloths.

Concrete Waste

Use practices to prevent the discharge of asphalt concrete, PCC, and HMA waste into storm drain systems and receiving waters.

Collect and dispose of asphalt concrete, PCC, and HMA waste generated at locations where:

- 1. Concrete material, including grout, is used
- 2. Concrete dust and debris result from demolition
- 3. Sawcutting, coring, grinding, grooving, or hydro-concrete demolition creates a residue or slurry
- 4. Concrete trucks or other concrete-coated equipment is cleaned at the job site

Sanitary and Septic Waste

Do not bury or discharge wastewater from a sanitary or septic system within the highway. A sanitary facility discharging into a sanitary sewer system must be properly connected and free from leaks. Place a portable sanitary facility at least 50 feet away from storm drains, receiving waters, and flow lines.

Comply with local health agency provisions if using an on-site disposal system.

Liquid Waste

Use practices that will prevent job-site liquid waste from entering storm drain systems and receiving waters. Liquid waste include the following:

1. Drilling slurries or fluids

- 2. Grease-free and oil-free wastewater and rinse water
- 3. Dredgings, including liquid waste from cleaning drainage systems
- 4. Liquid waste running off a surface, including wash or rinse water
- 5. Other nonstormwater liquids not covered by separate permits

Hold liquid waste in structurally sound, leak-proof containers, such as roll-off bins or portable tanks.

Liquid waste containers must be of sufficient quantity and volume to prevent overflow, spills, and leaks.

Store containers at least 50 feet from moving vehicles and equipment.

Remove and dispose of deposited solids from sediment traps unless the Engineer approves another method.

Liquid waste may require testing to determine hazardous material content before disposal.

Dispose of drilling fluids and residue.

If a location approved by the Engineer is available within the job site, fluids and residue exempt under 23 CA Code of Regs § 2511(g) may be dried by evaporation in a leak-proof container. Dispose of the remaining as solid waste.

Nonstormwater Management

Water Control and Conservation

Manage water used for work activities in a way that will prevent erosion and the discharge of pollutants into storm drain systems and receiving waters. Obtain authorization before washing anything at the job site with water that could discharge into a storm drain system or receiving waters. Report discharges immediately.

Implement water conservation practices if water is used at the job site. Inspect irrigation areas. Adjust watering schedules to prevent erosion, excess watering, or runoff. Shut off the water source to broken lines, sprinklers, or valves and repair breaks within 24 hours. Reuse water from waterline flushing for landscape irrigation if practicable. Sweep and vacuum paved areas. Do not wash paved areas with water.

Direct runoff water, including water from water line repair, from the job site to areas where it can infiltrate into the ground. Do not allow runoff water to enter storm drain systems and receiving waters. Do not allow spilled water to escape filling areas for water trucks. Direct water from off-site sources around the job site if practicable. Minimize the contact of off-site water with job site water.

Illegal Connection and Discharge Detection and Reporting

Before starting work, inspect the job site and the job site's perimeter for evidence of illicit connections, illegal discharges, and dumping. After starting work, inspect the job site and perimeter on a daily schedule for illicit connections and illegal dumping and discharges.

Whenever illegal connections, discharges, or dumping are discovered, notify the Engineer immediately. Do not take further action unless ordered. Assume that unlabeled or unidentifiable material is hazardous.

Look for the following evidence of illicit connections, illegal discharges, and dumping:

- 1. Debris or trash piles
- 2. Staining or discoloration on pavement or soils
- 3. Pungent odors coming from drainage systems
- 4. Discoloration or oily sheen on water
- 5. Stains and residue in ditches, channels, or drain boxes
- 6. Abnormal water flow during dry weather
- 7. Excessive sediment deposits
- 8. Nonstandard drainage junction structures
- 9. Broken concrete or other disturbances at or near junction structures

Vehicle and Equipment Cleaning

Limit vehicle and equipment cleaning or washing at the job site except what is necessary to control vehicle tracking or hazardous waste. Notify the Engineer before cleaning vehicles and equipment at the job site with soap, solvents, or steam. Contain and recycle or dispose of resulting waste under "Waste Management" of these special provisions, whichever is applicable. Do not use diesel to clean vehicles or equipment. Minimize the use of solvents.

Clean or wash vehicles and equipment in a structure equipped with disposal facilities. You may wash vehicles in an outside area if the area is:

- 1. Paved with asphalt concrete, HMA, or PCC
- 2. Surrounded by a containment berm

3. Equipped with a sump to collect and dispose of wash water

Use as little water as practicable whenever washing vehicles and equipment with water. Hoses must be equipped with a positive shutoff valve.

Discharge liquid from wash racks to a recycling system or to another system approved by the Engineer. Remove liquids and sediment as necessary.

Vehicle and Equipment Fueling and Maintenance

If practicable, perform maintenance on vehicles and equipment off-site.

If fueling or maintenance must be done at the job site, assign a site or sites, and obtain authorization before using them. Minimize mobile fueling and maintenance activities. Fueling and maintenance activities must be performed on level ground in areas protected from stormwater run-on and runoff.

Use containment berms or dikes around fueling and maintenance areas. Keep adequate quantities of absorbent spill-cleanup material and spill kits in the fueling or maintenance area and on fueling trucks. Dispose of spill-cleanup material and kits immediately after use under "Waste Management" of these special provisions. Use drip pans or absorbent pads during fueling or maintenance.

Do not leave fueling or maintenance areas unattended during fueling and maintenance activities. Fueling nozzles must be equipped with an automatic shutoff control. Nozzles must be equipped with vapor-recovery fueling nozzles where required by the Air Quality Management District. Secure nozzles in an upright position when not in use. Do not top off fuel tanks.

Recycle or properly dispose of used batteries and tires under "Waste Management" of these special provisions. If leaks cannot be repaired immediately, remove the vehicle or equipment from the job site.

Material and Equipment Used Over Water

Place drip pans and absorbent pads under vehicles and equipment used over water. Keep an adequate supply of spill-cleanup material with vehicles and equipment. Place drip pans or plastic sheeting under vehicles and equipment on docks, barges, or other surfaces over water whenever vehicles or equipment will be idle for more than 1 hour.

Furnish watertight curbs or toe boards on barges, platforms, docks, or other surfaces over water to contain material, debris, and tools. Secure material to prevent spills or discharge into the water due to wind.

Report discharges to receiving waters immediately upon discovery. Submit a discharge notification to the Engineer.

Structure Removal Over or Adjacent to Water

Do not allow demolished material to enter storm drain systems and receiving waters. Use covers and platforms approved by the Engineer to collect debris. Use attachments on equipment to catch debris during small demolition activities. Empty debris-catching devices daily.

Paving, Sealing, Sawcutting, Grooving, and Grinding Activities

Prevent material from entering storm drain systems and receiving waters including:

- 1. Cementitious material
- 2. Asphaltic material
- 3. Aggregate or screenings
- 4. Sawcutting, grooving, and grinding residue
- 5. Pavement chunks
- 6. Shoulder backing
- 7. Methacrylate
- 8. Sandblasting residue

Cover drainage inlets and use linear sediment barriers to protect downhill receiving waters until paving, sealing, sawcutting, grooving, and grinding activities are completed and excess material has been removed. Cover drainage inlets and manholes during the application of seal coat, tack coat, slurry seal, or fog seal.

Whenever precipitation is forecasted, limit paving, sawcutting, and grinding to places where runoff can be captured.

Do not start seal coat, tack coat, slurry seal, or fog seal activities whenever precipitation is forecasted during the application and curing period. Do not excavate material from existing roadways during precipitation.

Use a vacuum to remove slurry immediately after slurry is produced. Do not allow the slurry to run onto lanes open to traffic or off the pavement.

Collect the residue from PCC grooving and grinding activities with a vacuum attachment on the grinding machine. Do not leave the residue on the pavement or allow the residue to flow across pavement.

You may stockpile material excavated from existing roadways under "Material Management" of these special provisions if approved by the Engineer.

Do not coat asphalt trucks and equipment with substances that contain soap, foaming agents, or toxic chemicals. Park paving equipment over drip pans or plastic sheeting with absorbent material to catch drips if the paving equipment is not in use.

Thermoplastic Striping and Pavement Markers

Do not preheat, transfer, or load thermoplastic within 50 feet of drainage inlets and receiving waters.

Do not unload, transfer, or load bituminous material for pavement markers within 50 feet of drainage inlets and receiving waters.

Collect and dispose of bituminous material from the roadway after removing markers under "Waste Management" of these special provisions.

Pile Driving

Keep spill kits and cleanup materials at pile driving locations. Park pile driving equipment over drip pans, absorbent pads, or plastic sheeting with absorbent material. Protect pile driving equipment by parking on plywood and covering with plastic whenever precipitation is forecasted.

Store pile driving equipment on level ground and protect it from stormwater run-on when not in use. Use vegetable oil instead of hydraulic fluid if practicable.

Concrete Curing

Do not overspray chemical curing compounds. Minimize the drift by spraying as close to the concrete as practicable. Do not allow runoff of curing compounds. Cover drainage inlets before applying the curing compound.

Minimize the use and discharge of water by using wet blankets or similar methods to maintain moisture when concrete is curing.

Concrete Finishing

Collect and dispose of water and solid waste from high-pressure water blasting under "Waste Management" of these special provisions. Collect and dispose of sand and solid waste from sandblasting under "Waste Management" of these special provisions. Before sandblasting, cover drainage inlets within 50 feet of sandblasting. Minimize the drift of dust and blast material by keeping the nozzle close to the surface of the concrete. If the character of the blast residue is unknown, test it for hazardous materials and dispose of it properly.

Inspect containment structures for concrete finishing for damage before each day of use and before forecasted precipitation. Remove liquid and solid waste from containment structures after each work shift.

Sweeping

Sweep by hand or mechanical methods, such as vacuuming. Do not use methods that use only mechanical kick brooms.

Sweep paved roads at construction entrance and exit locations and paved areas within the job site:

- 1. During clearing and grubbing activities
- 2. During earthwork activities
- 3. During trenching activities
- 4. During roadway structural-section activities
- 5. When vehicles are entering and leaving the job site
- 6. After soil-disturbing activities
- 7. After observing off-site tracking of material

Monitor paved areas and roadways within the project. Sweep within:

- 1. 1 hour whenever sediment or debris is observed during activities that require sweeping
- 2. 24 hours whenever sediment or debris is observed during activities that do not require sweeping

Remove collected material, including sediment, from paved shoulders, drain inlets, curbs and dikes, and other drainage areas. You may stockpile collected material at the job site under "Material Management" of these special provisions. If stockpiled, dispose of collected material at least once per week under "Waste Management" of these special provisions.

You may dispose of sediment within the job site collected during sweeping activities. Protect the disposal areas against erosion.

Keep dust to a minimum during street sweeping activities. Use water or a vacuum whenever dust generation is excessive or sediment pickup is ineffective.

Remove and dispose of trash collected during sweeping under "Waste Management" of these special provisions.

Dewatering

Dewatering consists of discharging accumulated stormwater, groundwater, or surface water from excavations or temporary containment facilities.

Perform dewatering work as specified for the work items involved, such as temporary active treatment system or dewatering and discharge.

If dewatering and discharging activities are not specified under a work item and you perform dewatering activities:

- 1. Conduct dewatering activities under the Department's Field Guide for Construction Site Dewatering.
- 2. Ensure that any dewatering discharge does not cause erosion, scour, or sedimentary deposits that could impact natural bedding materials.
- 3. Discharge the water within the project limits. If the water cannot be discharged within project limits due to site constraints or contamination, dispose of the water as directed by the Engineer.
- 4. Do not discharge stormwater or nonstormwater that has an odor, discoloration other than sediment, an oily sheen, or foam on the surface. Notify the Engineer immediately upon discovering any such condition.

MEASUREMENT AND PAYMENT

The contract lump sum price paid for construction site management includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in spill prevention and control, material management, waste management, nonstormwater management, and dewatering activities, including identifying, sampling, testing, handling, and disposing of hazardous waste resulting from your activities, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as ordered by the Engineer.

10-1.04 STREET SWEEPING

GENERAL

Summary

This work includes street sweeping using machine-operated sweepers.

Street sweeping must comply with the specifications for sweeping in the Section titled, "Construction Site Management," of these special provisions except a machine-operated sweeper must be used.

Street sweeping does not void specifications for main residue collection included in other work activities, such as grooving, grinding, or asphalt concrete planing.

The SWPPP must describe and include the use of street sweeping as a water pollution control practice for sediment control and tracking control.

Submittals

At least 5 business days before you start clearing and grubbing, earthwork, or other activities with the potential for tracking sediment or debris, submit:

- 1. Number of machine-operated sweepers described in the SWPPP
- 2. Type of sweeper technology

Quality Control and Assurance

Retain and submit records of street sweeping, including:

1. Quantity of disposed sweeping waste

2. Sweeping times and locations

MATERIALS

Machine-operated sweepers must use one of the following technologies:

- 1. Mechanical sweeper followed by a vacuum-assisted sweeper
- 2. Vacuum-assisted dry (waterless) sweeper
- 3. Regenerative-air sweeper

CONSTRUCTION

At least 1 machine-operated sweeper must be on the job site at all times when street sweeping work is required. The sweeper must be in good working order.

MEASUREMENT AND PAYMENT

The contract lump sum price paid for street sweeping includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in street sweeping, including disposal of collected material, as shown on the plans, as specified in the Standard Specifications, these special provisions, and as directed by the Engineer.

10-1.05 TEMPORARY HYDRAULIC MULCH (BONDED FIBER MATRIX)

GENERAL

Summary

This work includes applying, maintaining, and removing temporary hydraulic mulch (bonded fiber matrix). Hydraulic mulch uses a mixture of fiber, tackifier, and water to stabilize active and nonactive disturbed soil areas.

The SWPPP must describe and include the use of temporary hydraulic mulch (bonded fiber matrix) as a water pollution control practice for soil stabilization.

Submittals

At least 5 business days before applying hydraulic mulch, submit:

- 1. Material Safety Data Sheet for the tackifier.
- 2. Product label describing the tackifier as an erosion control product.
- 3. List of pollutant indicators and potential pollutants for the use of temporary hydraulic mulch. Pollutant indicators are described under "Sampling and Analysis Plan for Non-Visible Pollutants" in the Preparation Manual.
- 4. Determination of acute and chronic toxicity for aquatic organisms conforming to EPA methods for the tackifier.
- 5. Composition of ingredients including chemical formulation.

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for:

- 1. Tackifier
- 2. Fiber

Quality Control and Assurance

Retain and submit records of temporary hydraulic mulch applications including:

- 1. Compliance with specified rates
- 2. Application area
- 3. Application time
- 4. Quantity

MATERIALS

Tackifier

The tackifier must be:

- 1. Nonflammable
- 2. Nontoxic to aquatic organisms
- 3. Free from growth or germination inhibiting factors
- 4. Bonded to the fiber or prepackaged with the fiber by the manufacturer
- 5. At least 10 percent of the weight of the dry fiber and include the weight of the activating agents and additives
- Organic, high viscosity colloidal polysaccharide with activating agents, or a blended hydrocolloid-based binder

Fiber

Fiber must be:

- 1. Long strand, whole wood fibers, thermo-mechanically processed from clean, whole wood chips
- 2. Not made from sawdust, cardboard, paper, or paper byproducts
- 3. At least 25 percent of fibers 3/8 inch long
- 4. At least 50 percent held on a No. 25 sieve
- 5. Free from lead paint, printing ink, varnish, petroleum products, seed germination inhibitors, or chlorine bleach
- 6. Free from synthetic or plastic materials
- 7. At most 7 percent ash

Coloring Agent

Use a biodegradable nontoxic coloring agent free from copper, mercury, and arsenic to ensure the hydraulic mulch contrasts with the application area.

CONSTRUCTION

Application

Dilute hydraulic mulch with water to spread the mulch evenly.

Use hydroseeding equipment to apply hydraulic mulch.

Apply hydraulic mulch:

1. In the proportions indicated in the table below. Successive applications or passes may be needed to achieve the required proportion rate:

Material	Application Rate lbs/acre
Bonded Fiber	4500
(includes fiber and	
tackifier material)	

- 2. To form a continuous mat with no gaps between the mat and the soil surface.
- 3. From 2 or more directions to achieve a continuous mat.
- 4. In layers to avoid slumping and to aid drying.
- 5. During dry weather or at least 24 hours before predicted rain.

Do not apply hydraulic mulch if:

- 1. Water is standing on or moving across the soil surface
- 2. Soil is frozen
- 3. Air temperature is below 40 °F during the tackifier curing period unless allowed by the tackifier manufacturer and approved by the Engineer

Do not over-spray hydraulic mulch onto the traveled way, sidewalks, lined drainage channels, or existing vegetation.

Maintenance

Reapply hydraulic mulch within 24 hours of discovering visible erosion unless the Engineer approves a longer period.

Removal

Remove hydraulic mulch by mechanically blending it into the soil with track laying equipment, disking, or other approved method.

Temporary hydraulic mulch disturbed or displaced by your vehicles, equipment, or operations must be reapplied at your expense.

Cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence are not included in the cost for performing maintenance.

MEASUREMENT AND PAYMENT

Temporary hydraulic mulch (bonded fiber matrix) is measured by the square yard from measurements along the slope of the areas covered by the hydraulic mulch.

The contract price paid per square yard for temporary hydraulic mulch (bonded fiber matrix) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying temporary hydraulic mulch, complete in place, including removal of hydraulic mulch, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The State and you share the cost of maintaining the temporary hydraulic mulch. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.

10-1.06 TEMPORARY CONCRETE WASHOUT (PORTABLE)

GENERAL

Summary

This work includes removal and disposal of concrete waste by furnishing, maintaining, and removing portable temporary concrete washouts.

SWPPP must describe and include the use of a portable temporary concrete washout as a water pollution control practice for waste management and materials pollution control.

Submittals

At least 5 business days before concrete activities start, submit:

- 1. Name and location of off-site concrete waste disposal facility to receive concrete waste
- 2. Copy of permit issued by RWQCB for off-site commercial disposal facility
- 3. Copy of license for off-site commercial disposal facility
- 4. Copy of permit issued by state or local agency having jurisdiction over disposal facility if disposal site is located outside of the State of California

Quality Control and Assurance

Retain and submit records of disposed concrete waste including:

- 1. Weight tickets
- 2. Delivery and removal of temporary concrete washouts

MATERIALS

Portable Temporary Concrete Washout

Portable temporary concrete washout must:

1. Be a commercially available watertight container.

- 2. Have sufficient capacity to contain all liquid and concrete waste generated by washout activities without seepage or spills.
- 3. Have at least 55-gallon capacity.
- 4. Be labeled for the exclusive use as a concrete waste and washout facility. Stencil "Concrete Waste material" in 3-inch high letters on white background. Top of stenciling must be 12 inches from the top of the container.

Concrete Washout Sign

Concrete washout sign must comply with the provisions in Section 12-3.06B, "Portable Signs" of the Standard Specifications and:

- 1. Be approved by the Engineer
- 2. Consist of base, framework, and sign panel
- 3. Be made of plywood
- 4. Be minimum 2' x 4' in size
- 5. Read "Concrete Washout" with 3 inches high black letters on white background

CONSTRUCTION

Placement

Place portable temporary concrete washouts at job site:

- 1. Before concrete placement activities start
- 2. In the immediate area of concrete work as approved by the Engineer
- 3. No closer than 50 feet from storm drain inlets, open drainage facilities, ESAs, or watercourses
- 4. Away from construction traffic or public access areas

Install a concrete washout sign adjacent to each portable temporary concrete washout location.

Operation

Use portable temporary concrete washouts for:

- 1. Washout from concrete delivery trucks
- 2. Slurries containing portland cement concrete or hot mix asphalt from sawcutting, coring, grinding, grooving, and hydro-concrete demolition
- 3. Concrete waste from mortar mixing stations

Relocate portable temporary concrete washouts as needed for concrete construction work.

Replace portable temporary concrete washouts when filled to capacity. Do not fill higher than 6 inches below rim.

Your WPC manager must inspect portable temporary concrete washouts:

- 1. Daily if concrete work occurs daily
- 2. Weekly if concrete work does not occur daily

Maintenance

When relocating or transporting a portable temporary concrete washout within the job site, secure it to prevent spilling of concrete waste material. If any spilled material is observed, remove spilled material and place it into portable temporary concrete washout.

Removal

Dispose of concrete waste material at a facility specifically licensed to receive solid concrete waste, liquid concrete waste, or both. When portable temporary concrete washout is full, remove and dispose of concrete waste within 2 days.

PAYMENT

The contract lump sum price paid for temporary concrete washout (portable) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing, maintaining, and removing the portable temporary concrete washout, including removal and disposal of concrete waste, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.07 TEMPORARY FIBER ROLL

GENERAL

Summary

This work includes constructing, maintaining, and removing temporary fiber roll.

The SWPPP must describe and include the use of temporary fiber roll as a water pollution control practice for sediment control.

Submittals

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for fiber roll.

MATERIALS

Fiber Roll

Fiber roll must:

- 1. Last for at least one year after installation
- 2. Be Type 2

If specified, Type 1 fiber roll must be:

- 1. Made from an erosion control blanket:
 - 1.1. Classified by the Erosion Control Technology Council (ECTC) as ECTC 2D
 - 1.2. With a Universal Soil Loss Equation (USLE) C-Factor of not more than 0.20 at a 2:1 (horizontal:vertical) slope
 - 1.3. Capable to withstand a maximum shear stress of 1.75 pounds per square foot under ASTM D 6460
 - 1.4. With a minimum tensile strength of 75 pounds per foot under ASTM D 5035
 - 1.5. With top and bottom surfaces covered with lightweight non-synthetic netting
 - 1.6. That complies with one of the following:
 - 1.6.1. Double net straw and coconut blanket with 70 percent straw and 30 percent coconut fiber
 - 1.6.2. Double net excelsior blanket with 80 percent of the wood excelsior fibers being 6 inches or longer
- 2. Rolled along the width
- 3. Secured with natural fiber twine every 6 feet and 6 inches from each end
- 4. Finished to be either:
 - 4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 0.5 pounds per linear foot
 - 4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 2 pounds per linear foot

If specified, Type 2 fiber roll must:

- 1. Be filled with rice or wheat straw, wood excelsior, or coconut fiber
- 2. Be covered with a biodegradable jute, sisal, or coir fiber netting
- 3. Have the netting secured tightly at each end
- Be finished to be either:
 - 4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 1.1 pounds per linear foot
 - 4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 3 pounds per linear foot

Wood Stakes

Wood stakes must be:

- 1. Untreated fir, redwood, cedar, or pine and cut from sound timber
- 2. Straight and free of loose or unsound knots and other defects which would render the stakes unfit for use
- 3. Pointed on the end to be driven into the ground

For fiber roll, wood stakes must be at least:

- 1. 1" x 1" x 24" in size for Type 1 installation
- 2. 1" x 2" x 24" in size for Type 2 installation

Rope

For Type 2 installation, rope must:

- 1. Be biodegradable, such as sisal or manila
- 2. Have a minimum diameter of 1/4 inch

CONSTRUCTION

Before placing fiber roll, remove obstructions including rocks, clods, and debris greater than one inch in diameter from the ground.

If fiber roll is to be placed in the same area as erosion control blanket, install the blanket before placing the fiber roll. For other soil stabilization practices such as hydraulic mulch or compost, place the fiber roll and then apply the soil stabilization practice.

Place fiber roll on slopes at the following spacing unless the plans show a different spacing:

- 1. 10 feet apart for slopes steeper than 2:1 (horizontal:vertical)
- 2. 15 feet apart for slopes from 2:1 to 4:1 (horizontal:vertical)
- 3. 20 feet apart for slopes from 4:1 to 10:1 (horizontal:vertical)
- 4. 50 feet apart for slopes flatter than 10:1 (horizontal:vertical)

Place fiber roll approximately parallel to the slope contour. For any 20 foot section of fiber roll, do not allow the fiber roll to vary more than 5 percent from level.

Type 2 fiber roll may be installed using installation method Type 1:

For installation method Type 1, install fiber roll by:

- 1. Placing in a furrow that is from 2 to 4 inches deep
- 2. Securing with wood stakes every 4 feet along the length of the fiber roll
- 3. Securing the ends of the fiber roll by placing a stake 6 inches from the end of the roll
- 4. Driving the stakes into the soil so that the top of the stake is less than 2 inches above the top of the fiber roll

For installation method Type 2, install fiber roll by:

- 1. Securing with rope and notched wood stakes.
- 2. Driving stakes into the soil until the notch is even with the top of the fiber roll.
- 3. Lacing the rope between stakes and over the fiber roll. Knot the rope at each stake.
- 4. Tightening the fiber roll to the surface of the slope by driving the stakes further into the soil.

MAINTENANCE

Maintain temporary fiber roll to provide sediment holding capacity and to reduce runoff velocities.

Remove sediment deposits, trash, and debris from temporary fiber roll as needed or when directed by the Engineer. If removed sediment is deposited within project limits, it must be stabilized and not subject to erosion by wind or water. Trash and debris must be removed and disposed of as specified in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Maintain temporary fiber roll by:

- 1. Removing sediment from behind the fiber roll when sediment is 1/3 the height of the fiber roll above ground
- Repairing or adjusting the fiber roll when rills and other evidence of concentrated runoff occur beneath the fiber roll.
- 3. Repairing or replacing the fiber roll when they become split, torn, or unraveled
- 4. Adding stakes when the fiber roll slump or sag
- 5. Replacing broken or split wood stakes

Repair temporary fiber roll within 24 hours of discovering damage unless the Engineer approves a longer period.

If your vehicles, equipment, or activities disturb or displace temporary fiber roll, repair temporary fiber roll at your expense.

The Department does not pay maintenance costs for cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence.

REMOVAL

When the Engineer determines that temporary fiber roll is not required, they must be removed and disposed of under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Ground disturbance, including holes and depressions, caused by the installation and removal of the temporary fiber roll must be backfilled and repaired under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Temporary fiber roll is measured by the linear foot along the centerline of the installed roll. Where temporary fiber roll is joined and overlapped, the overlap is measured as a single installed roll.

The contract price paid per linear foot for temporary fiber roll includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the temporary fiber roll, complete in place, including removal of materials, cleanup and disposal of retained sediment and debris, and backfilling and repairing holes, depressions and other ground disturbance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer

The State and you share the cost of maintaining the temporary fiber roll. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.

10-1.08 TEMPORARY SILT FENCE

GENERAL

Summary

This work includes installing, maintaining, and removing temporary silt fence.

The SWPPP must describe and include the use of temporary silt fence as a water pollution control practice for sediment control.

Submittals

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for silt fence fabric.

MATERIALS

Silt Fence Fabric

Geosynthetic fabric for temporary silt fence must consist of one of the following:

- 1. Polyester
- 2. Polypropylene
- 3. Combined polyester and polypropylene

Sample under ASTM D 4354, Procedure C.

Test under ASTM D 4759. All properties must be based on Minimum Average Roll Value (MARV). Identify, store, and handle under ASTM D 4873.

Protect geosynthetics from moisture, sunlight, and damage during shipping and storage. Label each unit with the manufacturer's name, identifying information, and product identification.

Silt fence fabric must comply with:

Property	ASTM	Specif	ication
	Designation	Woven	Non-
			woven
Grab breaking load	D 4632		
1-inch grip, lb, min. in each direction		120	120
Apparent elongation	D 4632		
percent, min., in each direction		15	50
Water Flow Rate	D 4491		
max. average roll value, gallons per minute/square		10-50	100-150
foot			
Permittivity	D 4491		
1/sec., min.		0.05	0.05
Apparent opening size	D 4751		
max. average roll value, U.S. Standard sieve size		30	30
Ultraviolet Degradation	D 4595		
percent of original unexposed grab breaking load		7	0
500 hr, minimum			

Posts

Posts must be wood or metal.

Wood posts must be:

- 1. Untreated fir, redwood, cedar, or pine and cut from sound timber
- 2. Straight and free of loose or unsound knots and other defects that would render the stakes unfit for use
- 3. Pointed on the end to be driven into the ground
- 4. At least 2" x 2" in size, and 4 feet long

Metal posts must:

- 1. Be made of steel.
- 2. Have a "U," "T," "L," or other cross sectional shape that can resist failure from lateral loads.
- 3. Be pointed on the end to be driven into the ground.
- 4. Weigh at least 0.75-pound per foot.
- 5. Be at least 4 feet long.
- 6. Have a safety cap attached to the exposed end. The safety cap must be orange or red plastic and fit snugly to the metal post.

CONSTRUCTION

Silt fence must be:

- 1. Constructed with silt fence fabric, posts, and fasteners
- 2. Prefabricated or assembled at the job site

Silt fence fabric must be attached to posts using these methods:

- 1. If prefabricated silt fence is used, posts must be inserted into sewn pockets
- 2. If assembled on the job site:
 - 2.1. If wood posts are used, fasteners must be staples or nails
 - 2.2. If steel posts are used, fasteners must be tie wires or locking plastic fasteners
 - 2.3. Spacing of the fasteners must be no more than 8 inches apart

Place silt fence approximately parallel to the slope contour. For any 50 foot section of silt fence, do not allow the elevation at the base of the fence to vary more than 1/3 of the fence height.

Install silt fence by:

- 1. Placing the bottom of the fabric in a trench that is 6 inches deep
- 2. Securing with posts placed on the downhill side of the fabric
- 3. Backfilling the trench with soil and hand or mechanically tamping to secure the fabric in the trench

If you reinforce the silt fence fabric with wire or plastic mesh, you may increase the post spacing to a maximum of 10 feet. The field-assembled reinforced silt fence must be able to retain saturated sediment without collapsing. Connect silt fence sections by:

- 1. Joining separate sections of silt fence to form reaches that are no more than 500 feet long
- 2. Securing the end posts of each section by wrapping the tops of the posts with at least two wraps of 16-gage diameter tie wire
- 3. Ensuring that each reach is a continuous run of silt fence from end to end or from an end to an opening, including joined panels

If you mechanically push the silt fence fabric vertically through the soil, you must demostrate that the silt fence fabric will not be damaged and will not slip out of the soil, resulting in sediment passing under the silt fence fabric.

MAINTENANCE

Maintain temporary silt fence to provide sediment holding capacity and to reduce runoff velocities.

Remove sediment deposits, trash, and debris from temporary silt fence as needed or when directed by the Engineer. If removed sediment is deposited within project limits, it must be stabilized and not subject to erosion by wind or water. Trash and debris must be removed and disposed of as specified in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Maintain temporary silt fence by:

- 1. Removing sediment from behind the silt fence when sediment is 1/3 the height of the silt fence above ground
- 2. Repairing or adjusting the silt fence when rills and other evidence of concentrated runoff occur beneath the silt fence fabric
- 3. Repairing or replacing the silt fence fabric when it become split, torn, or unraveled

Repair temporary silt fence within 24 hours of discovering damage unless the Engineer approves a longer period.

If your vehicles, equipment, or activities disturb or displace temporary silt fence, repair temporary silt fence at your expense.

The Department does not pay maintenance costs for cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence.

REMOVAL

When the Engineer determines that temporary silt fence is not required, remove and dispose of fence under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Ground disturbance, including holes and depressions, caused by the installation and removal of the temporary silt fence must be backfilled and repaired under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Temporary silt fence is measured by the linear foot along the centerline of the installed fence.

The contract price paid per linear foot for temporary silt fence includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the temporary silt fence, complete in place, including removal of materials, cleanup and disposal of retained sediment and debris, and backfilling and repairing holes, depressions and other ground disturbance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The State and you share the cost of maintaining the temporary silt fence. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.

10-1.09 TEMPORARY GRAVEL BAG BERM

GENERAL

Summary

This work includes constructing, maintaining, and removing temporary gravel bag berm.

The SWPPP must describe and include the use of temporary gravel bag berm as a water pollution control practice for sediment control.

Submittals

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for gravel-filled bag fabric.

MATERIALS

Gravel-filled Bag Fabric

Geosynthetic fabric for temporary gravel bag berm must consist of one of the following:

- 1. Polyester
- 2. Polypropylene
- 3. Combined polyester and polypropylene

Sample under ASTM D 4354, Procedure C.

Test under ASTM D 4759. All properties must be based on Minimum Average Roll Value (MARV).

Identify, store, and handle under ASTM D 4873.

Protect geosynthetics from moisture, sunlight, and damage during shipping and storage. Label each unit with the manufacturer's name, identifying information, and product identification.

Gravel-filled bag fabric must comply with:

Specification	Requirements
Grab breaking load	205
1-inch grip, lb, min. in each direction	
Apparent elongation	50
percent, min., in each direction	
Water Flow Rate	80-150
max. average roll value, gallons per minute/square foot	
Permittivity	1.2
1/sec., min	
Apparent opening size	40-80
max. average roll value, U.S. Standard sieve size	
Ultraviolet Degradation	70
percent of original unexposed grab breaking load 500 hr, minimum	

Gravel

Gravel for gravel-filled bags must be:

- 1. From 3/8 to 3/4 inch in diameter
- 2. Clean and free from clay balls, organic matter, and other deleterious materials

Gravel-filled Bags

Gravel-filled bags must:

- 1. Be made from gravel-filled bag fabric.
- 2. Have inside dimensions from 24 to 32 inches in length, and from 16 to 20 inches in width.

- 3. Have the opening bound to retain the gravel. The opening must be sewn with yarn, bound with wire, or secured with a closure device.
- 4. Weigh from 30 to 50 pounds when filled with gravel.

CONSTRUCTION

Before constructing temporary gravel bag berm, remove obstructions including rocks, clods, and debris greater than 1 inch in diameter from the ground.

Temporary gravel bag berm must:

- 1. Be placed as a single layer of gravel bags to create a linear sediment barrier
- 2. Be placed end-to-end to eliminate gaps
- 3. Be placed approximately parallel to the slope contour
- 4. Have the last 6 feet of the gravel bag berm angled up-slope

If you need to increase the height of the temporary gravel bag berm:

- 1. Increase height by adding rows of gravel-filled bags
- 2. Stack bags in a way that the bags in the top row overlap the joints in the lower row
- 3. Stabilize berm by adding rows at the bottom

MAINTENANCE

Maintain temporary gravel bag berm to provide sediment holding capacity and to reduce runoff velocities.

Remove sediment deposits, trash, and debris from temporary gravel bag berm as needed or when directed by the Engineer. If removed sediment is deposited within project limits, it must be stabilized and not subject to erosion by wind or water. Trash and debris must be removed and disposed of as specified in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Maintain temporary gravel bag berm by:

- 1. Removing sediment from behind the gravel bag berm when sediment is 1/3 the height of the gravel bag berm above ground
- 2. Repairing or adjusting the gravel-filled bags when rills and other evidence of concentrated runoff occur beneath the gravel-filled bags
- 3. Repairing or replacing the gravel-filled bags when they become split, torn, or unraveled

Repair temporary gravel bag berm within 24 hours of discovering damage unless the Engineer approves a longer period.

If your vehicles, equipment, or activities disturb or displace temporary gravel bag berm, repair temporary gravel bag berm at your expense.

The Department does not pay maintenance costs for cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence.

REMOVAL

When the Engineer determines that temporary gravel bag berm is not required, they must be removed and disposed of under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Ground disturbance, including holes and depressions, caused by the installation and removal of the temporary gravel bag berm must be backfilled and repaired under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Temporary gravel bag berm is measured by the linear foot along the centerline of the installed berm.

The contract price paid per linear foot for temporary gravel bag berm includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the temporary gravel bag berm, complete in place, including removal of materials, cleanup and disposal of retained sediment and debris, and backfilling and repairing holes, depressions and other ground disturbance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The State and you share the cost of maintaining the temporary gravel bag berm. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.

10-1.10 TEMPORARY CONSTRUCTION ENTRANCE

GENERAL

Summary

This work includes constructing, maintaining, and removing temporary construction entrance to provide temporary access.

The SWPPP must describe and include the use of temporary construction entrance as a water pollution control practice for tracking control.

Temporary construction entrance must be Type 1, Type 2, or a combination.

Submittals

Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for:

- 1. Temporary entrance fabric
- 2. Rock

Submit details for alternatives at least 5 business days before installation. You may propose alternatives for the following items:

- 1. Alternative sump
- 2. Alternative corrugated steel panels

If the Engineer approves, you may eliminate the sump.

MATERIALS

Temporary Entrance Fabric

Temporary entrance fabric must comply with the specifications for rock slope protection fabric (Class 8) in Section 88-1.06, "Channel and Shore Protection," of the Standard Specifications.

Rock

Rock must be Type A or Type B. Rock (Type A) must comply with:

- 1. Requirements under Section 72-2.02, "Materials," of the Standard Specifications
- 2. Following sizes:

Square Screen Size (inch)	Percentage Passing	Percentage Retained
6	100	0
3	0	100

Rock (Type B) must be Railway Ballast Number 25. Do not use blast furnace slag. Railway Ballast Number 25 must comply with:

- 1. Description in AREMA Manual for Railway Engineering.
- 2. Following sizes:

Nominal	Percentage Passing								
Size Square	3"	2-1/2"	2"	1-1/2"	1"	3/4"	1/2"	3/8"	No. 4
Opening									
2-1/2"-3/8"	100	80-100	60-85	50-70	25-50	-	5-20	0-10	0-3

3. Following properties:

Specification	Requirements
Percent material passing No. 200 sieve, max.	1.0
ASTM: C 117	
Bulk specific gravity, min.	2.60
ASTM: C 127	
Absorption, percent min.	1.0
ASTM: C 127	
Clay lumps and friable particles, percent max.	0.5
ASTM: C 142	
Degradation, percent max.	30
ASTM: C 535	
Soundness (Sodium Sulfate), percent max.	5.0
ASTM: C 88	
Flat, elongated particles, or both, percent max.	5.0
ASTM: D 4791	

Corrugated Steel Panels

Corrugated steel panels must:

- 1. Be made of steel.
- 2. Be pressed or shop welded
- 3. Have a slot or hook for connecting panels together

CONSTRUCTION

Prepare location for temporary construction entrance by:

- 1. Removing vegetation to ground level and clear away debris
- 2. Grading ground to uniform plane
- 3. Grading ground surface to drain
- 4. Removing sharp objects that may damage fabric
- 5. Compacting the top 1.5 feet of soil to at least 90 percent relative compaction

If temporary entrance (Type 1) is specified, use rock (Type A).

If temporary construction entrance (Type 2) is specified, use Rock (Type B) under corrugated steel panels. Use at least 6 corrugated steel panels for each entrance. Couple panels together.

Install temporary construction entrance by:

- 1. Positioning fabric along the length of the entrance
- 2. Overlapping sides and ends of fabric by at least 12 inches
- 3. Spreading rock over fabric in the direction of traffic
- 4. Covering fabric with rock within 24 hours
- 5. Keeping a 6 inch layer of rock over fabric to prevent damage to fabric by spreading equipment

Do not drive on fabric until rock is spread.

Unless the Engineer eliminates the sump, install a sump within 20 feet of each temporary construction entrance. Repair fabric damaged during rock spreading by placing a new fabric over the damaged area. New fabric must be large enough to cover damaged area and provide at least 18-inch overlap on all edges.

Maintenance

Maintain temporary construction entrance to minimize generation of dust and tracking of soil and sediment onto public roads. If dust or sediment tracking increases, place additional rock unless the Engineer approves another method.

Repair temporary construction entrance if:

1. Fabric is exposed

- 2. Depressions in the entrance surface develop
- 3. Rock is displaced

Repair temporary construction entrance within 24 hours of discovering damage unless the Engineer approves a longer period.

During use of temporary construction entrance, do not allow soil, sediment, or other debris tracked onto pavement to enter storm drains, open drainage facilities, or watercourses. When material is tracked onto pavement, remove it within 24 hours unless the Engineer approves a longer period.

If your vehicles, equipment, or activities disturb or displace the temporary construction entrance, repair it at your expense.

The Department does not pay maintenance costs for cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence.

Removal

When the Engineer determines that temporary construction entrance is not required, remove and dispose of it under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Backfill and repair ground disturbance, including holes and depressions, caused by installation and removal of temporary construction entrance under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Temporary construction entrance is determined from actual count in place. Temporary construction entrance is measured one time only and no additional measurement will be recognized.

The contract price paid for temporary construction entrance includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing temporary construction entrance, complete in place, including removal of temporary construction entrance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

No additional compensation will be made if the temporary construction entrance is relocated during the course of construction.

The State and you share the cost of maintaining temporary construction entrance. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.

10-1.11 TEMPORARY DRAINAGE INLET PROTECTION

GENERAL

Summary

This work includes constructing, maintaining, and removing temporary drainage inlet protection. Drainage inlet protection settles and filters sediment before stormwater runoff discharges into storm drainage systems.

The SWPPP must describe and include the use of temporary drainage inlet protection as a water pollution control practice for sediment control.

Provide temporary drainage inlet protection to meet the changing conditions around the drainage inlet. Temporary drainage inlet protection must be:

- 1. Appropriate type to meet the conditions around the drainage inlet
- 2. Type 5, Type 6B, or a combination

Submittals

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for:

- 1. Erosion control blanket
- 2. Fiber rolls
- 3. Safety cap for metal posts
- 4. Silt fence fabric
- 5. Sediment filter bag
- 6. Foam barrier
- 7. Rigid plastic barrier
- 8. Gravel-filled bag fabric

If you substitute the steel wire staple with an alternative attachment device, submit a sample of the device for approval at least 5 business days before installation.

MATERIALS

Geosynthetic Fabrics

Geosynthetic fabrics for temporary drainage inlet protection must consist of one of the following:

- 1. Polyester
- 2. Polypropylene
- 3. Combined polyester and polypropylene

Geosynthetic fabrics for temporary drainage inlet must comply with the specifications for water pollution control in Section 88-1.05, "Water Pollution Control," of the Standard Specifications.

Foam barrier must comply with:

Foam Barrier

Property	ASTM	Specification
	Designation	-
Grab breaking load	D 4632	
1-inch grip, lb, min. in each		
direction		200
Apparent elongation	D 4632	
percent, min., in each		
direction		15
Water Flow Rate	D 4491	
max. average roll value,		
gallons per minute/square		
foot		100-150
Permittivity	D 4491	
1/sec., min.		0.05
Apparent opening size	D 4751	
max. average roll value,		
U.S. Standard sieve size		40
Ultraviolet Degradation	D 4595	
percent of original		
unexposed grab breaking		
load 500 hr, minimum		70

Sample under ASTM D 4354, Procedure C.

Test under ASTM D 4759. All properties are based on Minimum Average Roll Value (MARV). Identify, store, and handle under ASTM D 4873.

Erosion Control Blanket

Erosion control blanket must be:

- 1. Described as a rolled erosion control product (RECP)
- 2. Classified as temporary and degradable or long-term and non-degradable
- 3. Machine-made mats
- 4. Provided in rolled strips
- 5. Classified by the Erosion Control Technology Council (ECTC)

Erosion control blanket classified as temporary and degradable must be one of the following:

- 1. Double net excelsior blanket:
 - 1.1. Classified as ECTC Type 2D

- 1.2. Classified as an erosion control blanket
- 1.3. Designed to last for at least one year after installation
- 1.4. With a Universal Soil Loss Equation (USLE) C-Factor of not more than 0.20 at a 2:1 (horizontal:vertical) slope
- 1.5. With 80 percent of the wood excelsior fibers being 6 inches or longer
- 1.6. Capable to withstand a maximum shear stress of 1.75 pounds per square foot under ASTM D 6460
- 1.7. With a minimum tensile strength of 75 pounds per foot under ASTM D 5035
- 1.8. With top and bottom surfaces covered with lightweight non-synthetic netting

2. Double net straw and coconut blanket:

- 2.1. Classified as ECTC Type 2D
- 2.2. Classified as an erosion control blanket
- 2.3. Designed to last for at least one year after installation
- 2.4. With a USLE C-Factor of not more than 0.20 at a 2:1 (horizontal:vertical) slope
- 2.5. Comprised of 70 percent straw and 30 percent coconut fiber
- 2.6. Capable to withstand a maximum shear stress of 1.75 pounds per square foot under ASTM D 6460
- 2.7. With a minimum tensile strength of 75 pounds per foot under ASTM D 5035
- 2.8. With top and bottom surfaces covered with lightweight non-synthetic netting

3. Jute netting:

- 3.1. Classified as ECTC Type 3B
- 3.2. Classified as an open weave textile and have from 14 to 20 strands per foot in each direction
- 3.3. Designed to last for at least one year after installation
- 3.4. With a USLE C-Factor of not more than 0.25 at a 1.5:1 (horizontal:vertical) slope
- 3.5. Comprised of 100 percent unbleached and undyed spun yarn made of jute fiber
- 3.6. With an average open area from 63 to 70 percent
- 3.7. From 48 to 72 inches in width
- 3.8. Capable to withstand a maximum shear stress of 2.0 pounds per square foot under ASTM D 6460
- 3.9. With a minimum tensile strength of 100 pounds per foot under ASTM D 5035
- 3.10. From 0.90 to 1.20 pounds per square yard in weight

4. Coir netting:

- 4.1. Classified as ECTC Type 4
- 4.2. Classified as an open weave textile and from 13 to 18 strands per foot in each direction
- 4.3. Designed to last for at least three years after installation
- 4.4. With a USLE C-Factor of not more than 0.25 at a 1:1 (horizontal:vertical) slope
- 4.5. Comprised of 100 percent unbleached and undyed spun coir yarn made of coconut fiber
- 4.6. With an average open area from 63 to 70 percent
- 4.7. From 72 to 158 inches in width
- 4.8. Capable to withstand a maximum shear stress of 2.25 pounds per square foot under ASTM D6460
- 4.9. With a minimum tensile strength of 125 pounds per foot under ASTM D 5035
- 4.10. From 1.20 to 1.67 pounds per square yard in weight

Erosion control blanket classified as long-term and non-degradable must:

- 1. Be a geosynthetic fabric
- 2. Comply with the specifications for rock slope protection fabric (Class 8) in Section 88-1.06, "Channel and Shore Protection," of the Standard Specifications

Staples

You may use an alternative attachment device such as a geosynthetic pins or plastic pegs to install erosion control blanket.

Rock

Rock must comply with:

- 1. Requirements under Section 72-2.02, "Materials," of the Standard Specifications
- 2. Following sizes:

Square Screen Size (inch)	Percentage Passing	Percentage Retained
6	100	0
3	0	100

Rope

Rope for fiber rolls must be:

- 1. Biodegradable, such as sisal or manila
- 2. At least 1/4 inch in diameter

Fiber Rolls

Fiber rolls must:

- 1. Last for at least one year after installation
- 2. Be Type 1 or Type 2

For Type 1, fiber rolls must be:

- 1. Made from an erosion control blanket classified as temporary and degradable
- 2. Rolled along the width
- 3. Secured with natural fiber twine every 6'-6" from each end
- 4. Finished to be either:
 - 4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 0.5 pounds per linear foot
 - 4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 2 pounds per linear foot

For Type 2, fiber rolls must:

- 1. Be filled with rice or wheat straw, wood excelsior, or coconut fiber
- 2. Be covered with biodegradable jute, sisal, or coir fiber netting
- 3. Have netting secured tightly at each end
- 4. Be finished to be either:
 - 4.1. From 8 to 10 inches in diameter, from 10 to 20 feet long, and at least 1.1 pounds per linear foot
 - 4.2. From 10 to 12 inches in diameter, at least 10 feet long, and at least 3 pounds per linear foot

Wood Stakes

Wood stakes must be:

- 1. Untreated fir, redwood, cedar, or pine and cut from sound timber
- 2. Straight and free of loose or unsound knots and other defects which would render the stakes unfit for use
- 3. Pointed on the end to be driven into the ground

For fiber rolls, wood stakes must be at least:

- 1. 1" x 1" x 24" in size for Type 1 installation
- 2. 1" x 2" x 24" in size for Type 2 installation

Posts

Posts must be wood or metal.

Wood posts must be:

- 1. Untreated fir, redwood, cedar, or pine and cut from sound timber
- 2. Straight and free of loose or unsound knots and other defects that would render the stakes unfit for use
- 3. Pointed on the end to be driven into the ground
- 4. At least 2" x 2" in size, and 4 feet long

Metal posts must:

- 1. Be made of steel.
- 2. Have a "U," "T," "L," or other cross sectional shape that can resist failure from lateral loads.
- 3. Be pointed on the end to be driven into the ground.
- 4. Weigh at least 0.75-pound per foot.
- 5. Be at least 4 feet long.
- 6. Have a safety cap attached to the exposed end. The safety cap must be orange or red plastic and fit snugly to the metal post.

Silt Fence

Silt fence must be:

- 1. Constructed with silt fence fabric, posts, and fasteners
- 2. Prefabricated or assembled at the job site

Silt fence fabric must be attached to posts using these methods:

- 1. If prefabricated silt fence is used, posts must be inserted into sewn pockets
- 2. If assembled on the job site:
 - 2.1. If wood posts are used, fasteners must be staples or nails
 - 2.2. If steel posts are used, fasteners must be tie wires or locking plastic fasteners
 - 2.3. Spacing of the fasteners must be at least 8 inches

Gravel-filled Bags

Gravel-filled bags must:

- 1. Be made from fabric.
- 2. Have inside dimensions from 24 to 32 inches in length, and from 16 to 20 inches in width.
- 3. Have the opening bound to retain the gravel. The opening must be sewn with yarn, bound with wire, or secured with a closure device.
- 4. Weigh from 30 to 50 pounds when filled with gravel.

Gravel for gravel-filled bags must be:

- 1. From 3/8 to 3/4 inch in diameter
- 2. Clean and free from clay balls, organic matter, and other deleterious materials

Sediment Filter Bag

Sediment filter bag must:

- 1. Be made of fabric
- 2. Be sized to fit the catch basin or drainage inlet
- 3. Include a high-flow bypass

Sediment filter bag may include a metal frame. Sediment filter bags that do not have a metal frame and are deeper than 18 inches must:

- 1. Include lifting loops and dump straps
- 2. Include a restraint cord to keep the sides of the bag away from the walls of the catch basin

Foam Barriers

Foam barriers must:

- 1. Be filled with a urethane foam core
- 2. Have a geosynthetic fabric cover and flap
- 3. Have a triangular, circular, or square shaped cross section
- 4. Have a vertical height of at least 5 inches after installation
- 5. Have a horizontal flap of at least 8 inches in width
- 6. Have a length of at least 4 feet per unit
- Have the ability to interlock separate units into a longer barrier so that water does not flow between the units
- 8. Be secured to:
 - 8.1. Payement with 1-inch concrete nails with 1-inch washers and solvent-free adhesive
 - 8.2. Soil with 6-inch nails with 1-inch washers

Rigid Plastic Barriers

Rigid plastic barriers must:

- 1. Have an integrated filter
- 2. Have a formed outer jacket of perforated high density polyethylene (HDPE) or polyethylene terephthalate (PET)
- 3. Have a flattened tubular shaped cross section
- 4. Be made from virgin or recycled materials
- 5. Be free from biodegradable filler materials that degrade the physical or chemical characteristics of the finished filter core or outer jacket
- 6. Have a length of at least 4 feet per unit
- 7. Have the ability to interlock separate units into a longer barrier so that water does not flow between the units
- 8. Be secured to:
 - 8.1 Pavement with 1-inch concrete nails with 1-inch washers and solvent-free adhesive, with gravel-filled bags, or a combination
 - 8.2 Soil with 6-inch nails with 1-inch washers and wood stakes

9. Comply with the following properties:

Specification	Requirements
Grab tensile strength of outer jacket material, pounds/square inch, min. in each	4000
direction	
ASTM D 4632*	
Break strength of outer jacket, pounds/square inch	1300
ASTM D 4632*	
Permittivity of filter core, 1/sec., min.	0.38
ASTM D 4491	
Flow rate of filter core, gallons per minute per square foot,	100 min.
ASTM D 4491	200 max.
Filter core aperture size, max., Average Opening Size (AOS), microns	425
Ultraviolet stability (outer jacket & filter core), percent tensile strength retained	90
after 500 hours, min.	
ASTM D 4355 (xenon-arc lamp and water spray weathering method)	

^{*} or appropriate test method for specific polymer

If used at a curb inlet without a grate, rigid plastic barriers must:

- 1. Have a horizontal flap of at least 6 inches with an under-seal gasket to prevent underflows
- 2. Include a high-flow bypass
- 3. Have a vertical height of at least 7 inches after installation
- 4. Be sized to fit the catch basin or drainage inlet

If used at a grated catch basin without a curb inlet, rigid plastic barriers must:

- 1. Cover the grate by at least 2 inches on each side and have an under-seal gasket to prevent underflows
- 2. Include a high-flow bypass
- 3. Have a vertical height of at least 1.5 inches after installation
- 4. Be sized to fit the catch basin or drainage inlet

If used at a curb inlet with a grate, rigid plastic barriers must:

- 1. Have a horizontal flap that covers the grate by at least 2 inches on the 3 sides away from the curb opening and have an under-seal gasket to prevent underflows
- 2. Include a high-flow bypass
- 3. Have a vertical section that covers the curb opening by at least 5 inches after installation
- 4. Be sized to fit the catch basin or drainage inlet

If used as a linear sediment barrier, rigid plastic barriers:

- 1. Must have an installed height of at least 6 inches
- 2. May have a horizontal flap of at least 4 inches

Linear Sediment Barrier

Linear sediment barriers must consist of one or more of the following:

- 1. Silt fence
- 2. Gravel-filled bags
- 3. Fiber roll
- 4. Rigid plastic barrier
- 5. Foam barrier

Flexible Sediment Barrier

Flexible sediment barriers consist of one or more of the following:

- 1. Rigid plastic barrier
- 2. Foam barrier

CONSTRUCTION

For drainage inlet protection at drainage inlets in paved and unpaved areas:

- 1. Prevent ponded runoff from encroaching on the traveled way or overtopping the curb or dike. Use linear sediment barriers to redirect runoff and control ponding.
- 2. Clear the area around each drainage inlet of obstructions including rocks, clods, and debris greater than one inch in diameter before installing the drainage inlet protection.
- 3. Install a linear sediment barrier up-slope of the existing drainage inlet and parallel with the curb, dike, or flow line to prevent sediment from entering the drainage inlet.

Erosion Control Blanket

To install erosion control blanket and geosynthetic fabric:

- 1. Secure blanket or fabric to the surface of the excavated sediment trap with staples and embed in a trench adjacent to the drainage inlet
- 2. Anchor the perimeter edge of the erosion control blanket in a trench

Silt Fence

If silt fence is used as a linear sediment barrier:

- 1. Place fence along the perimeter of the erosion control blanket, with the posts facing the drainage inlet
- 2. Install fence with the bottom edge of the silt fence fabric in a trench. Backfill the trench with soil and compact manually

Gravel Bag Berm

If gravel bag berm is used as a linear sediment barrier:

- 1. Place gravel-filled bags end-to-end to eliminate gaps
- 2. Stack bags in a way that the bags in the top row overlap the joints in the lower row

If gravel bag berms are used for Type 3A and Type 3B:

- 1. Place gravel-filled bags end-to-end to eliminate gaps
- 2. Stack bags in a way that the bags in the top row overlap the joints in the lower row
- 3. Arrange bags to create a spillway by removing one or more gravel-filled bags from the upper layer

If used within shoulder area, place gravel-filled bags behind temporary railing (Type K).

Fiber Rolls

If fiber rolls are used as a linear sediment barrier:

- 1. Place fiber rolls in a furrow.
- 2. Secure fiber rolls with stakes installed along the length of the fiber rolls. Stakes must be installed from 6 to 12 inches from the end of the rolls.

If fiber rolls are used as a linear sediment barrier for Type 4A, place them over the erosion control blanket.

Foam Barriers

If foam barriers are used as a linear sediment barrier:

- 1. Install barriers with the horizontal flap in a 3 inch deep trench and secured with nails and washers placed no more than 4 feet apart
- 2. Secure barriers with 2 nails at the connection points where separate units overlap
- 3. Place barriers without nails or stakes piercing the core

Flexible Sediment Barriers

If flexible sediment barriers are used:

- 1. Secure barriers to the pavement with nails and adhesive, gravel-filled bags, or a combination
- 2. Install barriers flush against the sides of concrete, asphalt concrete, or hot mix asphalt curbs or dikes
- 3. Place barriers to provide a tight joint with the curb or dike and anchored in a way that runoff cannot flow behind the barrier

If flexible sediment barriers are used for Type 4B:

- 1. Secure barriers to the pavement according to the angle and spacing shown on the plans
- 2. Place barriers to provide a tight joint with the curb or dike. Cut the cover fabric or jacket to ensure a tight fit

Rigid Sediment Barriers

If rigid sediment barriers are used at a grated catch basin without a curb inlet:

- 1. Place barriers using the gasket to prevent runoff from flowing under the barrier
- 2. Secure barriers to the pavement with nails and adhesive, gravel-filled bags, or a combination

If rigid sediment barriers are used for linear sediment barriers:

- 1. Install barriers in a trench. Backfill the trench with soil and compact manually
- 2. Place barrier with separate units overlapping at least 4 inches
- 3. Reinforce barriers with a wood stake at each overlap
- 4. Fasten barriers to the wood stakes with steel screws, 16 gauge galvanized steel wire, or with UV stabilized cable ties that are from 5 to 7 inches in length

Sediment Filter Bags

Install sediment filter bags for Type 5 by:

- 1. Removing the drainage inlet grate
- 2. Placing the sediment bag in the opening
- 3. Replacing the grate to secure the sediment filter bag in place

MAINTENANCE

Maintain temporary drainage inlet protection to provide sediment holding capacity and to reduce runoff velocities.

Remove sediment deposits, trash, and debris from temporary drainage inlet protection as needed or when directed by the Engineer. If removed sediment is deposited within project limits, it must be stabilized and not subject to erosion by wind or water. Trash and debris must be removed and disposed of as specified in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Maintain temporary drainage inlet protection by removing sediment from:

- 1. Behind flexible sediment barriers when sediment exceeds 1 inch in depth
- 2. Surface of the erosion control blanket when sediment exceeds 1 inch in depth
- 3. Sediment trap for Type 2 when the volume has been reduced by approximately one-half
- 4. Behind silt fence when the sediment is 1/3 the height of the silt fence fabric above ground
- 5. Sediment filter bags when filled or when the restraint cords are no longer visible

If rills and other evidence of concentrated runoff occur beneath the linear sediment barrier, repair or adjust the barrier.

If silt fence fabric becomes split, torn, or unraveled, repair or replace silt fence.

If geosynthetic fabric becomes split, torn, or unraveled, repair or replace foam barriers.

Repair or replace sagging or slumping linear sediment barriers with additional stakes. Replace broken or split wood stakes.

Reattach foam barriers and rigid plastic barriers that become detached or dislodged from the pavement.

Repair split or torn rigid plastic barriers with 16 gauge galvanized steel wire or UV stabilized cable ties that are from 5 to 7 inches in length.

For sediment filter bags without metal frames, empty by placing one inch steel reinforcing bars through the lifting loops and then lift the filled bag from the drainage inlet. For sediment filter bags with metal frames, empty by lifting the metal frame from the drainage inlet. Rinse before replacing in the drainage inlet. When rinsing the sediment filter bags, do not allow the rinse water to enter a drain inlet or waterway.

Repair temporary drainage inlet protection within 24 hours of discovering damage unless the Engineer approves a longer period.

If your vehicles, equipment, or activities disturb or displace temporary drainage inlet protection, repair temporary drainage inlet protection at your expense.

The Department does not pay maintenance costs for cleanup, repair, removal, disposal, or replacement due to improper installation or your negligence.

REMOVAL

When the Engineer determines that the temporary drainage inlet protection is not required, it must be removed and disposed of under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Ground disturbance, including holes and depressions, caused by the installation and removal of the temporary drainage inlet protection must be backfilled and repaired under Section 15-1.02, "Preservation of Property," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Quantities of temporary drainage inlet protection will be determined from actual count in place. The protection will be measured one time only and no additional measurement will be recognized.

The contract unit price paid for temporary drainage inlet protection includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the temporary drainage inlet protection, complete in place, including removal of materials, cleanup and disposal of retained sediment and debris, and backfilling and repairing holes, depressions and other ground disturbance, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

No additional compensation will be made if the temporary drainage inlet protection is relocated during the course of construction.

The State and you share the cost of maintaining the temporary drainage inlet protection. The State determines the maintenance cost under Section 9-1.03, "Force Account Payment," of the Standard Specifications and pays you one-half of that cost.

10-1.12 TEMPORARY SUPPORTS

Temporary supports for existing structures during bridge removal, reconstruction, and retrofit work shall be designed, furnished, constructed, monitored, maintained, and removed in conformance with the provisions in these special provisions.

Construction sequence and application of temporary support jacking loads shall be as shown on the plans. Proposed changes to the construction sequence and application of temporary support jacking loads shall be subject to the Engineer's approval.

Temporary supports shall include jacking assemblies and appurtenant items necessary to jack and support the structures.

Attention is directed to the sections "Order of Work" and "Maintaining Traffic" of these special provisions regarding the construction sequences and the required openings in temporary supports for the use of public traffic.

Approval by the Engineer of the temporary support working drawings or temporary support inspection performed by the Engineer will in no way relieve the Contractor of full responsibility for the temporary supports.

TEMPORARY SUPPORT DESIGN AND DRAWINGS

The Contractor shall submit to the Engineer working drawings and design calculations for the temporary supports. Such drawings and design calculations shall be signed by an engineer who is registered as a Civil Engineer in the State of California. The temporary support working drawings and design calculations shall conform to the requirements in Section 5-1.02 "Plans and Working Drawings," of the Standard Specifications. The number of sets of drawings and design calculations and times for review for temporary supports shall be the same as specified for falsework working drawings in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications.

Working drawings for any part of the temporary supports shall include stress sheets, anchor bolt layouts, shop details, and erection and removal plans.

The temporary support working drawings shall include descriptions and values of all loads, including construction equipment loads, descriptions of equipment to be used, complete details and calculations for jacking and supporting the existing structure, and descriptions of the displacement monitoring system. The displacement monitoring system shall include equipment to be used, location of control points, method and schedule of taking measurements, and provisions to jack the structure should settlement occur in the temporary supports.

A redundant system of supports shall be provided during the entire jacking operation for backup should any of the jacks fail. The redundant system shall include stacks of steel plates added as necessary to maintain the redundant supports at each jack location within 1/4 inch of the jacking sill or corbels.

For temporary supports over railroads, approval by the Engineer of the temporary support drawings will be contingent upon the drawings being satisfactory to the railroad company involved.

When footing type foundations are to be used, the Contractor shall determine the bearing value of the soil and shall show the values assumed in the design of the temporary supports on the temporary support drawings. Anticipated temporary support foundation settlement shall be shown on the temporary support drawings.

When pile type foundations are to be used, the temporary support drawings shall show the maximum horizontal distance that the top of a temporary support pile may be pulled in order to position it under its cap. The temporary support plans shall also show the maximum allowed deviation of the top of the pile, in its final position, from a vertical line through the point of fixity of the pile.

The Contractor may use the permanent piles as part of the temporary support foundation. Permanent piles shall not be moved or adjusted from the locations shown on the plans. Any use of the permanent piles and the loads imposed on them shall be shown on the temporary support drawings. Should the Contractor propose to provide piles longer than required for the work in order to support the temporary supports above the elevation of the top of the footing and later cut off the piles at their final elevation, shear devices adequate to transfer all pile reactions into the footing will be required.

Temporary support footings shall be designed to carry the load imposed upon them without exceeding the estimated soil bearing values and anticipated settlements.

Bracing shall be provided as necessary to withstand all imposed loads during erection and removal of any temporary supports. The temporary support drawings shall show provisions for such temporary bracing or methods to be used to conform to these requirements during each phase of erection and removal. Wind loads shall be included in the design of such bracing or methods. Wind loads shall conform to the applicable provisions in Section 51-1.06A(1), "Design Loads," of the Standard Specifications.

The temporary support design calculations shall show a summary of computed stresses in (1) temporary supports, (2) connections between temporary supports and the existing structure, and (3) existing load supporting members. The computed stresses shall include the effect of the jacking sequence. The temporary support design calculations shall also include a lateral stiffness assessment of the temporary support system and shall conform to the design values shown on the plans.

The design of temporary supports will not be approved unless it is based on the use of loads and conditions which are no less severe than those described in "Temporary Support Design Criteria" of these special provisions and on the use of allowable stresses which are no greater than those described in Section 51-1.06A(2), "Design Stresses, Loadings, and Deflections," of the Standard Specifications.

If falsework loads are imposed on temporary supports, the temporary supports shall also satisfy the deflection criteria described in Section 51-1.06A(2), "Design Stresses, Loadings, and Deflections," of the Standard Specifications.

TEMPORARY SUPPORT DESIGN CRITERIA

The temporary supports shall support the initial jacking loads and the minimum temporary support design loads and the minimum lateral design forces shown on the plans. The vertical design loads shall be adjusted for the weight of temporary supports and jacks, construction equipment loads, temporary railing loads, and additional loads imposed by the Contractor's operations. The construction equipment loads shall be the actual weight of the construction equipment but in no case shall be less than 20 psf of deck surface area of the frame involved. A frame is defined as the portion of the bridge between expansion joints.

The existing structure shall be mechanically connected to the temporary supports. The temporary supports shall be mechanically connected to their foundations. The mechanical connections shall be capable of resisting the lateral temporary support design forces. Friction forces developed between the existing structure and temporary supports shall not be used to reduce the lateral forces and shall not be considered as an effective mechanical connection. The mechanical connections shall be designed to tolerate adjustments to the temporary support frame throughout the use of the temporary supports.

If the concrete is to be prestressed, the temporary supports shall be designed to support any increased or readjusted loads caused by the prestressing forces.

Manufactured Assemblies

Manufactured assemblies shall conform to the provisions in Section 51-1.06A(2), "Design Stresses, Loadings, and Deflections," of the Standard Specifications and these special provisions.

Each jack shall be equipped with either a pressure gage or a load cell for determining the jacking force. Pressure gages shall have an accurately reading dial at least 6 inches in diameter. Each jack shall be calibrated by a private laboratory approved by the Transportation Laboratory within 6 months prior to use and after each repair. Each jack and its gage shall be calibrated as a unit with the cylinder extension in the approximate position that it will be at final jacking force and shall be accompanied by a certified calibration chart. Load cells shall be calibrated and provided with an indicator by which the jacking force is determined.

SPECIAL LOCATIONS

Attention is directed to Section 51-1.06A(3) "Special Locations," of the Standard Specifications. All reference to falsework in this section shall also apply to temporary supports.

TEMPORARY SUPPORT CONSTRUCTION

Attention is directed to paragraphs 1 through 7 of Section 51-1.06B, "Falsework Construction," of the Standard Specifications. All reference to falsework in these paragraphs shall also apply to temporary supports.

Welding, welder qualification, and inspection of welding for all steel members shall conform to the requirements of AWS D1.1. Prior to proceeding with bridge removal, an engineer for the Contractor who is registered as a Civil Engineer in the State of California shall inspect the temporary supports, including jacking and displacement monitoring systems, for conformity with the working drawings. The Contractor's registered engineer shall certify in writing that the temporary supports, including jacking and displacement monitoring systems, conform to the working drawings, and that the material and workmanship are satisfactory for the purpose intended. A copy of this certification shall be available at the site of the work at all times.

The Contractor's registered engineer shall be present at the bridge site at all times when jacking operations or adjustments are in progress and when bridge removal operations are in progress. The Contractor's registered engineer shall inspect the jacking and removal operation and report in writing on a daily basis the progress of the operation and the status of the remaining structure. A copy of the daily report shall be available at the site of the work at all times. Should an unplanned event occur, the Contractor's registered engineer shall submit immediately to the Engineer for approval, the procedure or proposed operation to correct or remedy the occurrence.

The Contractor shall perform an initial survey as part of the displacement monitoring system to record the location of the existing structure prior to the commencement of any work. Two copies of the survey shall be signed by an engineer, who is registered as a Civil Engineer in the State of California, and submitted to the Engineer.

Vandal-resistant displacement monitoring equipment shall be provided and maintained. Vertical and horizontal displacements of the temporary supports and the existing structure shall be monitored continuously during jacking operations and shall be accurately measured and recorded at least weekly during removal and reconstruction work. As a minimum, elevations shall be taken prior to the start of jacking operations, immediately after jacking is complete, after bridge removal is complete, before connecting the retrofitted superstructure to the substructure, and after the temporary supports have been removed. As a minimum, the existing structure shall be monitored at the bent and at mid span of both adjoining spans. Control points at each location shall be located near the center and at both edges of the superstructure. The records of vertical and horizontal displacement shall be signed by an engineer who is registered as a Civil Engineer in the State of California and available to the Engineer at the jobsite during normal working hours, and a copy of the record shall be delivered to the Engineer at the completion of reconstructing each bent.

A force equal to the initial jacking load or the dead load shown on the plans shall be applied to the structure by the temporary support system and held until all initial compression and settlement of the system is completed before bridge removal work at the location being supported is begun.

Jacking operations shall be carefully controlled and monitored to ensure that the jacking loads are applied simultaneously to prevent distortion and excessive stresses that would damage the structure. The superstructure shall be jacked as necessary to maintain the total vertical displacements at control points to less than 1/4 inch from the elevations recorded prior to jacking or as modified by the Engineer.

Should unanticipated displacements, cracking or other damage occur, the construction shall be discontinued until corrective measures satisfactory to the Engineer are performed. Damage to the structure as a result of the Contractor's operations shall be repaired by the Contractor in conformance with the provisions in Section 7-1.11, "Preservation of Property," of the Standard Specifications.

Following completion of the reconstruction, the monitored control points shall not deviate from the vertical position by more than 1/4 inch from the initial survey elevations or the elevations as modified by the Engineer.

REMOVING TEMPORARY SUPPORTS

Attention is directed to Section 51-1.06C, "Removing Falsework," of the Standard Specifications. All references to falsework in this section shall also apply to temporary supports.

Attachments shall be removed from the existing structure and concrete surfaces restored to original conditions, except where permanent alterations are shown on the plans.

PAYMENT

The contract lump sum price paid for temporary supports shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in designing, constructing, maintaining, and removing the temporary supports, including jacking the existing structure and monitoring displacements, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.13 TEMPORARY PEDESTRIAN SIDEWALK

Temporary pedestrian sidewalk shall consist of constructing (attaching to the existing bridge, Bridge No. 55-0229), maintaining, and removing the temporary pedestrian sidewalk as shown on the plans and in accordance with these special provisions.

Attention is directed to "Order of Work" of these special provisions.

The temporary pedestrian sidewalk shall be constructed and opened to public prior to start of Stage 1 construction of Route 74/5 Separation (Bridge No. 55-1104), and shall remain in place and be maintained by the Contractor until the Stage 1 construction is complete.

Structural steel of temporary pedestrian sidewalk shall conform to the provisions in Section 55-2, "Materials," of the Standard Specifications.

Timber of temporary pedestrian sidewalk shall conform to the provisions in Section 57, "Timber Structures," of the Standard Specifications.

Chain link fence of temporary pedestrian sidewalk shall conform to the provisions in Section 80-4, "Chain Link Fence," of the Standard Specifications, except that chain link fence fabric shall be 1-inch mesh.

Resin capsule anchors shall conform to Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

Temporary pedestrian sidewalk inspection performed by the Engineer will in no way relieve the Contractor of full responsibility for the temporary pedestrian sidewalk.

MAINTENANCE

The Contractor shall perform the following maintenance inspections of the temporary pedestrian sidewalk:

- A. Check all pedestrian sidewalk to existing bridge bolt assemblies, Re-torque if required.
- B. Check all other connections. Re-torque if required.

Inspection shall be performed at 30 days, 3 months, 6 months, and 1 year after opening of the temporary pedestrian sidewalk to public traffic. There after semi annual inspection shall be performed.

The Contractor shall report in writing the results of the inspections of the temporary pedestrian sidewalk noting all deficiencies and their locations. Two copies of this report shall be signed by an engineer who is registered as a Civil Engineer in the State of California, and submitted to the Engineer within two working days of each inspection. A copy of the report(s) shall be available at the site of the work at all times.

Deficiencies will be corrected by the Contractor.

REMOVAL OF TEMPORARY PEDESTRIAN SIDEWALK

Removing temporary pedestrian sidewalk shall conform to the provisions in Section 15-4, "Bridge Removal," of the Standard Specifications and these special provisions.

Removed materials shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

The Contractor shall submit a complete temporary pedestrian sidewalk removal plan to the Engineer, detailing procedures, sequences, and all features required to perform the removal in a safe and controlled manner.

The temporary pedestrian sidewalk removal plan shall include, but not be limited to the following:

- A. The removal sequence, including staging of removal operations.
- B. Equipment locations on the structure during removal operations.
- C. Temporary support shoring or temporary bracing, if required.
- D. Locations where work is to be performed over traffic.
- E. Details, locations, and types of protective covers to be used.
- F. Measures to assure that people, property, utilities, and improvements will not be endangered.
- G. Details and measures for preventing material, equipment, and debris from falling onto public traffic.

The Contractor shall submit working drawings, with design calculations, to the Engineer for the proposed temporary pedestrian sidewalk removal plan, and the removal plan shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California. The design calculations shall be adequate to demonstrate the stability of the pedestrian sidewalk during all stages of the removal operations. Calculations shall be provided for each stage of temporary pedestrian sidewalk removal and shall include dead and live load values assumed in the design of protective covers.

Temporary support shoring, temporary bracing, and protective covers, as required, shall be designed and constructed in conformance with the provisions in Section 51-1.06, "Falsework," of the Standard Specifications and these special provisions.

The temporary pedestrian sidewalk removal plan shall conform to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The number of sets of drawings, design calculations, the time for reviewing temporary pedestrian sidewalk removal plans shall be the same as specified for falsework working drawings in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Temporary pedestrian sidewalk will be paid for on a lump sum basis.

The contract lump sum price paid for temporary pedestrian sidewalk shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing, constructing (attaching to the existing bridge), maintaining, and removing the temporary pedestrian sidewalk, complete in place, including furnishing and installing chain link fence, maintenance inspection and maintenance repairs of temporary pedestrian sidewalk, and all the submittals, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.14 COOPERATION

It is anticipated that work by another contractor may be in progress adjacent to or within the limits of this project during progress of the work on this contract. The following table lists contracts anticipated to be in progress during this contract.

Contract No.	Co-Rte-PM	Location	Type of Work
12-0E5704	Ora-5-8.5/9.4	Camino Capistrano	Auxiliary lane widening
12-0L2804	Ora-5-8.8	San Juan Capistrano	Widening of San Juan Creek Road
12-0J4304	Ora-74-0.0	San Juan Capistrano	Cold Plane and Overlay
12-0M2404	Ora-74-1.1/2.0	San Juan Capistrano	Rubberized Asphalt Overlay
12-0L7604	Ora-05-6.76	Camino Capistrano	Methacrylate bridge deck & joint seal

Comply with Section 7-1.14, "Cooperation," of the Standard Specifications.

10-1.15 PROGRESS SCHEDULE (CRITICAL PATH METHOD)

SUMMARY

Comply with Section 8-1.04, "Progress Schedule," of the Standard Specifications except you must use computer software to prepare the schedule.

You are responsible for assuring that all activity sequences are logical and that each schedule shows a coordinated plan for complete performance of the work.

DEFINITIONS

contract completion date: Current extended date for completion of the contract shown on the Weekly Statement of Working Days furnished by the Engineer as specified in Section 8-1.06, "Time of Completion," of the Standard Specifications.

data date: Day after the date through which a schedule is current. Everything occurring earlier than the data date is as-built and everything on or after the data date is planned.

early completion time: Difference in time between an early scheduled completion date and the contract completion date.

float: Difference between the earliest and latest allowable start or finish times for an activity.

milestone: Event activity that has zero duration and is typically used to represent the beginning or end of a certain stage of the project.

narrative report: Document submitted with each schedule that discusses topics related to project progress and scheduling.

near critical path: Chain of activities with total float exceeding that of the critical path but having no more than 10 working days of total float.

State-owned float activity: Activity documenting time saved on the critical path by actions of the State. It is the last activity prior to the scheduled completion date.

time impact analysis: Schedule and narrative report developed specifically to demonstrate what effect a proposed change or delay has on the current scheduled completion date.

time-scaled network diagram: Graphic depiction of a CPM schedule comprised of activity bars with relationships for each activity represented by arrows. The tail of each arrow connects to the activity bar for the predecessor and points to the successor.

total float: Amount of time that an activity or chain of activities can be delayed before extending the scheduled completion date.

GENERAL REQUIREMENTS

Submit baseline, monthly updated, and final updated schedules, each consistent in all respects with the time and order of work requirements of the contract. Perform work in the sequence indicated on the current accepted schedule.

Each schedule must show:

- 1. Calculations using the critical path method to determine controlling activities.
- 2. Duration activities less than 20 working days.

- 3. At least 50 but not more than 500 activities, unless authorized. The number of activities must be sufficient to assure adequate planning of the project, to permit monitoring and evaluation of progress, and to do an analysis of time impacts.
- 4. Each required constraint. Constraints other than those required by the special provisions may be included only if authorized.
- 5. State-owned float as the predecessor activity to the scheduled completion date.
- Activities with identification codes for responsibility, stage, work shifts, location, and contract pay item numbers.

You may show early completion time on any schedule provided that the requirements of the contract are met. Early completion time is considered a resource for your exclusive use. You may increase early completion time by improving production, reallocating resources to be more efficient, performing sequential activities concurrently, or by completing activities earlier than planned. You may also submit for approval a VECP as specified in Section 4-1.035B, "Value Engineering Change Proposal." of the Standard Specifications that will reduce time of construction.

You may show a scheduled completion date that is later than the contract completion date on an update schedule, after the baseline schedule is accepted. Provide an explanation for a late scheduled completion date in the narrative report that is included with the schedule.

State-owned float is considered a resource for the exclusive use of the State. The Engineer may accrue State-owned float by the early completion of review of any type of required submittal when it saves time on the critical path. Prepare a time impact analysis, when requested by the Engineer, to determine the effect of the action as specified in "Time Impact Analysis." The Engineer documents State-owned float by directing you to update the State-owned float activity on the next updated schedule. Include a log of the action on the State-owned float activity and include a discussion of the action in the narrative report. The Engineer may use State-owned float to mitigate past, present, or future State delays by offsetting potential time extensions for contract change orders.

The Engineer may adjust contract working days for ordered changes that affect the scheduled completion date as specified in Section 4-1.03, "Changes," of the Standard Specifications. Prepare a time impact analysis to determine the effect of the change as specified in "Time Impact Analysis" and include the impacts acceptable to the Engineer in the next updated schedule. Changes that do not affect the controlling operation on the critical path will not be considered as the basis for a time adjustment. Changes that do affect the controlling operation on the critical path will be considered by the Engineer in decreasing time or granting an extension of time for completion of the contract. Time extensions will only be granted if the total float is absorbed and the scheduled completion date is delayed 1 or more working days because of the ordered change.

The Engineer's review and acceptance of schedules does not waive any contract requirements and does not relieve you of any obligation or responsibility for submitting complete and accurate information. Correct rejected schedules and resubmit them within 7 days of notification by the Engineer, at which time a new review period of 7 days will begin.

Errors or omissions on schedules do not relieve you from finishing all work within the time limit specified for completion of the contract. If, after a schedule has been accepted by the Engineer, either you or the Engineer discover that any aspect of the schedule has an error or omission, you must correct it on the next updated schedule.

COMPUTER SOFTWARE

Submit a description of your proposed schedule software for authorization. All software must be compatible with the current version of the Windows operating system in use by the Engineer. The schedule software must include the latest version of Oracle Primavera P6 Professional Project Management for Windows, or equivalent.

If schedule software equivalent to P6 is proposed, it must be capable of:

- 1. Generating files that can be imported into P6
- 2. Comparing 2 schedules and providing reports of changes in activity ID, activity description, constraints, calendar assignments, durations, and logic ties

NETWORK DIAGRAMS, REPORTS, AND DATA

Include the following with each schedule submittal:

- 1. 2 sets of originally plotted, time-scaled network diagrams
- 2. 2 copies of a narrative report
- 3. 1 read-only compact disk or floppy diskette containing the schedule data

The time-scaled network diagrams must conform to the following:

- 1. Show a continuous flow of information from left to right
- 2. Be based on early start and early finish dates of activities
- 3. Clearly show the primary paths of criticality using graphical presentation
- 4. Be prepared on 34" x 44"
- 5. Include a title block and a timeline on each page

The narrative report must be organized in the following sequence with all applicable documents included:

- 1. Transmittal letter
- 2. Work completed during the period
- 3. Identification of unusual conditions or restrictions regarding labor, equipment or material; including multiple shifts, 6-day work weeks, specified overtime or work at times other than regular days or hours
- 4. Description of the current critical path
- 5. Changes to the critical path and scheduled completion date since the last schedule submittal
- 6. Description of problem areas
- 7. Current and anticipated delays:
 - 7.1. Cause of delay
 - 7.2. Impact of delay on other activities, milestones, and completion dates
 - 7.3. Corrective action and schedule adjustments to correct the delay
- 8. Pending items and status thereof:
 - 8.1. Permits
 - 8.2. Change orders
 - 8.3. Time adjustments
 - 8.4. Noncompliance notices
- 9. Reasons for an early or late scheduled completion date in comparison to the contract completion date

Schedule submittals will only be considered complete when all documents and data have been submitted as described above.

PRECONSTRUCTION SCHEDULING CONFERENCE

Schedule a preconstruction scheduling conference with your project manager and the Engineer within 15 days after contract approval. The Engineer will conduct the meeting and review the requirements of this section with you.

Submit a general time-scaled logic diagram displaying the major activities and sequence of planned operations and be prepared to discuss the proposed work plan and schedule methodology that comply with the requirements of this section. If you propose deviations to the construction staging, then the general time-scaled logic diagram must also display the deviations and resulting time impacts. Be prepared to discuss the proposal.

At this meeting, also submit the alphanumeric coding structure and activity identification system for labeling work activities. To easily identify relationships, each activity description must indicate its associated scope or location of work by including such terms as quantity of material, type of work, bridge number, station to station location, side of highway (such as left, right, northbound, southbound), lane number, shoulder, ramp name, ramp line descriptor, or mainline.

The Engineer reviews the logic diagram, coding structure, and activity identification system, and provide any required baseline schedule changes to you for implementation.

BASELINE SCHEDULE

Beginning the week following the preconstruction scheduling conference, meet with the Engineer weekly to discuss schedule development and resolve schedule issues until the baseline schedule is accepted.

Submit a baseline schedule within 20 days of contract approval. Allow 20 days for the Engineer's review after the baseline schedule and all support data are submitted.

The baseline schedule must include the entire scope of work and how you plan to complete all work contemplated. The baseline schedule must show the activities that define the critical path. Multiple critical paths and near-critical paths must be kept to a minimum. A total of not more than 50 percent of the baseline schedule activities must be critical or near critical, unless otherwise authorized.

The baseline schedule must not extend beyond the number of contract working days. The baseline schedule must have a data date of contract approval. If you start work before contract approval, the baseline schedule must have a data date of the 1st day you performed work at the job site.

If you submit an early completion baseline schedule that shows contract completion in less than 85 percent of the contract working days, the baseline schedule must be supplemented with resource allocations for every task activity and include time-scaled resource histograms. The resource allocations must be shown to a level of detail that facilitates report generation based on labor crafts and equipment classes for you and your subcontractors. Use average composite crews to display the labor loading of on-site construction activities. Optimize and level labor to reflect a reasonable plan for accomplishing the work of the contract and to assure that resources are not duplicated in concurrent activities. The time-scaled resource histograms must show labor crafts and equipment classes to be used. The Engineer may review the baseline schedule activity resource allocations using Means Productivity Standards or equivalent to determine if the schedule is practicable.

UPDATED SCHEDULE

Submit an updated schedule and meet with the Engineer to review contract progress, on or before the 1st day of each month, beginning 1 month after the baseline schedule is accepted. Allow 15 days for the Engineer's review after the updated schedule and all support data are submitted, except that the review period will not start until the previous month's required schedule is accepted. Updated schedules that are not accepted or rejected within the review period are considered accepted by the Engineer.

The updated schedule must have a data date of the 21st day of the month or other date established by the Engineer. The updated schedule must show the status of work actually completed to date and the work yet to be performed as planned. Actual activity start dates, percent complete, and finish dates must be shown as applicable. Durations for work that has been completed must be shown on the updated schedule as the work actually occurred, including Engineer submittal review and your resubmittal times.

You may include modifications such as adding or deleting activities or changing activity constraints, durations, or logic that do not (1) alter the critical path(s) or near critical path(s) or (2) extend the scheduled completion date compared to that shown on the current accepted schedule. Justify in writing the reasons for any changes to planned work. If any proposed changes in planned work will result in (1) or (2) above, then submit a time impact analysis as specified in this section.

TIME IMPACT ANALYSIS

Submit a written time impact analysis (TIA) with each request for adjustment of contract time, or when you or the Engineer consider that an approved or anticipated change may impact the critical path or contract progress.

The TIA must illustrate the impacts of each change or delay on the current scheduled completion date or internal milestone, as appropriate. The analysis must use the accepted schedule that has a data date closest to and before the event. If the Engineer determines that the accepted schedule used does not appropriately represent the conditions before the event, the accepted schedule must be updated to the day before the event being analyzed. The TIA must include an impact schedule developed from incorporating the event into the accepted schedule by adding or deleting activities, or by changing durations or logic of existing activities. If the impact schedule shows that incorporating the event modifies the critical path and scheduled completion date of the accepted schedule, the difference between scheduled completion dates of the two schedules must be equal to the adjustment of contract time. The Engineer may construct and use an appropriate project schedule or other recognized method to determine adjustments in contract time until you provide the TIA.

Submit 2 copies of your TIA within 20 days of receiving a written request for a TIA from the Engineer. Allow the Engineer 15 days after receipt to review the submitted TIA. All approved TIA schedule changes must be shown on the next updated schedule.

If a TIA you submit is rejected, meet with the Engineer to discuss and resolve issues related to the TIA. If clarification is still needed, you are allowed 15 days to submit a protest as specified in Section 5-1.011, "Protests," of the Standard Specifications. If agreement is not reached, you are allowed 5 days from the date you receive the Engineer's response to your protest to submit an Initial Potential Claim Record as specified in Section 5-1.146B, "Initial Potential Claim Record," of the Standard Specifications. Only show actual as-built work, not unapproved changes related to the TIA, in subsequent updated schedules. If agreement is reached at a later date, approved TIA schedule changes must be shown on the next updated schedule. The Engineer withholds remaining payment on the schedule bid item if a TIA is requested and not submitted within 20 days. The schedule item payment resumes on the next estimate after the requested TIA is submitted. No other contract payment is withheld regarding TIA submittals.

FINAL UPDATED SCHEDULE

Submit a final update, as-built schedule with actual start and finish dates for the activities, within 30 days after completion of contract work. Provide a written certificate with this submittal signed by your project manager or an officer of the company stating, "To my knowledge and belief, the enclosed final update schedule reflects the actual start and finish dates of the actual activities for the project contained herein." An officer of the company may delegate in writing the authority to sign the certificate to a responsible manager.

PAYMENT

Progress schedule (critical path method) will be paid for at a lump sum price. The contract lump sum price paid for progress schedule (critical path method) includes full compensation for furnishing all labor, material, tools, equipment, and incidentals, and for doing all the work involved in preparing, furnishing, and updating schedules, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Payments for the progress schedule (critical path method) bid item will be made progressively as follows:

- 1. A total of 25 percent of the item amount will be paid upon achieving all of the following:
 - 1.1. Completion of 5 percent of all contract item work.
 - 1.2. Acceptance of all schedules and approval of all TIAs required to the time when 5 percent of all contract item work is complete.
- 2. A total of 50 percent of the item amount will be paid upon completion of 25 percent of all contract item work and acceptance of all schedules and approval of all TIAs required to the time when 25 percent of all contract item work is complete.
- 3. A total of 75 percent of the item amount will be paid upon completion of 50 percent of all contract item work and acceptance of all schedules and approval of all TIAs required to the time when 50 percent of all contract item work is complete.
- 4. A total of 100 percent of the item amount will be paid upon completion of all contract item work, acceptance of all schedules and approval of all TIAs required to the time when all contract item work is complete, and submittal of the certified final update schedule.

If you fail to complete any of the work or provide any of the schedules required by this section, the Engineer makes an adjustment in compensation as specified in Section 4-1.03C, "Changes in Character of Work," of the Standard Specifications for the work not performed. Adjustments in compensation for schedules will not be made for any increased or decreased work ordered by the Engineer in submitting schedules.

10-1.16 TIME-RELATED OVERHEAD

The Contractor will be compensated for time-related overhead as described below and in conformance with "Force Account Payment" of these special provisions. The Contractor will not be compensated for time-related overhead for delays to the controlling operations caused by the Engineer that occur prior to the first working day, but will be compensated for actual overhead costs incurred, as determined by an independent Certified Public Accountant audit examination and report.

Attention is directed to "Beginning of Work, Time of Completion and Liquidated Damages," "Force Account Payment," and "Progress Schedule (Critical Path Method)" of these special provisions.

The provisions in Section 9-1.08D(2)(b), "Overhead Claims," of the Standard Specifications shall not apply.

Time-related overhead shall consist of those overhead costs, including field and home office overhead, that are in proportion to the time required to complete the work. Time-related overhead shall not include costs that are not related to time, including but not limited to, mobilization, licenses, permits, and other charges incurred only once during the contract. Time-related overhead shall not apply to subcontractors of any tier, suppliers, fabricators, manufacturers, or other parties associated with the Contractor.

Field office overhead expenses include time-related costs associated with the normal and recurring operations of the construction project, and shall not include costs directly attributable to the work of the contract. Time-related costs of field office overhead include, but are not limited to, salaries, benefits, and equipment costs of project managers, general superintendents, field office managers and other field office staff assigned to the project, and rent, utilities, maintenance, security, supplies, and equipment costs of the project field office.

Home office overhead or general and administrative expenses refer to the fixed costs of operating the Contractor's business. These costs include, but are not limited to, general administration, insurance, personnel and subcontract administration, purchasing, accounting, and project engineering and estimating. Home office overhead costs shall exclude expenses specifically related to other contracts or other businesses of the Contractor, equipment coordination, material deliveries, and consultant and legal fees.

The quantity of time-related overhead associated with a reduction in contract time for an accepted VECP under Section 4-1.035B, "Value Engineering Change Proposal," of the Standard Specifications shall be considered a construction cost attributable to the resultant estimated net savings due to the cost reduction incentive.

If the final increased quantity of time-related overhead exceeds 149 percent of the number of working days specified in the verified Bid Item List, the Contractor shall, within 60 days of the Engineer's written request, submit to the Engineer an audit examination and report performed by an independent Certified Public Accountant of the Contractor's actual overhead costs. The audit examination and report shall depict the Contractor's project and company-wide financial records and shall specify the actual overall average daily rates for both field and home office overhead for the entire duration of the project, and whether the costs have been properly allocated. The rates of field and home office overhead shall exclude unallowable costs as determined in the Federal Acquisition Regulations, 48 CFR, Chapter 1, Part 31.

Independent Certified Public Accountant's audit examinations shall be performed in conformance with the requirements of the American Institute of Certified Public Accountants Attestation Standards. Audit examinations and reports shall determine if the rates of field office overhead and home office overhead are:

- A. Allowable in conformance with the requirements of the Federal Acquisition Regulations, 48 CFR, Chapter 1, Part 31.
- B. Adequately supported by reliable documentation.
- C. Related solely to the project under examination.

Within 20 days of receipt of the Engineer's written request, the Contractor shall make its financial records available for audit by the State for the purpose of verifying the actual rate of time-related overhead specified in the audit submitted by the Contractor. The actual rate of time-related overhead specified in the audit, submitted by the Contractor, will be subject to approval by the Engineer.

If the Engineer requests the independent Certified Public Accountant audit, or if it is requested in writing by the Contractor, the contract item payment rate for time-related overhead, in excess of 149 percent of the number of working days specified in the verified Bid Item List, will be adjusted to reflect the actual rate.

The cost of performing an independent Certified Public Accountant audit examination and submitting the report, requested by the Engineer, will be borne equally by the State and the Contractor. The division of the cost will be made by determining the cost of providing an audit examination and report in conformance with the provisions of Section 9-1.04, "Extra Work Performed by Specialists," of the Standard Specifications, and paying to the Contractor one-half of that cost. The cost of performing an audit examination and submitting the independent Certified Public Accountant audit report for overhead claims other than for the purpose of verifying the actual rate of time-related overhead shall be entirely borne by the Contractor. The cost of performing an audit examination and submitting the independent Certified Public Accountant audit report to verify actual overhead costs incurred prior to the first working day shall be entirely borne by the Contractor.

The quantity of time-related overhead to be paid will be measured by the working day, designated in the verified Bid Item List as WDAY. The estimated number of working days is the number of working days, excluding days for plant establishment, as specified in "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions. The quantity of time-related overhead will be increased or decreased only as a result of suspensions or adjustments of contract time which revise the current contract completion date, and which satisfy any of the following criteria:

- A. Suspensions of work ordered in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications, except:
 - 1. Suspensions ordered due to weather conditions being unfavorable for the suitable prosecution of the controlling operation or operations.
 - 2. Suspensions ordered due to the failure on the part of the Contractor to carry out orders given, or to perform the provisions of the contract.
 - 3. Suspensions ordered due to factors beyond the control of and not caused by the State or the Contractor, for which the Contractor is granted non-working days.
 - 4. Other suspensions that mutually benefit the State and the Contractor.
- B. Adjustments of contract time granted by the State set forth in approved contract change orders, in conformance with the provisions in Section 4-1.03, "Changes," of the Standard Specifications.

A delay to the controlling operation may be concurrent and any of the following:

- 1. Nonexcusable: A nonexcusable delay is caused by the fault, nonperformance, or deficiency of the Contractor, subcontractors of any tier, or suppliers. The days during a nonexcusable delay are working days. No time or payment adjustment for a nonexcusable delay is allowed.
- 2. Excusable: An excusable delay is caused by factors beyond the control and without the fault of the State or the Contractor. The days during an excusable delay are non-working days.
- Compensable: A compensable delay is caused solely by the fault, deficiency, error, omission, or change made by the State. A time adjustment and a payment adjustment for the actual cost without markup or profit are allowed.

A concurrent delay occurs when 2 or more separate delays overlap partially or entirely. A nonexcusable delay concurrent with either an excusable or a compensable delay is a nonexcusable delay. An excusable delay concurrent with a compensable delay is an excusable delay.

The quantity of time-related overhead is only adjusted as a result of a compensable delay and is not adjusted as a result of either a nonexcusable or an excusable delay.

An approved time impact analysis submitted as specified in "Progress Schedule (Critical Path Method)" of these special provisions is used to determine the type and duration of a delay.

In the event an early completion progress schedule, as defined in "Progress Schedule (Critical Path Method)" of these special provisions, is submitted by the Contractor and approved by the Engineer, the amount of time-related overhead eligible for payment will be based on the total number of working days for the project, in conformance with the provisions in "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions, rather than the Contractor's early completion progress schedule.

The contract price paid per working day for time-related overhead shall include full compensation for time-related overhead, including the Contractor's share of costs of the independent Certified Public Accountant audit of overhead costs requested by the Engineer, as specified in these special provisions, and as directed by the Engineer.

The provisions in Sections 4-1.03B, "Increased or Decreased Quantities," and 4-1.03C, "Changes in Character of the Work," of the Standard Specifications shall not apply to the contract item of time-related overhead.

Full compensation for additional overhead costs involved in incentive and disincentive provisions to satisfy internal milestone or multiple calendar requirements shall be considered as included in the contract items of work involved and no additional compensation will be allowed therefor.

Full compensation for additional overhead costs incurred during days of inclement weather when the contract work is extended into additional construction seasons due to delays caused by the State shall be considered as included in the time-related overhead paid during the contract working days, and no additional compensation will be allowed therefor.

Full compensation for additional overhead costs involved in performing additional contract item work that is not a controlling operation shall be considered as included in the contract items of work involved and no additional compensation will be allowed therefor.

Full compensation for overhead, other than time-related overhead measured and paid for as specified above, and other than overhead costs included in the markups specified in "Force Account Payment" of these special provisions, shall be considered as included in the various items of work and no additional compensation will be allowed therefor.

Overhead costs incurred by subcontractors of any tier, suppliers, fabricators, manufacturers, and other parties associated with the Contractor shall be considered as included in the various items of work and as specified in Section 9-1.03, "Force Account Payment," of the Standard Specifications.

For the purpose of making progress payments pursuant to the provisions in Section 9-1.07, "Progress Payments," of the Standard Specifications, the number of working days to be paid for time-related overhead in each monthly partial payment will be the number of working days, specified above to be measured for payment that occurred during that monthly estimate period, including compensable suspensions and right of way delays. Working days granted by contract change order due to extra work or changes in character of the work, will be paid for upon completion of the contract. The amount earned per working day for time-related overhead shall be the lesser of the following amounts:

- A. The contract item price.
- B. Twenty percent of the original total contract amount divided by the number of working days specified in "Beginning of Work, Time of Completion and Liquidated Damages," of these special provisions.

After the work has been completed, except plant establishment work, as provided in Section 20-4.08, "Plant Establishment Work," of the Standard Specifications, the amount of the total contract item price for time-related overhead not yet paid will be included for payment in the first estimate made after completion of roadway construction work, in conformance with the provisions in Section 9-1.07, "Progress Payments," of the Standard Specifications.

10-1.17 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES

Flagging, signs, and temporary traffic control devices furnished, installed, maintained, and removed when no longer required shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Category 1 temporary traffic control devices are defined as small and lightweight (less than 100 pounds) devices. These devices shall be certified as crashworthy by crash testing, crash testing of similar devices, or years of demonstrable safe performance. Category 1 temporary traffic control devices include traffic cones, plastic drums, portable delineators, and channelizers.

If requested by the Engineer, the Contractor shall provide written self-certification for crashworthiness of Category 1 temporary traffic control devices at least 5 business days before beginning any work using the devices or within 2 business days after the request if the devices are already in use. Self-certification shall be provided by the manufacturer or Contractor and shall include the following:

- A. Date,
- B. Federal Aid number (if applicable),
- C. Contract number, district, county, route and post mile of project limits,
- D. Company name of certifying vendor, street address, city, state and zip code,
- E. Printed name, signature and title of certifying person; and
- F. Category 1 temporary traffic control devices that will be used on the project.

The Contractor may obtain a standard form for self-certification from the Engineer.

Category 2 temporary traffic control devices are defined as small and lightweight (less than 100 pounds) devices that are not expected to produce significant vehicular velocity change, but may cause potential harm to impacting vehicles. Category 2 temporary traffic control devices include barricades and portable sign supports.

Category 2 temporary traffic control devices shall be on the Federal Highway Administration's (FHWA) list of Acceptable Crashworthy Category 2 Hardware for Work Zones. This list is maintained by FHWA and can be located at:

http://safety.fhwa.dot.gov/roadway_dept/policy_guide/road_hardware/listing.cfm?code=workzone

The Department also maintains this list at:

http://www.dot.ca.gov/hq/traffops/signtech/signdel/pdf/Category2.pdf

Category 2 temporary traffic control devices that have not received FHWA acceptance shall not be used. Category 2 temporary traffic control devices in use that have received FHWA acceptance shall be labeled with the FHWA acceptance letter number and the name of the manufacturer. The label shall be readable and permanently affixed by the manufacturer. Category 2 temporary traffic control devices without a label shall not be used.

If requested by the Engineer, the Contractor shall provide a written list of Category 2 temporary traffic control devices to be used on the project at least 5 business days before beginning any work using the devices or within 2 business days after the request if the devices are already in use.

Category 3 temporary traffic control devices consist of temporary traffic-handling equipment and devices that weigh 100 pounds or more and are expected to produce significant vehicular velocity change to impacting vehicles. Temporary traffic-handling equipment and devices include crash cushions, truck-mounted attenuators, temporary railing, temporary barrier, and end treatments for temporary railing and barrier.

Type III barricades may be used as sign supports if the barricades have been successfully crash tested, meeting the NCHRP Report 350 criteria, as one unit with a construction area sign attached.

Category 3 temporary traffic control devices shall be shown on the plans or on the Department's Highway Safety Features list. This list is maintained by the Division of Engineering Services and can be found at:

http://www.dot.ca.gov/hq/esc/approved_products_list/

Category 3 temporary traffic control devices that are not shown on the plans or not listed on the Department's Highway Safety Features list shall not be used.

Full compensation for providing self-certification for crashworthiness of Category 1 temporary traffic control devices and for providing a list of Category 2 temporary traffic control devices used on the project shall be considered as included in the prices paid for the various items of work requiring the use of the Category 1 or Category 2 temporary traffic control devices and no additional compensation will be allowed therefor.

10-1.18 CONSTRUCTION AREA SIGNS

Construction area signs for temporary traffic control shall be furnished, installed, maintained, and removed when no longer required in conformance with the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Attention is directed to "Furnish Sign" of these special provisions.

Attention is directed to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Type II retroreflective sheeting shall not be used on construction area sign panels. Type III, IV, VII, VIII, or IX retroreflective sheeting shall be used for stationary mounted construction area sign panels.

Attention is directed to "Construction Project Information Signs" of these special provisions regarding the number and type of construction project information signs to be furnished, erected, maintained, and removed and disposed of.

Unless otherwise shown on the plans or specified in these special provisions, the color of construction area warning and guide signs shall have black legend and border on orange background, except W10-1 or W47(CA) (Highway-Rail Grade Crossing Advance Warning) sign shall have black legend and border on yellow background.

Orange background on construction area signs shall be fluorescent orange.

Repair to construction area sign panels will not be allowed, except when approved by the Engineer. At nighttime under vehicular headlight illumination, sign panels that exhibit irregular luminance, shadowing or dark blotches shall be immediately replaced at the Contractor's expense.

The Contractor shall notify the appropriate regional notification center for operators of subsurface installations at least 2 business days, but not more than 14 days, prior to commencing excavation for construction area sign posts. The regional notification centers include, but are not limited to, the following:

Notification Center	Telephone Number
Underground Service Alert	811

Excavations required to install construction area signs shall be performed by hand methods without the use of power equipment, except that power equipment may be used if it is determined there are no utility facilities in the area of the proposed post holes. The post hole diameter, if backfilled with portland cement concrete, shall be at least 4 inches greater than the longer dimension of the post cross section.

Construction area signs placed within 15 feet from the edge of the travel way shall be mounted on stationary mounted sign supports as specified in "Construction Area Traffic Control Devices" of these special provisions.

The Contractor shall maintain accurate information on construction area signs. Signs that are no longer required shall be immediately covered or removed. Signs that convey inaccurate information shall be immediately replaced or the information shall be corrected. Covers shall be replaced when they no longer cover the signs properly. The Contractor shall immediately restore to the original position and location any sign that is displaced or overturned, from any cause, during the progress of work.

10-1.19 MAINTAINING TRAFFIC

Maintaining traffic shall conform to the provisions in Sections 7-1.08, "Public Convenience," Section 7-1.09, "Public Safety," and Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Closure is defined as the closure of a traffic lane or lanes, including shoulder, ramp or connector lanes, within a single traffic control system.

Closures shall conform to the provisions in "Traffic Control System for Lane Closure" of these special provisions.

At locations where falsework pavement lighting or pedestrian openings through falsework are designated, falsework lighting shall be installed in conformance with the provisions in Section 86-6.11, "Falsework Lighting," of the Standard Specifications.

Openings shall be provided through bridge falsework for the use of public traffic at each location where falsework is constructed over the streets or routes listed in the following table. The type, minimum width, height, and number of openings at each location, and the location and maximum spacing of falsework lighting, if required for each opening, shall conform to the requirements in the table. The width of vehicular openings shall be the clear width between temporary railings or other protective work. The spacing shown for falsework pavement lighting is the maximum distance center to center in feet between fixtures.

Route 74/5 Separation (Br No.: 55-1104) Over North-bound I-5

	Number	W	idth	Height
Vehicle Openings	1	67		15
Pedestrian Openings	-	-		-
	Location	l	S	pacing
Falsework Pavement	R and L		40-feet	
Lighting	С		40-fee	et staggered
				1/2

(Width and Height in feet)

(R = Right side of traffic. L = Left side of traffic)

(C = Centered overhead)

Route 74/5 Separation (Br No.: 55-1104) Over South-bound I-5

	Number	Width	Height
Vehicle Openings	1	73	15
Pedestrian Openings	-	-	-
	Location	1 5	Spacing
Falsework Pavement	R and L	L 40-feet	
Lighting	C	40-fe	et staggered
			1/2

(Width and Height in feet)

(R = Right side of traffic. L = Left side of traffic)

(C = Centered overhead)

Route 74/5 Separation (Br No.: 55-1104) Over North bound loop on ramp

	Number	Width	Height
Vehicle Openings	1	11	15
Pedestrian Openings	-	-	-
	Location	ı S	Spacing
Falsework Pavement Lighting	R		30-feet

(Width and Height in feet)

(R = Right side of traffic. L = Left side of traffic)

(C = Centered overhead)

The exact location of openings will be determined by the Engineer.

Work that interferes with public traffic shall be limited to the hours when lane closures are allowed, except for work required under Sections 7-1.08, "Public Convenience," and Section 7-1.09, "Public Safety."

Designated legal holidays are: January 1st, the third Monday in February, the last Monday in May, July 4th, the first Monday in September, November 11th, Thanksgiving Day, and December 25th. When a designated legal holiday falls on a Sunday, the following Monday shall be a designated legal holiday. When November 11th falls on a Saturday, the preceding Friday shall be a designated legal holiday.

The maximum length of a single stationary lane closure shall be 1 miles.

Not more than 1 separate stationary lane closures will be allowed in each direction of travel at one time.

Local authorities shall be notified at least 5 business days before work begins. The Contractor shall cooperate with local authorities to handle traffic through the work area and shall make arrangements to keep the work area clear of parked vehicles.

No work on local streets is allowed between 6 a.m. and 10 a.m. and between 2 p.m. and 6 p.m.

Adjacent ramps, in the same direction of travel, servicing 2 consecutive local streets shall not be closed simultaneously unless directed by the Engineer.

SC6-3(CA) (RAMP CLOSED) sign shall be used to inform motorists of the temporary closing of a connector, entrance ramp or exit ramp for 1 business day.

SC6-4(CA) (RAMP CLOSED) sign shall be used to inform motorists of the temporary closing of a connector, entrance ramp or exit ramp for more than 1 business day.

The SC6-3(CA) or SC6-4(CA) signs shall be installed at least 7 days before closing the connector or ramp, but not more than 15 days before the connector or ramp closure. The Contractor shall notify the Engineer at least 2 business days before installing the SC6-3(CA) or SC6-4(CA) signs.

Accurate information shall be maintained on the SC6-3(CA) or SC6-4(CA) signs. The SC6-3(CA) or SC6-4(CA) signs, when no longer required, shall be immediately covered or removed.

Freeways may be closed only if signed for closing 7 days in advance. The Contractor shall notify the Engineer not less than 5 business days prior to signing the freeway. If the freeway is not closed on the posted day, the closure shall be changed to allow a 3-business-day advance notice before closure.

Freeway closure charts are for the erection and removal of falsework, placement and removal of overhead sign bridges, and other work as approved in writing by the Engineer.

Personal vehicles of the Contractor's employees shall not be parked within the right of way.

When work vehicles or equipment are parked within 6 feet of a traffic lane to perform active construction, the shoulder area shall be closed as shown on the plans.

If minor deviations from the lane requirement charts are required, a written request shall be submitted to the Engineer at least 15 days before the proposed date of the closure. The Engineer may approve the deviations if there is no significant increase in the cost to the State and if the work can be expedited and better serve the public traffic.

When complete freeway, expressway or conventional highway closure is required, only one detour for each direction of travel will be allowed for the following operations: bridge demolition work and false work

Full compensation for furnishing, erecting, maintaining, and removing and disposing of the SC6-3(CA), and SC6-4(CA) signs shall be considered as included in the contract lump sum price paid for construction area signs and no additional compensation will be allowed therefor.

Thu	Fri	Sat	Sun	Mon	Tues	Wed	Thu	d Specia l Fri	Sat	Sun
	Н									10 012
X	XX	XX	xx							
	SD	72.7								
	XX									
		Н								
X	XX	XX	XX							
		SD								
		XX								
			Н							
	X	XX	XX	XX						
			SD							
			XX							
				Н						
	X	XX	XX	XX	XXX					
				SD						
	X	XX	XX	XX	XXX					
					H					
				X	XX					
					SD					
				X	XX					
						H				
					X	XX				
						SD				
						XX				
							H			
						X	XX	XX	XX	XX
							SD			
			<u> </u>				XX			
egends										
egenas		lone clas	ure charts							
X				ed way sh	all he one	on for use	by public	traffic at	fter 5 am	
XX				ed way sh					ici Jaili	•
XXX				ed way sh					ntil 11 nn	1
ΛΛΛ	THE TUIL	widili Ol	me navel	cu way si	ian or ope	on for use	by public	uaiiic ui	սաւււթո	1.

I	ree	ewa	ıv/F	Exp			rt N ay I			Red	ruir	·en	ien	ts										
County: Orange							: 5/								[: 9	.3/1	0.0)				_		
Closure Limits:NB & SB Route I-5	wi	thir	ı on	&	off	raı	mps	@	Ro	oute	74	(I-	5/7	4 Ir	iter	cha	ng	e)						
FROM HOUR TO HOUR	24	1	2	_	4	5	6 7	' {	8 9	9 1	0 1	1 1	2 1	3 1	4 1	5 1	6 1	7 1	8 1	92	0 2	1 22	2 23	3 24
Mondays through Thursdays	2	2	2	3	4																	S	4	3
Fridays	2	2	2	3	4																	S	4	3
Saturdays	2	1	1	1	2			4	S	S	S		S	S	S	S	S	S	S	S	S		3	2
Sundays	2	1	1	1	2	2	3	4	S	S	S	S	S	S	S	S	S	S	S	S	S	4	3	2
Legend: 1 Provide at least one through	fre	ewa	ay 1	ane	e op	oen	in d	ire	ctio	on (of t	ravo	el											
2 Provide at least two adjacen						•		•																
3 Provide at least three adjace	nt t	hro	ugh	fre	eew	ay	lane	es c	pe	n ir	ı di	rec	tior	ı of	tra	ivel								
4 Provide at least four adjacer	it th	rou	ıgh	fre	ew	ay l	anes	s o	pen	in	dir	ect	ion	of	trav	vel								
S Shoulder closure permitted	(rig	ht /	lef	t)																				
Work permitted within projection	ect 1	righ	nt of	f wa	ay	whe	ere s	sho	uld	ler (or 1	ane	clo	su	re i	s no	ot r	equ	iire	d.				
REMARKS:																								
							rt N																	
	_						kpre					ure												
County: Orange							: 5/									ΑF								
Closure Limits: NB & SB I-5 main	line	be	twe	en	on	& (off r	am	ps	@	RT	74	(I-	·5/I	RT7	74 I	nte	rch	ang	ge)				
	24	1	2	3 .	4	5	6 7	' {	3 9	9 1	0 1	1 1	2 1	3 1	4 1	5 1	6 1	7 1	8 1	92	02	1 22	2 23	3 24
Mondays through Thursdays																								
Fridays																								
Saturdays	C	C		C																				
Sundays	C	C	C	C	C	C																		
Legend:																								
C Freeway or expressway may	be be	clo	osec	l cc	mp	olete	ely.																	
No complete freeway or exp	res	swa	ау с	los	ure	is	pern	nitt	ted.	•														
REMARKS:																								

G 1.	_		~			ha				_																		
Complete						ion:								_					Λ									=
County: Orange		KOL	ne/	Dir	eci	ion	: K(oute	3/	NB	· «	.SE		P	IVI	: 9	.3/	10.	U									
Closure Limits: 1. SB Route 5 Off-Ramp to Ro 2. NB Route 5 Off-Ramp to Ro																												
FROM HOUR TO HOUR 2	24	1	2	3 4	4	5 (6 7	7 8	3 9	9 1	0 :	11	12	13	3 1	4 1	5 1	6	17	18	19	9 2	0 2	1 2	22	23	2	4
Mondays through Thursdays	C	C	C	C	C																				1		С	
Fridays	C	C																							1	1 (С	
Saturdays	C	C	C	С	С	C	1																		1	. (С	
Sundays	C	С	С	С	C	С	1																		1		С	
Legend:																												
Provide at least one ramp lance Ramp may be closed comple Work permitted within proje	tel	y									-											! .						
REMARKS:																												
Complete	Ra	mp	C	losi		ha Ho				ıp I	∠aı	ne	Re	qu	ir	em	en	ts										
County: Orange		Ro	ute/	Dir	ect	ion	: R	oute	e 5/	/NE	3 &	zSI	3	F	PM	[: 9	.3/	10.	.0									
Closure Limits: 1. SB Route 5 On-Ramp from 2. NB Route 5 On-Ramp from														•														
	24					5		7	8	9 1	0	11	12	1.	3 1	4 1	15	16	17	18	3 19	9 2	0 2	1.	22	23	3 2	4
Mondays through Thursdays	C	C				1	1																		1	1	1	
Fridays	C			C		1	1																			1	1	
Saturdays	C	C	C	C	C	C	C	1	1																1	1	1	
Sundays	C	C	C	C	C	C	C	1	1																-	1	1	
Legend:																												
Provide at least one ramp lance Ramp may be closed completed. Work permitted within projeted. REMARKS:	etel	y																				ıl.						

Co	nv	ent	ior	nal			rt I vav			Re	equ	ire	em	en	ts												
County: Orange	_	Rot					_				_			_		I : (0.0	/O.:	2								
Closure Limits: WB & EB Route 74	- W	ithi	n o	n &	c of	f ra	amp	os (@ <u>I</u> -	-5/7	74]	Inte	erc	cha	ng	e.											
FROM HOUR TO HOUR 2	4	1	2	3	4	5	6 ′	7	8	9 1	0	11	12	2 1:	3 1	4	15	16	17	7 1	8 1	9 2	20 2	21	22 :	23 2	4
Mondays through Thursdays	1	1	1	1	1	2																			2	1	
Fridays	1	1	1	1	1	2																			2	1	
Saturdays	1	1	1	1	1	2	2	2																	2	1	
Sundays	1	1	1	1	1	2	2	2																	2	1	
Legend: 1 Provide at least one through 2 Provide at least two adjacent Work permitted within proje REMARKS: Com County: Orange	thi	roug	gh to	f w	ay	lan whe	es (es ere	No.	n ii oulc 6	n di	or	lan osu	on ne (clo H	su:	re			re	qu	ire	d.					
Closure Limits: (a) WB & EB Rout (b) NB I-5 loop on-ramp from RT 7	e 7												74														
FROM HOUR TO HOUR 2	4	1	2	3	4	5	6	7	8	9 1	10	11	12	2 1	3 1	14	15	16	17	7 1	8 1	9 2	20 2	21	22	23 2	4
Mondays through Thursdays																											
Fridays														\sqcap													
Saturdays	C	C	C	C	C	C																					
Sundays	C	С	C	C	C	C]
Legend: C Conventional highway may be No complete conventional himself.	gh	way	y cl	losu	ire	is p	ern																				
REMARKS: This chart would follow		Cha igin			con	cur	ren	tly	for	sp	eci	al	ev	ent	S	suc	h a	ıs l	orio	dge	e d	em	oli	tio	ı w	ork,	

Erection and removal of falsework at locations where falsework openings are required shall be undertaken one location at a time. During falsework erection and removal, public traffic in the lanes over which falsework is being erected or removed shall be detoured or stopped as specified in this section, "Maintaining Traffic." Falsework erection shall include adjustments or removal of components that contribute to the horizontal stability of the falsework system. Falsework removal shall include lowering falsework, blowing sand from sand jacks, turning screws on screw jacks, and removing wedges.

The Contractor shall have necessary materials and equipment on the site to erect or remove falsework over any one opening before detouring or stopping public traffic.

10-1.20 CLOSURE REQUIREMENTS AND CONDITIONS

Closures shall conform to the provisions in "Maintaining Traffic" of these special provisions and these special provisions.

CLOSURE SCHEDULE

A written schedule of planned closures for the next week period, defined as Sunday noon through the following Sunday noon, shall be submitted by noon each Monday. A written schedule shall be submitted not less than 25 days and not more than 125 days before the anticipated start of any operation that will:

- 1. Reduce horizontal clearances, traveled way, including shoulders, to two lanes or less due to such operations as temporary barrier placement and paving
- 2. Reduce the vertical clearances available to the public due to such operations as pavement overlay, overhead sign installation, or falsework or girder erection

The Closure Schedule shall show the locations and times of the proposed closures. The Closure Schedule request forms furnished by the Engineer shall be used. Closure Schedules submitted to the Engineer with incomplete or inaccurate information will be rejected and returned for correction and resubmittal. The Contractor will be notified of disapproved closures or closures that require coordination with other parties as a condition of approval.

Closure Schedule amendments, including adding additional closures, shall be submitted by noon to the Engineer, in writing, at least 3 business days in advance of a planned closure. Approval of Closure Schedule amendments will be at the discretion of the Engineer.

The Engineer shall be notified of cancelled closures 2 business days before the date of closure.

Closures that are cancelled due to unsuitable weather may be rescheduled at the discretion of the Engineer.

CONTINGENCY PLAN

A detailed contingency plan shall be prepared for reopening closures to public traffic. If required by "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions, the contingency plan shall be submitted to the Engineer before work at the job site begins. Otherwise, the contingency plan shall be submitted to the Engineer within one business day of the Engineer's request.

LATE REOPENING OF CLOSURES

If a closure is not reopened to public traffic by the specified time, work shall be suspended in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications. No further closures are to be made until the Engineer has accepted a work plan, submitted by the Contractor, that will insure that future closures will be reopened to public traffic at the specified time. The Engineer will have 2 business days to accept or reject the Contractor's proposed work plan. The Contractor will not be entitled to compensation for the suspension of work resulting from the late reopening of closures.

For each 10-minute interval, or fraction thereof past the time specified to reopen the closure, the Department will deduct the amount per interval shown below from moneys due or that may become due the Contractor under the contract. Damages are limited to 5 percent of project cost per occurrence and will not be assessed when the Engineer requests that the closure remain in place beyond the scheduled pickup time.

Type of Facility	Route or Segment	Period	Damages/interval (\$)
Mainline	Route 5	1st half hour	\$1700 / 10 minutes
		2nd half hour	\$2600 / 10 minutes
		2nd hour and beyond	\$3400 / 10 minutes
Connector	1. NB Route 5 off-	1st half hour	\$1400 / 10 minutes
	ramp to Route 74	2nd half hour	\$2000 / 10 minutes
	2. NB Route 5 on-	2nd hour and beyond	\$2700 / 10 minutes
	ramp from Route		
	74		
	3. SB Route 5 off-		
	ramp to Route 74		
	4. SB Route 5 on-		
	ramp from Route		
	74		

COMPENSATION

The Engineer shall be notified of delays in the Contractor's operations due to the following conditions, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of those conditions, and the Contractor's loss due to that delay could not have been avoided by rescheduling the affected closure or by judicious handling of forces, equipment and plant, the delay will be considered a right of way delay and will be compensated in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications:

- 1. The Contractor's proposed Closure Schedule is denied and his planned closures are within the time frame allowed for closures in "Maintaining Traffic" of these special provisions, except that the Contractor will not be entitled to compensation for amendments to the Closure Schedule that are not approved.
- 2. The Contractor is denied a confirmed closure.

Should the Engineer direct the Contractor to remove a closure before the time designated in the approved Closure Schedule, delay to the Contractor's schedule due to removal of the closure will be considered a right of way delay and compensation for the delay will be determined in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

10-1.21 IMPACT ATTENUATOR VEHICLE

GENERAL

Summary

Work includes protecting traffic and workers by using impact attenuator vehicle as a shadow vehicle when placing and removing components of a traffic control system, and when performing a moving lane closure.

Comply with Section 12-3.03, "Flashing Arrow Signs," of the Standard Specifications.

Impact attenuator vehicle must comply with the following test levels under National Cooperative Highway Research Program 350:

- 1. Test level 3 for pre-construction posted speed limit of 50 mph or more
- 2. Test levels 2 or 3 for pre-construction posted speed limit of 45 mph or less

Comply with the attenuator manufacturer's recommendations for:

- 1. Support truck
- 2. Trailer-mounted operation
- 3. Truck-mounted operation

Definitions

impact attenuator vehicle: Support truck towing a deployed attenuator mounted to a trailer or support truck with a deployed attenuator mounted to the support truck.

Submittals

Upon request, submit a Certificate of Compliance for attenuator to the Engineer under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

Quality Control and Assurance

Attenuator must be a brand listed on the Department's pre-approved list under Highway Safety Features at:

http://www.dot.ca.gov/hq/esc/approved_products_list/

MATERIALS

The combined weight of the support truck and the attenuator must be at least 19,800 pounds, except the weight of the support truck must not be less than 16,100 pounds or greater than 26,400 pounds.

If using the Trinity MPS-350 truck-mounted attenuator, the support truck must not have any underneath fuel tank mounted within 10'-6" of the rear of the support truck.

Each impact attenuator vehicle must:

- 1. Have standard brake lights, taillights, sidelights, and turn signals
- 2. Have an inverted "V" chevron pattern placed across the entire rear of the attenuator composed of alternating 4 inch wide non-reflective black stripes and 4 inch wide yellow retroreflective stripes sloping at 45 degrees
- 3. Have a Type II flashing arrow sign
- 4. Have a flashing or rotating amber light
- 5. Have an operable 2-way communication system for maintaining contact with workers

CONSTRUCTION

Use impact attenuator vehicle to follow behind equipment and workers who are placing and removing components of a traffic control system for a lane closure or a ramp closure. Flashing arrow sign must be operating in arrow mode during this activity. Follow at a distance to prevent intrusion into the workspace from passing traffic.

After placing components of a traffic control system for a lane closure or a ramp closure you may use impact attenuator vehicle in a closed lane and in advance of a work area to protect traffic and workers.

Secure objects including equipment, tools and ballast on impact attenuator vehicle to prevent loosening upon impact by an errant vehicle.

Do not use a damaged attenuator in the work. Replace, at your expense, an attenuator damaged from an impact during work.

MEASUREMENT AND PAYMENT

Full compensation for furnishing and operating impact attenuator vehicle is included in the contract lump sum price paid for traffic control system, and no additional compensation will be allowed therefor.

10-1.22 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE

A traffic control system shall consist of closing traffic lanes and ramps in conformance with the details shown on the plans, the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications, the provisions under "Maintaining Traffic" and "Construction Area Signs" of these special provisions, and these special provisions.

The provisions in this section will not relieve the Contractor from the responsibility to provide additional devices or take measures as may be necessary to comply with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications.

Each vehicle used to place, maintain and remove components of a traffic control system on multilane highways shall be equipped with a Type II flashing arrow sign which shall be in operation when the vehicle is being used for placing, maintaining or removing components. Vehicles equipped with Type II flashing arrow sign not involved in placing, maintaining or removing components when operated within a stationary lane closure shall only display the caution display mode. The sign shall be controllable by the operator of the vehicle while the vehicle is in motion. The flashing arrow sign shown on the plans shall not be used on vehicles which are being used to place, maintain and remove components of a traffic control system and shall be in place before a lane closure requiring its use is completed.

If components in the traffic control system are displaced or cease to operate or function as specified, from any cause, during the progress of the work, the Contractor shall immediately repair the components to the original condition or replace the components and shall restore the components to the original location.

When lane and ramp closures are made for work periods only, at the end of each work period, components of the traffic control system, except portable delineators placed along open trenches or excavation adjacent to the traveled way, shall be removed from the traveled way and shoulder. If the Contractor so elects, the components may be stored at selected central locations designated by the Engineer within the limits of the highway right of way.

The contract lump sum price paid for traffic control system shall include full compensation for furnishing all labor, materials (including signs), tools, equipment, and incidentals, and for doing all the work involved in placing, removing, storing, maintaining, moving to new locations, replacing, and disposing of the components of the traffic control system shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The adjustment provisions in Section 4-1.03, "Changes," of the Standard Specifications shall not apply to the item of traffic control system. Adjustments in compensation for traffic control system will be made only for increased or decreased traffic control system required by changes ordered by the Engineer and will be made on the basis of the cost of the increased or decreased traffic control necessary. The adjustment will be made on a force account basis as provided in Section 9-1.03, "Force Account Payment," of the Standard Specifications for increased work and estimated on the same basis in the case of decreased work.

Traffic control system required by work which is classed as extra work, as provided in Section 4-1.03D of the Standard Specifications, will be paid for as a part of the extra work.

10-1.23 TEMPORARY PAVEMENT DELINEATION

Temporary pavement delineation shall be furnished, placed, maintained, and removed in conformance with the provisions in Section 12-3.01, "General," of the Standard Specifications and these special provisions. Nothing in these special provisions shall be construed as reducing the minimum standards specified in the California MUTCD or as relieving the Contractor from the responsibilities specified in Section 7-1.09, "Public Safety," of the Standard Specifications.

GENERAL

When the work causes obliteration of pavement delineation, temporary or permanent pavement delineation shall be in place before opening the traveled way to public traffic. Laneline or centerline pavement delineation shall be provided for traveled ways open to public traffic. On multilane roadways (freeways and expressways) edgeline delineation shall be provided for traveled ways open to public traffic.

The Contractor shall perform the work necessary to establish the alignment of temporary pavement delineation, including required lines or markers. Surfaces to receive application of paint or removable traffic tape temporary pavement delineation shall be dry and free of dirt and loose material. Temporary pavement delineation shall not be applied over existing pavement delineation or other temporary pavement delineation. Temporary pavement delineation shall be maintained until superseded or replaced with a new pattern of temporary pavement delineation or permanent pavement delineation, or as determined by the Engineer.

Temporary pavement markers, including underlying adhesive, and removable traffic tape that are applied to the final layer of surfacing or existing pavement to remain in place or that conflicts with a subsequent or new traffic pattern for the area shall be removed when no longer required for the direction of public traffic, as determined by the Engineer.

TEMPORARY LANELINE AND CENTERLINE DELINEATION

When lanelines or centerlines are obliterated and temporary pavement delineation to replace the lines is not shown on the plans, the minimum laneline and centerline delineation to be provided for that area shall be temporary pavement markers placed at longitudinal intervals of not more than 24 feet. The temporary pavement markers shall be the same color as the laneline or centerline the pavement markers replace. Temporary pavement markers shall be, at the option of the Contractor, one of the temporary pavement markers listed for short term day/night use (14 days or less) or long term day/night use (180 days or less) in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. The temporary pavement markers shall be placed in conformance with the manufacturer's instructions. Temporary pavement markers for long term day/night use (180 days or less) shall be cemented to the surfacing with the adhesive recommended by the manufacturer, except epoxy adhesive shall not be used to place the temporary pavement markers in areas where removal of the temporary pavement markers will be required.

Temporary laneline or centerline delineation consisting entirely of temporary pavement markers listed for short term day/night use (14 days or less), shall be placed on longitudinal intervals of not more than 24 feet and shall be used for a maximum of 14 days on lanes opened to public traffic. Before the end of the 14 days the permanent pavement delineation shall be placed. If the permanent pavement delineation is not placed within the 14 days, the Contractor shall replace the temporary pavement markers and provide additional temporary pavement delineation and shall bear the cost thereof. The additional temporary pavement delineation to be provided shall be equivalent to the pattern specified for the permanent pavement delineation for the area, as determined by the Engineer.

TEMPORARY EDGELINE DELINEATION

On multilane roadways (freeways and expressways), when edgelines are obliterated and temporary pavement delineation to replace those edgelines is not shown on the plans, the edgeline delineation to be provided for those areas adjacent to lanes open to public traffic shall be as follows:

- 1. Temporary pavement delineation for right edgelines shall, at the option of the Contractor, consist of either a solid 4-inch wide traffic stripe tape of the same color as the stripe it replaces, traffic cones, portable delineators or channelizers placed at longitudinal intervals not to exceed 100 feet.
- 2. Temporary pavement delineation for left edgelines shall, at the option of the Contractor, consist of either solid 4-inch wide traffic stripe tape of the same color as the stripe it replaces, traffic cones, portable delineators or channelizers placed at longitudinal intervals not to exceed 100 feet or temporary pavement markers placed at longitudinal intervals of not more than 6 feet.

Where removal of the 4-inch wide traffic stripe will not be required, painted traffic stripe conforming to the provisions of "Temporary Traffic Stripe (Paint)" of these special provisions may be used.

The lateral offset for traffic cones, portable delineators or channelizers used for temporary edgeline delineation shall be as determined by the Engineer. If traffic cones or portable delineators are used as temporary pavement delineation for edgelines, the Contractor shall provide personnel to remain at the project site to maintain the cones or delineators during the hours of the day that the portable delineators are in use.

Channelizers used for temporary edgeline delineation shall be the surface mounted type and shall be orange in color. Channelizer bases shall be cemented to the pavement in the same manner provided for cementing pavement markers to pavement in "Pavement Markers" of these special provisions, except epoxy adhesive shall not be used to place channelizers on the top layer of pavement. Channelizers shall be, at the Contractor's option, one of the surface mount types (36 inch) listed in "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

Temporary edgeline delineation shall be removed when no longer required for the direction of public traffic as determined by the Engineer.

MEASUREMENT AND PAYMENT

Full compensation for furnishing, placing, maintaining, and removing the temporary pavement markers (including underlying adhesive, layout (dribble) lines to establish alignment of temporary pavement markers or used for temporary laneline and centerline delineation) for those areas where temporary laneline and centerline delineation is not shown on the plans and for providing equivalent patterns of permanent traffic lines for those areas when required, shall be considered as included in the contract prices paid for the items of work that obliterated the laneline and centerline pavement delineation and no separate payment will be made therefor.

Full compensation for furnishing, placing, maintaining, and removing temporary edgeline delineation not shown on the plans shall be considered as included in the contract prices paid for the items of work that obliterated the edgeline pavement delineation and no separate payment will be made therefor. The quantity of channelizers used as temporary edgeline delineation will not be included in the quantity of channelizer (surface mounted) to be paid for.

10-1.24 BARRICADE

Barricades shall be furnished, placed and maintained at the locations shown on the plans, specified in the Standard Specifications or in these special provisions or where designated by the Engineer. Barricades shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Attention is directed to "Prequalified and Tested Signing and Delineation Materials" of these special provisions regarding retroreflective sheeting for barricades.

Construction area sign and marker panels conforming to the provisions in Section 12-3.06, "Construction Area Signs," of the Standard Specifications shall be installed on barricades in a manner determined by the Engineer at the locations shown on the plans.

Sign panels for construction area signs and marker panels installed on barricades shall conform to the provisions in Section 12-3.06A, "Stationary Mounted Signs," of the Standard Specifications.

Full compensation for furnishing, installing, maintaining, and removing construction area signs and marker panels on barricades shall be considered as included in the contract unit price paid for the type of barricade involved and no separate payment will be made therefor.

Barricades shown on the plans as part of a traffic control system will be paid for as provided in "Traffic Control System for Lane Closure" of these special provisions and will not be included in the count for payment of barricades.

10-1.25 PORTABLE CHANGEABLE MESSAGE SIGNS

GENERAL

Summary

Work includes furnishing, placing, operating, maintaining, and removing portable changeable message signs. Comply with Section 12-3.12 "Portable Changeable Message Signs," of the Standard Specifications.

Definitions

useable shoulder area: Paved or unpaved contiguous surface adjacent to the traveled way with:

- 1. Sufficient weight bearing capacity to support portable changeable message sign
- 2. Slope not greater than 6:1 (horizontal:vertical)

Submittals

Upon request, submit a Certificate of Compliance for each portable changeable message sign under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

Quality Control and Assurance

Comply with the manufacturer's operating instructions for portable changeable message sign.

Approaching drivers must be able to read the entire message for all phases at least twice at the posted speed limit before passing portable changeable message sign. You may use more than 1 portable changeable message sign to meet this requirement.

Only display the message shown on the plans or ordered by the Engineer or specified in these special provisions.

MATERIALS

The text of the message displayed on portable changeable message sign must not scroll, or travel horizontally or vertically across the face of the message panel.

CONSTRUCTION

Continuously repeat the entire message in no more than 2 phases of at least 3 seconds per phase.

If useable shoulder area is at least 15 feet wide, the displayed message on portable changeable message sign must be minimum 18-inch character height. If useable shoulder area is less than 15 feet wide, you may use a smaller message panel with minimum 12-inch character height to prevent encroachment in the traveled way.

Start displaying the message on portable changeable message sign 15 minutes before closing the lane or as directed by the Engineer.

Place portable changeable message sign in advance of the first warning sign for:

- 1. Each stationary lane closure
- 2. Each off-ramp closure
- 3. Each connector closure

Place portable changeable message sign as far from the traveled way as practicable where it is legible to traffic and does not encroach on the traveled way. Place portable changeable sign before or at the crest of vertical roadway curvature where it is visible to approaching traffic. Avoid placing portable changeable message sign within or immediately after horizontal roadway curvature. Where possible, place portable changeable message sign behind guardrail or temporary railing (Type K).

Except where placed behind guardrail or temporary railing (Type K) use traffic control for shoulder closure to delineate portable changeable message sign.

Remove portable changeable message sign when not in use.

MEASUREMENT AND PAYMENT

The contract lump sum price paid for portable changeable message signs includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing, placing, operating, modifying messages, maintaining portable changeable message signs, complete in place, including transporting from location to location, removing, and repairing or replacing defective or damaged portable changeable message signs, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Portable changeable message signs ordered by the Engineer in excess of the number shown on the plans or specified in these special provisions will be paid for as extra work under Section 4-1.03D, "Extra Work," of the Standard Specifications.

10-1.26 CHANNELIZER

Channelizers shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Channelizers shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

When no longer required for the work as determined by the Engineer, channelizers and underlying adhesive used to cement the channelizer bases to the pavement shall be removed. Removed channelizers and adhesive shall become the property of the Contractor and shall be removed from the site of work.

10-1.27 TEMPORARY TRAFFIC SCREEN

Temporary traffic screen shall be furnished, installed, and maintained on top of temporary railing (Type K) at the locations designated on the plans, specified in the special provisions or directed by the Engineer and shall conform to the provisions specified for traffic handling equipment and devices in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Temporary traffic screen panels shall be new or used CDX Grade, or better, plywood or weather resistant strandboard mounted and anchored on temporary railing (Type K). Wale boards shall be new or used Douglas fir, rough sawn, Construction Grade, or better. Pipe screen supports shall be new or used galvanized steel pipe, Schedule 40. Nuts, bolts, and washers shall be cadmium plated. Screws shall be black or cadmium plated flat head, cross slotted screws with full thread length.

When no longer required, as determined by the Engineer, temporary traffic screen shall be removed from the site of the work and shall become the property of the Contractor.

Temporary traffic screen will be measured by the linear foot from actual measurements along the line of the completed temporary traffic screen, at each location designated on the plans, specified or directed by the Engineer. If the Engineer orders a lateral move of temporary railing, with temporary traffic screen attached, and the repositioning is not shown on the plans, moving the temporary traffic screen will be paid for as part of the extra work for moving the temporary railing as specified in Section 12-4.01, "Measurement and Payment," of the Standard Specifications. Temporary traffic screen placed in excess of the length shown, specified or directed by the Engineer will not be paid for.

The contract price paid per linear foot for temporary traffic screen shall include full compensation for furnishing all labor, materials (including anchoring systems), tools, equipment, and incidentals, and for doing all the work involved in installing, maintaining, and removing the temporary traffic screen, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.28 TEMPORARY CRASH CUSHION MODULE

This work shall consist of furnishing, installing, and maintaining sand filled temporary crash cushion modules in groupings or arrays at each location shown on the plans, as specified in these special provisions or where designated by the Engineer. The grouping or array of sand filled modules shall form a complete sand filled temporary crash cushion in conformance with the details shown on the plans and these special provisions.

Temporary crash cushions shall be secured in place prior to commencing work for which the temporary crash cushions are required.

Whenever the work or the Contractor's operations establishes a fixed obstacle, the exposed fixed obstacle shall be protected with a sand filled temporary crash cushion. The sand filled temporary crash cushion shall be in place prior to opening the lanes adjacent to the fixed obstacle to public traffic.

Sand filled temporary crash cushions shall be maintained in place at each location, including times when work is not actively in progress. Sand filled temporary crash cushions may be removed during a work period for access to the work provided that the exposed fixed obstacle is 15 feet or more from a lane carrying public traffic and the temporary crash cushion is reset to protect the obstacle prior to the end of the work period in which the fixed obstacle was exposed. When no longer required, as determined by the Engineer, sand filled temporary crash cushions shall be removed from the site of the work.

Sand filled temporary crash cushion modules shall be one of the following, or equal, and be manufactured after March 31, 1997:

- Energite III and Fitch Inertial Modules, manufactured by Energy Absorption Systems, Inc., 35 East Wacker Drive, Suite 1100, Chicago, IL 60601:
 - 1.1. Northern California: Traffic Control Service, Inc., 8585 Thys Court, Sacramento, CA 95828, telephone (800) 884-8274, FAX (916) 387-9734
 - 1.2. Southern California: Traffic Control Service, Inc., 1818 E. Orangethorpe, Fullerton, CA 92831-5324, telephone (800) 222-8274, FAX (714) 526-9501
- 2. TrafFix Sand Barrels, manufactured by TrafFix Devices, Inc., 220 Calle Pintoresco, San Clemente, CA 92672, telephone (949) 361-5663, FAX (949) 361-9205
 - 2.1. Northern California: United Rentals, Inc., 1533 Berger Drive, San Jose, CA 95112, telephone (408) 287-4303, FAX (408) 287-1929
 - Southern California: Statewide Safety & Sign, Inc., P.O. Box 1440, Pismo Beach, CA 93448, telephone (800) 559-7080, FAX (805) 929-5786
- CrashGard Model CC-48 Sand Barrels, manufactured by Plastic Safety Systems, Inc., 2444 Baldwin Road, Cleveland, OH 44104:
 - 3.1. Northern California:
 - 3.1.1. Capitol Barricade Safety & Sign, 6329 Elvas Ave, Sacramento, CA 95819, telephone (888) 868-5021, FAX (916) 451-5388
 - 3.1.2. Sierra Safety, Inc., 9093 Old State Highway, New Castle, CA 95658, telephone (916) 663-2026, FAX (916) 663-1858

3.2. Southern California: Hi Way Safety Inc., 13310 5th Street, Chino, CA 91710, telephone (909) 591-1781, FAX (909) 627-0999

Modules contained in each temporary crash cushion shall be of the same type at each location. The color of the modules shall be the standard yellow color, as furnished by the vendor, with black lids. The modules shall exhibit good workmanship free from structural flaws and objectionable surface defects. The modules need not be new. Good used undamaged modules conforming to color and quality of the types specified herein may be utilized. If used Fitch modules requiring a seal are furnished, the top edge of the seal shall be securely fastened to the wall of the module by a continuous strip of heavy duty tape.

Modules shall be filled with sand in conformance with the manufacturer's directions, and to the sand capacity in pounds for each module shown on the plans. Sand for filling the modules shall be clean washed concrete sand of commercial quality. At the time of placing in the modules, the sand shall contain not more than 7 percent water as determined by California Test 226.

Modules damaged due to the Contractor's operations shall be repaired immediately by the Contractor at the Contractor's expense. Modules damaged beyond repair, as determined by the Engineer, due to the Contractor's operations shall be removed and replaced by the Contractor at the Contractor's expense.

Temporary crash cushion modules may be placed on movable pallets or frames. Comply with dimensions shown on the plans. The pallets or frames shall provide a full bearing base beneath the modules. The modules and supporting pallets or frames shall not be moved by sliding or skidding along the pavement or bridge deck.

A Type R or P marker panel shall be attached to the front of the crash cushion as shown on the plans, when the closest point of the crash cushion array is within 12 feet of the traveled way. The marker panel, when required, shall be firmly fastened to the crash cushion with commercial quality hardware or by other methods determined by the Engineer.

At the completion of the project, temporary crash cushion modules, sand filling, pallets or frames, and marker panels shall become the property of the Contractor and shall be removed from the site of the work. Temporary crash cushion modules shall not be installed in the permanent work.

Temporary crash cushion modules will be measured by the unit as determined from the actual count of modules used in the work or ordered by the Engineer at each location. Temporary crash cushion modules placed in conformance with Section 7-1.09, "Public Safety," of the Standard Specifications and modules placed in excess of the number specified or shown will not be measured nor paid for.

Repairing modules damaged by public traffic will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Modules damaged beyond repair by public traffic, when ordered by the Engineer, shall be removed and replaced immediately by the Contractor. Modules replaced due to damage by public traffic will be measured and paid for as temporary crash cushion module.

If the Engineer orders a lateral move of the sand filled temporary crash cushions and the repositioning is not shown on the plans, moving the sand filled temporary crash cushion will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications and these temporary crash cushion modules will not be counted for payment in the new position.

The contract unit price paid for temporary crash cushion module shall include full compensation for furnishing all labor, materials (including sand, pallets or frames and marker panels), tools, equipment, and incidentals, and for doing all the work involved in furnishing, installing, maintaining, moving, and resetting during a work period for access to the work, and removing from the site of the work when no longer required (including those damaged by public traffic) sand filled temporary crash cushion modules, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.29 REMOVE YELLOW TRAFFIC STRIPE AND PAVEMENT MARKING (HAZARDOUS WASTE) GENERAL

Summary

This work includes removing existing yellow thermoplastic and yellow painted traffic stripe and pavement marking at the locations shown on the plans. The residue from the removal of this material is a hazardous waste.

Residue from removal of yellow thermoplastic and yellow painted traffic stripe and pavement marking contains lead chromate. The average lead concentration is greater than or equal to 1000 mg/kg total lead or 5 mg/l soluble lead. When applied to the roadway, the yellow thermoplastic and yellow painted traffic stripe and pavement marking contained as much as 2.6 percent lead. Residue produced from the removal of this yellow thermoplastic and yellow painted traffic stripe and pavement marking contains heavy metals in concentrations that exceed thresholds established by the Health and Safety Code and 22 CA Code of Regs. For bidding purposes, assume that the residue is not regulated under the Federal Resource Conservation and Recovery Act (RCRA), 42 USC § 6901 et seq.. Yellow thermoplastic and yellow paint may produce toxic fumes when heated.

Submittals

Lead Compliance Plan: Submit a lead compliance plan under Section 7-1.07, "Lead Compliance Plan," of the Standard Specifications.

Work Plan: Submit a work plan for the removal, containment, storage, and disposal of yellow thermoplastic and yellow painted traffic stripe and pavement marking for acceptance not less than 15 days prior to the start of the removal operations. The work plan must include:

- 1. Objective of the operation
- 2. Removal equipment
- 3. Type of hazardous waste storage containers
- 4. Container storage location and how it will be secured
- 5. Hazardous waste sampling protocol and QA/QC requirements and procedures
- 6. Qualifications of sampling personnel
- 7. Analytical lab that will perform the analyses
- 8. CA Department of Toxic Substances Control (DTSC) registration certificate and California Highway Patrol (CHP) Biennial Inspection of Terminals (BIT) Program compliance documentation of the hazardous waste hauler that will transport the hazardous waste
- 9. Disposal site that will accept the hazardous waste residue

The Engineer will review the work plan within 5 business days of receipt.

Do not perform work that generates hazardous waste residue until the work plan has been accepted by the Engineer. The Engineer's review and acceptance does not waive any contract requirements and does not relieve the Contractor from complying with Federal, State, and local laws, regulations, and requirements.

Correct any rejected work plan and resubmit a corrected work plan within 5 business days of notification by the Engineer; at which time a new review period of 5 business days will begin.

Analytical Test Results: Submit analytical test results of the residue from removal of yellow thermoplastic and yellow painted traffic stripe and pavement marking, including chain of custody documentation, for review and acceptance before:

- 1. Requesting the Engineer's signature on the waste profile requested by the disposal facility
- 2. Requesting the Engineer obtain an EPA ID no. for disposal
- 3. Removing the residue from the site

United States Environmental Protection Agency Identification Number Request: Submit a request for the U.S. EPA ID no. when the Engineer accepts analytical test results documenting that residue from removal of yellow thermoplastic and yellow painted traffic stripe and pavement marking is a hazardous waste.

Disposal Documentation: Submit receiving landfill documentation of proper disposal within 5 business days of residue transport from the project.

CONSTRUCTION

Where grinding or other approved methods are used to remove yellow thermoplastic and yellow painted traffic stripe and pavement marking that will produce a hazardous waste residue, the removed residue, including dust, must be contained and collected immediately. Use a HEPA filter-equipped vacuum attachment operated concurrently with the removal operations or other equally effective approved methods for collection of the residue.

Store hazardous waste residue in labeled and covered containers. Labels must comply with the provisions of 22 CA Code of Regs §§66262.31 and 66262.32. Mark labels with:

- 1. Date the hazardous waste is generated
- 2. The words "Hazardous Waste"

- 3. Composition and physical state of the hazardous waste (for example, asphalt grindings with thermoplastic or paint)
- 4. The word "Toxic"
- 5. Name, address, and telephone no. of the Engineer
- 6. Contract no.
- 7. Contractor or subcontractor name

Use metal containers approved by the U.S. Department of Transportation for the transportation and temporary storage of the removed residue. Handle the containers such that no spillage occurs. Store containers in a secured enclosure. Acceptable secure enclosures include a locked chain link fenced area or a lockable shipping container located within the project limits until disposal as approved.

Make necessary arrangements to test the yellow thermoplastic and yellow paint hazardous waste residue as required by the disposal facility and these special provisions. Testing must include, at a minimum:

- 1. Total lead by EPA Method 6010B
- 2. Total chromium by US EPA Method 7000 series
- 3. Soluble lead by California Waste Extraction Test
- 4. Soluble chromium by California Waste Extraction Test
- 5. Soluble lead by Toxicity Characteristic Leaching Procedure
- 6. Soluble chromium by Toxicity Characteristic Leaching Procedure

From the 1st 220 gallons of hazardous waste or portion thereof if less than 220 gallons of hazardous waste are produced, a minimum of 4 randomly selected samples must be taken and analyzed individually. Samples must not be composited. From each additional 880 gallons of hazardous waste or portion thereof if less than 880 gallons are produced, a minimum of 1 additional random sample must be taken and analyzed. Use chain of custody procedures consistent with Chapter 9 of U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) while transporting samples from the project to the laboratory. Each sample must be homogenized before analysis by the laboratory performing the analyses. A sample aliquot sufficient to cover the amount necessary for the total and the soluble analyses must then be taken. This aliquot must be homogenized a 2nd time and the total and soluble analyses run on this aliquot. The homogenization process must not include grinding of the samples. Submit the name and location of the disposal facility that will be accepting the hazardous waste and the analytical laboratory along with the testing requirements not less than 5 business days before the start of removal of yellow thermoplastic and yellow painted traffic stripe and pavement marking. The analytical laboratory must be certified by the CA Department of Public Health Environmental Laboratory Accreditation Program for all analyses to be performed.

After the Engineer accepts the analytical test results, dispose of yellow thermoplastic and yellow paint hazardous waste residue at a California Department of Toxic Substance Control permitted Class 1 disposal facility located in CA under the requirements of the disposal facility operator within 30 days after accumulating 220 pounds of residue and dust.

If less than 220 pounds of hazardous waste residue and dust is generated in total, it must be disposed of within 30 days after the start of accumulation of the residue and dust.

Use a hazardous waste manifest and a transporter registered with the CA Department of Toxic Substance Control and in compliance with the CHP BIT Program. The Engineer will obtain the U.S. EPA ID no. and will sign all manifests as the generator within 2 business days of receiving and accepting the analytical test results and receiving your request for the U.S. EPA ID no.

If analytical test results demonstrate that the residue is a non-hazardous waste and the Engineer agrees, dispose of the residue at an appropriately permitted Class II or Class III facility under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

MEASUREMENT AND PAYMENT

The contract price paid per linear foot for remove yellow thermoplastic traffic stripe and remove yellow painted traffic stripe or per square foot for remove yellow thermoplastic pavement marking and remove yellow painted pavement marking includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all of the work involved in removal, containment, storage, and disposal, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for (1) work plan for the removal, containment, storage, and disposal of yellow thermoplastic and yellow painted traffic stripe and pavement marking hazardous waste residue, (2) analytical test results, (3) US EPA ID no. request, and (4) receiving landfill documentation of proper disposal are included in the contract prices paid per linear foot for remove yellow thermoplastic traffic stripe and remove yellow painted traffic stripe or per square foot for remove yellow thermoplastic pavement marking and remove yellow painted pavement marking and no separate payment will be made therefor.

Additional disposal costs for hazardous waste residue regulated under RCRA, as determined by test results, will be paid for as extra work as specified in Section 4-1.03D, "Extra Work," of the Standard Specifications.

If analytical test results demonstrate that the residue is a non-hazardous waste and the Engineer agrees to disposal at a non-hazardous waste disposal facility, no cost adjustment will be made.

10-1.30 TREATED WOOD WASTE

GENERAL

Summary

This work includes handling, storing, transporting, and disposing of treated wood waste (TWW). Wood removed from metal beam guard railing and roadside sign is treated with one or more of the following:

- 1. Creosote
- 2. Pentachlorophenol
- 3. Copper azole
- 4. Copper boron azole
- 5. Chromated copper arsenate
- 6. Ammoniacal copper zinc arsenate
- 7. Copper naphthenate
- 8. Alkaline copper quaternary

Manage TWW under Title 22 CA Code of Regulations, Division 4.5, Chapter 34.

Submittals

For disposal of TWW submit a copy of each completed shipping record and weight receipt to the Engineer within 5 business days of disposal.

CONSTRUCTION

Provide training to personnel who handle TWW or may come in contact with TWW that includes:

- 1. All applicable requirements of Title 8 CA Code of Regulations
- 2. Procedures for identifying and segregating TWW
- 3. Safe handling practices
- 4. Requirements of Title 22 CA Code of Regulations, Division 4.5, Chapter 34
- 5. Proper disposal methods

Store TWW before disposal using any of the following methods:

- 1. Elevate on blocks above a reasonably foreseeable run-on elevation and protect from precipitation
- 2. Place in water-resistant containers designed for shipping or solid waste collection
- 3. Place on a containment surface or pad protected from run-on and precipitation
- 4. Place in a storage building as defined in Title 22 CA Code of Regulations, Div. 4.5, Chp. 34, Section 67386.6 (a)(2)(c).

Prevent unauthorized access to TWW using a secured enclosure such as a locked chain link fenced area or a lockable shipping container located within the project limits.

Resize and segregate TWW at a location where debris from the operation including sawdust and chips can be contained. Collect and manage the debris as TWW.

Provide water-resistant labels, that comply with Title 22 CA Code of Regulations, Division 4.5, Chapter 34, to clearly mark and identify TWW and accumulation areas. Labels must include:

- 1. Caltrans, District number, Construction, contract number
- 2. District office address

- 3. Engineer's name, address, and telephone number
- 4. Contractor's contact name and telephone number
- 5. Date placed in storage

Before transporting TWW, obtain an agreement from the receiving facility that the treated wood waste will be accepted. Protect shipments of treated wood waste from loss and exposure to precipitation. For projects with 10,000 pounds or more of TWW, request a hazardous waste generator identification number from the Engineer at least 5 business days before the first shipment. Each shipment must be accompanied by a shipping record such as a bill of lading or invoice that includes:

- 1. Caltrans with district number
- 2. Construction contract number
- 3. District office address
- 4. Engineer's name, address, and telephone number
- 5. Contractor's contact name and telephone number
- 6. Receiving facility name and address
- 7. Waste description: treated wood waste (preservative type if known or unknown/mixture)
- 8. Project location
- 9. Estimated quantity of shipment by weight or volume
- 10. Date of transport
- 11. Date of receipt by the receiving TWW facility
- 12. Weight of shipment as measured by the receiving TWW facility
- 13. For projects with 10,000 pounds or more of TWW include the generator identification number

The shipping record must be at least a 4-part carbon or carbonless 8-1/2" x 11" form to allow retention of copies by the Engineer, transporter, and disposal facility.

Dispose of TWW at an approved TWW facility. A list of currently approved TWW facilities may be viewed at:

http://www.dtsc.ca.gov/HazardousWaste/upload/TWW_Confirmed_Landfill_List.pdf

Dispose of TWW within:

- 1. 90 days of generation if stored on blocks
- 2. 180 days of generation if stored on a containment surface or pad.
- 3. One year of generation if filling a water-resistant container, or 90 days after the container is full, whichever is shorter
- 4. One year of generation if storing in a storage building as defined in Title 22 CA code of Regulations, Div. 4.5, Chp. 34, Section 67386.6(a)(2)(C)

MEASUREMENT AND PAYMENT

Full compensation for handling, storing, transporting, and disposing TWW, including personnel training, is included in the contract price paid for the various items of work involved and no additional compensation will be allowed therefor.

10-1.31 EXISTING HIGHWAY FACILITIES

The work performed in connection with various existing highway facilities shall conform to the provisions in Section 15, "Existing Highway Facilities," of the Standard Specifications and these special provisions.

Attention is directed to Section 7-1.06, "Safety and Health Provisions," of the Standard Specifications. Work practices and worker health and safety shall conform to the California Division of Occupational Safety and Health Construction Safety Orders Title 8, of the California Code of Regulations including Section 5158, "Other Confined Space Operations."

EARTH MATERIAL CONTAINING LEAD

General

This work includes handling earth material containing lead under the Standard Specifications and these special provisions.

Submittals

Submit a lead compliance plan under Section 7-1.07, "Lead Compliance Plan," of the Standard Specifications.

Project Conditions

Lead is present in earth material within the project limits at average concentrations below 1,000 mg/kg total lead and below 5 mg/l soluble lead. Earth material within the project limits:

- 1. Is not a hazardous waste
- 2. Does not require disposal at a permitted landfill or solid waste disposal facility

Lead is typically found within the top 2 feet of material in unpaved areas of the highway. Reuse all excavated earth material within the project limits.

Construction

Handle earth material containing lead under all applicable laws, rules, and regulations, including those of the following agencies:

- 1. Cal/OSHA
- 2. CA Regional Water Quality Control Board, Region 9 San Diego
- 3. CA Department of Toxic Substances Control

Manage earth material as shown in the following table.

Earth Material Management

Location	Depth	Management requirements
Inside of Northbound loop on ramp between stations 512+45.00 and 513+19.35 (Near Borehole No. 20 shown in Figure 4 of ADL Report)	4 feet	Excavate the soil more than 4 feet below ground surface. Do not remove the top 6 inches separately.

Measurement and Payment

Full compensation for handling earth material containing lead is included in the contract price paid per cubic yard for roadway excavation, and no additional compensation will be allowed therefor.

REMOVE METAL BEAM GUARD RAILING

Existing metal beam guard railing, where shown on the plans to be removed, shall be removed and disposed of. Existing concrete anchors or steel foundation tubes shall be completely removed and disposed of. Full compensation for removing concrete anchors shall be considered as included in the contract price paid per linear foot for remove metal beam guard railing and no separate payment will be made therefor.

Full compensation for removing cable anchor assemblies, terminal anchor assemblies or steel foundation tubes shall be considered as included in the contract price paid per linear foot for remove metal beam guard railing and no separate payment will be made therefor.

REMOVE SIGN STRUCTURE

Existing sign structures, where shown on the plans to be removed, shall be removed and disposed of.

Overhead sign structure removal shall consist of removing posts, frames, portions of foundations, sign panels, walkways with safety railings, and sign lighting electrical equipment.

Bridge mounted sign structure removal shall consist of removing sign panels and frames, sign lighting electrical equipment, walkways with safety railings, structural braces and supports, and hardware.

A sign structure shall not be removed until the structure is no longer required for the direction of public traffic.

Concrete foundations may be abandoned in place, except that the top portion, including anchor bolts, reinforcing steel, and conduits shall be removed to a depth of not less than 4 feet below the adjacent finished grade. The resulting holes shall be backfilled and compacted with material equivalent to the surrounding material.

Electrical wiring shall be removed to the nearest pull box. Fuses within spliced connections in the pull box shall be removed and disposed of.

Electrical equipment, where shown on the plans, shall be salvaged.

REMOVE PAVEMENT MARKER

Existing pavement markers, including underlying adhesive, when no longer required for traffic lane delineation as determined by the Engineer, shall be removed and disposed of.

REMOVE TRAFFIC STRIPE AND PAVEMENT MARKING

This work includes removing existing traffic stripe and pavement marking at the locations shown on the plans. Submit a lead compliance plan under Section 7-1.07, "Lead Compliance Plan," of the Standard Specifications.

Waste residue from removal of thermoplastic and painted traffic stripe and pavement marking is a non-hazardous waste residue and contains lead in average concentrations less than 1000 mg/kg total lead and 5 mg/L soluble lead. This waste residue does not contain heavy metals in concentrations that exceed thresholds established by the Health and Safety Code and 22 CA Code of Regs and is not regulated under the Federal Resource Conservation and Recovery Act (RCRA), 42 USC § 6901 et seq.

RESIDUE CONTAINING LEAD FROM PAINT AND THERMOPLASTIC

Residue from grinding or cold planing contains lead from paint and thermoplastic. The average lead concentrations are less than 1,000 mg/kg total lead and 5 mg/L soluble lead. This residue:

- 1. Is a nonhazardous waste
- 2. Does not contain heavy metals in concentrations that exceed thresholds established by the Health and Safety Code and 22 CA Code of Regs
- 3. Is not regulated under the Federal Resource Conservation and Recovery Act (RCRA), 42 USC § 6901 et seq.

Submit a lead compliance plan under Section 7-1.07, "Lead Compliance Plan," of the Standard Specifications.

Payment for handling, removal, and disposal of grinding or cold planing residue that is a nonhazardous waste is included in the payment for the type of removal work involved.

REMOVE DRAINAGE FACILITY

Existing culverts, concrete channel, inlets, and headwalls, where any portion of these structures is within 3 feet of the grading plane in excavation areas, or within one foot of original ground in embankment areas, or where shown on the plans to be removed, shall be completely removed and disposed of.

REMOVE ROADSIDE SIGN

Existing roadside signs, at those locations shown on the plans to be removed, shall be removed and disposed of. Existing roadside signs shall not be removed until replacement signs have been installed or until the existing signs are no longer required for the direction of public traffic, unless otherwise directed by the Engineer.

RESET ROADSIDE SIGN

Existing roadside signs, where shown on the plans to be reset, shall be removed and reset.

Each roadside sign shall be reset on the same day that the sign is removed.

Two holes shall be drilled in each existing post as required to provide the breakaway feature shown on the plans.

RELOCATE ROADSIDE SIGN

Existing roadside signs shall be removed and relocated to the new locations shown on the plans.

Each roadside sign shall be installed at the new location on the same day that the sign is removed from its original location.

Two holes shall be drilled in each existing post as required to provide the breakaway feature shown on the plans.

ADJUST INLET

Existing pipe inlets and concrete drainage inlets shall be adjusted as shown on the plans.

Concrete shall be minor concrete conforming to the provisions in Section 90-10, "Minor Concrete," of the Standard Specifications. The concrete shall contain not less than 590 pounds of cementitious material per cubic yard.

Where inlets are located in areas to be paved or surfaced, no individual structure shall be constructed to final grade until the paving or surfacing has been completed immediately adjacent to the structure.

REMOVE ASPHALT CONCRETE PAVEMENT

Existing asphalt concrete pavement shown on the plans to be removed, shall be removed. Resulting holes and depressions shall be backfilled with earthy material selected from excavation to the lines and grade established by the Engineer.

The material removed shall be disposed of outside the highway right of way in conformance with the provisions in Section 15-2.03, "Disposal," of the Standard Specifications.

Removing asphalt concrete pavement will be measured by the cubic yard in the same manner specified for roadway excavation in conformance with the provisions in Section 19, "Earthwork," of the Standard Specifications and will be paid for at the contract price per cubic yard for remove asphalt concrete pavement.

COLD PLANE ASPHALT CONCRETE PAVEMENT

GENERAL

Summary

This work includes cold planing existing asphalt concrete pavement.

Sequencing and Scheduling

Schedule cold planing activities to ensure hot mix asphalt (HMA) is placed over cold planed area during the same work shift before opening to traffic. If you cannot place HMA over the entire cold planed area before opening it to traffic:

- 1. Construct a temporary HMA taper to the level of the existing pavement.
- 2. Place HMA during the next lane or shoulder closure for that area.
- 3. Submit a corrective action plan that shows that you are able to cold plane and place HMA in the same work shift. Do not perform cold planing work until the Engineer approves the corrective action plan.

MATERIALS

HMA for temporary tapers must be of the same quality as the HMA used elsewhere on the project or comply with "Minor Hot Mix Asphalt" of these special provisions.

CONSTRUCTION

General

Perform planing of asphalt concrete pavement without the use of a heating device to soften the pavement.

Cold Planing Equipment

Cold planing machine must be:

- 1. Equipped with a cutter head width that matches the planing width. If the only available cutter head width is wider than the cold plane area shown, submit to the Engineer a request for using a wider cutter head. Do not cold plane until the Engineer approves your request.
- 2. Equipped with automatic controls to control the longitudinal grade and transverse slope of the cutter head and:
 - 2.1. If a ski device is used, it must be at least 30 feet long, rigid, and 1 piece unit. The entire length must be used in activating the sensor.
 - 2.2. If referencing from existing pavement, the cold planing machine must be controlled by a self-contained grade reference system. The system must be used at or near the centerline of the roadway. On the adjacent pass with the cold planing machine, a joint matching shoe may be used.
- 3. Equipped to effectively control dust generated by the planing operation.
- 4. Operated so that no fumes or smoke is produced.

Replace broken, missing, or worn machine teeth.

Grade Control and Surface Smoothness

Furnish, install, and maintain grade and transverse slope references.

The depth, length, width, and shape of the cut must be as shown or as ordered. The final cut must result in a neat and uniform surface. Do not damage remaining surface.

The completed surface of the planed asphalt concrete pavement must not vary more than 0.02 foot when measured with a 12-foot straightedge parallel with the centerline. The transverse slope of the planed surface must not vary more than 0.03 foot from the straightedge when placed at right angles to the centerline.

A drop-off of more than 0.15 foot is not allowed between adjacent lanes open to public traffic.

Temporary HMA Tapers

If a drop-off between the existing pavement and the planed area at transverse joints cannot be avoided before opening to traffic, construct a temporary HMA taper. HMA for temporary taper must be:

- 1. Placed to the level of the existing pavement and tapered on a slope of 30:1 (Horizontal: Vertical) or flatter to the level of the planed area
- 2. Compacted by any method that will produce a smooth riding surface
- 3. Completely removed before placing the permanent surfacing. The removed material must be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Disposal of Planed Material

Remove cold planed material concurrent with planing activities, within 50 feet of the planer or as ordered.

Dispose of planed material and under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Cold plane asphalt concrete pavement is measured by the square yard.

The contract price paid per square yard for cold plane asphalt concrete pavement includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in cold planing asphalt concrete surfacing and disposing of planed material, including constructing, maintaining, removing temporary HMA tapers if applicable, as specified in the Standard Specifications and these special provisions and as directed by the Engineer.

Full compensation for removal of thermoplastic traffic stripe, painted traffic stripe, and pavement marking in areas of cold plane asphalt concrete is included in the contract price paid for cold plane asphalt concrete and no separate payment will be made therefor.

BRIDGE REMOVAL

Removing bridges or portions of bridges shall conform to the provisions in Section 15-4, "Bridge Removal," of the Standard Specifications and these special provisions.

The bridge removal work consists, in general, of removing existing structure at the following location as shown on the plans for:

Route 74/5 Separation, (Bridge Number: 55-0229)

Removed materials that are not to be salvaged or used in the reconstruction shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

The Contractor shall submit a complete bridge removal plan to the Engineer for each bridge listed above, detailing procedures, sequences, and all features required to perform the removal in a safe and controlled manner.

The bridge removal plan shall include, but not be limited to, the following:

- A. The removal sequence, including staging of removal operations.
- B. Equipment locations on the structure during removal operations.
- C. Temporary support shoring or temporary bracing.

- D. Locations where work is to be performed over traffic or utilities.
- E. Details, locations, and types of protective covers to be used.
- F. Measures to assure that people, property, utilities, and improvements will not be endangered.
- G. Details and measures for preventing material, equipment, and debris from falling onto public traffic.

When protective covers are required for removal of portions of a bridge or when superstructure removal work on bridges is involved, the Contractor shall submit working drawings with design calculations to the Engineer for the proposed bridge removal plan, and the bridge removal plan shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California. The design calculations shall be adequate to demonstrate the stability of the structure during all stages of the removal operations. Calculations shall be provided for each stage of bridge removal and shall include dead and live load values assumed in the design of protective covers. At a minimum, a stage will be considered to be removal of the deck, the soffit, or the girders, in any span; or walls, bent caps, or columns at support locations.

Temporary support shoring, temporary bracing, and protective covers, as required, shall be designed and constructed in conformance with the provisions in Section 51-1.06, "Falsework," of the Standard Specifications and these special provisions.

The assumed horizontal load to be resisted by the temporary support shoring and temporary bracing, for removal operations only, shall be the sum of the actual horizontal loads due to equipment, construction sequence, or other causes and an allowance for wind, but in no case shall the assumed horizontal load to be resisted in any direction be less than 5 percent of the total dead load of the structure to be removed.

The bridge removal plan shall conform to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The number of sets of drawings, design calculations, and the time for reviewing bridge removal plans shall be the same as specified for falsework working drawings in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications.

The following additional requirements apply to the removal of bridges or portions of bridges that are over or adjacent to roadways that may be closed to public traffic for only brief periods of time:

- A. The closure of roadways to public traffic shall conform to the provisions in "Order of Work" and "Maintaining Traffic" of these special provisions.
- B. Prior to closing a roadway to traffic to accommodate bridge removal operations, the Contractor shall have all necessary workers, materials, and equipment at the site as needed to proceed with the removal work in an expeditious manner. While the roadway is closed to public traffic, work shall be pursued promptly and without interruption until the roadway is reopened to public traffic.
- C. Bridge removal operations shall be performed during periods of time that the roadway is closed to public traffic except as specified herein for preliminary work.
- D. Preliminary work shall be limited to operations that will not reduce the structural strength or stability of the bridge, or any element thereof, to a level that in the judgment of the Engineer would constitute a hazard to the public. This preliminary work shall also be limited to operations that cannot cause debris or any other material to fall onto the roadway. Protective covers may be used to perform preliminary work such as chipping or cutting the superstructure into segments, provided the covers are of sufficient strength to support all loads and are sufficiently tight to prevent dust and fine material from sifting down onto the traveled way. Protective covers shall extend at least 4 feet beyond the limit of the work underway. Bottom slabs of box girders may be considered to be protective covers for preliminary work performed on the top slab inside the limits of the exterior girders.
- E. Temporary support shoring and temporary bracing shall be used in conjunction with preliminary work when necessary to ensure the stability of the bridge.
- F. Temporary support shoring, temporary bracing, and protective covers shall not encroach closer than 8 feet horizontally from the edge or 15 feet vertically above any traffic lane or shoulder that is open to public traffic.
- G. During periods when the roadway is closed to public traffic, debris from bridge removal operations may be allowed to fall directly onto the lower roadway provided adequate protection is furnished for all highway facilities. The minimum protection for paved areas shall be a 2-foot-thick earthen pad or a 1-inch-thick steel plate placed over the area where debris can fall. Prior to reopening the roadway to public traffic, all debris, protective pads, and devices shall be removed and the roadway swept clean with wet power sweepers or equivalent methods.

H. The removal operations shall be conducted in such a manner that the portion of the structure not yet removed remains in a stable condition at all times. For girder bridges, each girder shall be completely removed within a span before the removal of the adjacent girder is begun. For slab type bridges, removal operations within a span shall be performed along a front that roughly parallels the primary reinforcing steel.

For bridge removal work that requires the Contractor's registered engineer to prepare and sign the bridge removal plan, the Contractor's registered engineer shall be present at all times when bridge removal operations are in progress. The Contractor's registered engineer shall inspect the bridge removal operation and report in writing on a daily basis the progress of the operation and the status of the remaining structure. A copy of the daily report shall be available at the site of the work at all times. Should an unplanned event occur or the bridge operation deviate from the approved bridge removal plan, the Contractor's registered engineer shall submit immediately to the Engineer for approval the procedure of operation proposed to correct or remedy the occurrence.

REMOVE CONCRETE

Concrete, where shown on the plans to be removed, shall be removed.

The pay quantities of concrete to be removed will be measured by the cubic yard, measured before and during removal operations.

Removing concrete curb, and concrete barrier will be measured by the linear foot, measured along the curb, or barrier, and concrete block wall, concrete crib wall, and concrete retaining wall will be measured by square feet before removal operations.

Concrete removed shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

10-1.32 REMOVAL OF UNDERGROUND STORAGE TANK (UST) SYSTEM, REMOVAL OF UNDERGROUND WASTE OIL TANK SYSTEM, REMOVAL OF HYDRAULIC LIFT, REMOVAL OF REMEDATION\VAPOR EXTRACTION SYSTEM (VES), REMOVAL AND DISPOSAL OF PETROLEUM HYDROCARBON CONTAMINATED SOIL, REMOVAL AND DISPOSAL OF PEA GRAVEL, AND BACKFILLING AND COMPACTION OF SOIL

GENERAL

Summary

This work includes removing underground storage tank systems (UST) including underground waste oil tank, removing hydraulic lifts, removing remediation\vapor extraction system (VES), removal and disposal of petroleum hydrocarbon contaminated soil, removal and disposal of pea gravel, and backfilling and compaction of soil.

Attention is directed to "Destruction of Monitoring Wells and Remediation Wells, and Installation of Monitoring Wells" and "Management of Contaminated Groundwater" of these special provisions.

Site Conditions: Two former gasoline stations located at 26988 Ortega Highway (Chevron West), and at 27112 Ortega Highway (Chevron East) in the City of San Juan Capistrano contain underground storage tanks formerly containing gasoline or diesel fuel and associated conveyance pipelines and dispensers (UST system), underground waste oil tank system, hydraulic lifts, and Vapor Extraction System (VES) that must be removed from the site. Information regarding the Chevron stations is available in the State Water Resources Control Board Geotracker system which can be accessed at http://geotracker.waterboards.ca.gov/. The Chevron West Site Geotracker number is T0605902510. The Chevron East Site Geotracker number is T0605902453.

The number and capacities of facilities on each site are:

Station: "Chevron West" – 26988 Ortega Highway

Fuel UST:	Size: 10,000 gallons	Contents: Gasoline
Waste Oil UST:	Size: 1,000 gallons	
Dispenser Islands:	Dispensers: 4 (total)	
Hydraulic lifts:		
VES		

Station: "Chevron East" – 27112 Ortega Highway

Fuel USTs:	Size: 12,000 gallons	Contents: 3 Gasoline, 1 Diesel
Dispenser Islands:	Dispensers: 6 (total)	

Submittals

Health and Safety Plan (HSP): Submit a project specific HSP, prepared and signed by a Certified Industrial Hygienist (CIH) certified in comprehensive practice by the American Board of Industrial Hygiene, for site personnel, including State personnel, to prevent or minimize worker exposure to chemical, physical, and environmental hazards while performing excavation, removing UST system, removing hydraulic lift, removing remediation\vapor extraction system (VES), handling potentially contaminated soil and UST system residues, monitoring well destruction and re-installation, and management of contaminated groundwater. Submit the HSP to the Engineer at least 20 working days prior to the removal of facilities that are the subject of these provisions.

Permits: Obtain permits from both Orange County Health Care Agency, Environmental Health Division (OCHCA) and Orange County Fire Authority (OCFA) and submit copies to the Engineer before starting removal of the UST system.

The time between cessation of hazardous substance storage and application for UST system closure must not exceed ninety (90) calendar days. Complete an OCHCA UST Facility Modification Application with a scope of work, and a facility plot plan. Submit the application to OCHCA and submit a copy to the Engineer. Pay closure fees and any outstanding fees at the time of application. Submit a copy of the Hazardous Substance Removal Certification issued to the Contractor performing the removal, to the Engineer. Obtain an OCFA Special Event Permit application and pay applicable fees to OCFA.

Tank (and Associated Systems) Removal Work Plan (TRWP): Submit a TRWP to the Engineer and OCHCA a minimum of 20 working days before the start of removal of the facilities that are the subject of these provisions. The TRWP must be prepared by a Professional Geologist (PG) or a Professional Engineer (PE) registered in the State of California with experience in UST removal and site remediation. The TRWP must include:

- 1. procedures and sampling methodology to evaluate the contents of the UST systems;
- 2. procedures for removal of each UST system;
- 3. procedures and sampling methodology to determine if the soil beneath and around each UST system contains contamination requiring excavation and disposal,
- 4. procedures and sampling methodology to determine if groundwater encountered during UST system excavation is contaminated,
- 5. procedures for removal of hydraulic lifts including sample collection and analysis,
- 6. procedures for removal of VES including sample collection and analysis,
- 7. name of the analytical laboratory certified by the CA Department of Public Health Environmental Laboratory Accreditation Program that will perform soil and groundwater analyses,
- 8. waste profile methodology,
- 9. disposal facilities that will be used for the various types of wastes that will be generated
- 10. copy of the Class A Haz license of the firm removing the tanks.

The Engineer will have 20 days to review the TRWP. If revisions are required, as determined by the Engineer, revise and resubmit the TRWP within 7 days of receipt of the Engineer's comments. The Engineer will have 10 days to review the revisions. The final TRWP must address and incorporate review comments issued by the Engineer and OCHCA and must be signed by the PG or a PE. When UST content sampling and analysis is complete and analytical results for residues are available, modify the TRWP in consultation with the Engineer if needed.. Document modifications in an addendum to the TRWP submitted as a letter to the Engineer. Submittal of TRWP and approval by the Engineer does not relieve youfrom the responsibility to adhere to these provisions, unless portions of the provisions are clearly revised by the Engineer in writing.

Analytical Test Results: Submit analytical test results of all soil and water samples analyzed, including chain of custody documentation, for review and acceptance by the Engineer before re-use of soil or removal of soil and water from the site for disposal:

Disposal Documentation: Submit receiving facility documentation of proper disposal of all wastes generated within 5 business days of transport from the project to the Engineer. This includes soil, water, oil, and the hydraulic lifts. Provide a copy of the disposal documentation for wastes generated as part of the UST systems removal to the OCHCA representative.

UST Closure Report: Submit an UST closure report prepared in accordance with the specific reporting requirements of the OCHCA. At a minimum, the report must include a narrative of the removal, a description of the soil sampling, handling, and transport methods, the soil sampling data in table format and a scaled figure (site map). The site map must be to scale and identify sampling locations, designations and depths, UST and piping locations, buildings, and streets. Attach copies of the laboratory reports, chain-of custody documentation, and disposal documentation certificates for all material removed. Submit two copies of the report to the Engineer, and one to the OCHCA.

Fuel Contaminated Soil (FCS) Technical Report: Within 60 days of reuse or disposal of fuel contaminated soils, submit a FCS Technical Report describing the final disposition of all excavated fuel contaminated soil to the Engineer and to the San Diego Regional Water Quality Control Board. The report must describe the removal, reuse and disposal of all excavated fuel contaminated soil.

Certificate of UST Destruction: Provide a certificate of UST destruction for each tank to the OCHCA and submit a copy to the Engineer.

Hydraulic Lift Removal Report: Submit a report documenting hydraulic lift removal and sampling for approval prior to backfilling or covering the lift area. The report must include, at a minimum, a narration of the removal, a description of soil sampling, handling and transportation methods, the soil sampling data in table format, and a scaled figure (site map). Attach copies of the laboratory reports, chain-of custody documentation, and disposal documentation certificates for all material removed.

VES Removal Report: Submit a report documenting the VES removal and sampling within 15 days of the completion of the work. The report must include, at a minimum, a narration of the removal, a description of soil sampling, handling and transportation methods, the soil sampling data in table format, and a scaled figure (site map). Attach copies of the laboratory reports, chain-of custody documentation, and disposal documentation certificates for all material removed.

Quality Control and Assurance

Removal of underground storage tank system (UST), removal of hydraulic lift, removal of remediation vapor extraction system (VES), and management of petroleum hydrocarbon contaminated material must be in conformance with all applicable rules and regulations including, but not limited to, those of the following agencies:

- 1. United States Department of Transportation,
- 2. United States Environmental Protection Agency (US EPA),
- 3. California Environmental Protection Agency,
- 4. California Department of Health Services,
- 5. Department of Toxic Substances Control,
- 6. California Division of Occupational Safety and Health Administration,
- 7. Department of Resources Recycling and Recovery,
- 8. San Diego Regional Water Quality Control Board, Region 9
- 9. Orange County Health Care Agency, Environmental Health Division (OCHCA),
- 10. Orange County Fire Authority (OCFA),
- 11. State Air Resources Control Board,
- 12. South Coast Air Quality Management District (SCAQMD).
- 13. City of San Juan Capistrano Building and Safety Services Division

The work must be conducted by a contractor with a California Contractor's License (C-HAZ). The California Health and Safety Code Section 254040 delegates authority for implementing and enforcing statewide UST system requirements to the local Certified Unified Program Agency (CUPA). The CUPA for this project is the OCHCA. The OCFA must be present during UST system removal activities. Comply with the requirements of OCHCA and OCFA for removal of UST system.

The work must be conducted and generated wastes must be transported and disposed of in conformance with Federal and State laws and regulations, as amended, and county and municipal ordinances and regulations, as amended. Laws and regulations that govern this work include, but are not limited to:

- 1. South Coast Air Quality Management District (SCAQMD), Rule 1166,
- 2. Title 23, California Code of Regulations, Division 3, Chapter 16, Article 7, (Underground Storage Tank Closure Requirements) Sections 2670-2672 (General Applicability, Temporary Closure Requirements, Permanent Closure Requirements),
- 3. Health and Safety Code Section 25298 (Abandonment, Closing, or Temporary Ceasing of Operation of Underground Storage Tank),

- 4. The San Diego Regional Water Quality Control Board (RWQCB), WASTE DISCHARGE REQUIREMENTS FOR THE DISPOSAL AND/OR REUSE OF THE PETROLEUM FUEL CONTAMINATED SOILS (FCS) IN THE SAN DIEGO REGION (ORDER NO. R9-2002-0342),
- 5. Health and Safety Code, Division 20, Chapter 6.5 (California Hazardous Waste Control Act),
- 6. Title 22, California Code of Regulations, Division 4.5 (Environmental Health Standards for the Management of Hazardous Waste), and
- 7. Title 8, California Code of Regulations.

CONSTRUCTION

Before beginning work on the UST removal (including underground waste oil tanks), hydraulic lift removal, VES removal, and well destruction and re-installation, provide Health and Safety training to staff involved in the work and two Caltrans staff, including initial and subsequent training required until completion of the project, and provide a certification of completion to all participants. Submit copies of completion certificates to the Engineer. The Health and Safety training program must communicate the potential health and safety hazards and instruct personnel on procedures for conducting the work safely and minimizing hazards. The level of training provided must be consistent with the personnel's job function, conform to CAL-OSHA regulations, and meet the requirements of the HSP.

Dispose of all excavated material not acceptable as backfill per these special provisions from removal of UST systems, underground waste oil tank system, hydraulic lifts, and VES, Excavation and backfilling must conform to the provisions in Section 19, "Earthwork," of the Standard Specifications and these special provisions. Remove and dispose of any pea gravel encountered during the removal of tanks and other facilities.

UST System Removal (Including Underground Waste Oil Tanks)

Conduct all processes of UST system removal, including permitting, scheduling, UST cleaning and inerting, UST system removal and disposal, soil sampling, and reporting.

Prior to conducting any removal activities, secure the site to prevent unauthorized pedestrian and vehicular access and post "NO SMOKING" signs. Provide appropriate size and number of fire extinguishers on site at all times. Comply with all OCFA requirements.

Schedule UST system removal inspections at least 48 hours in advance with the OCHCA and OCFA or earlier if required by the agencies and notify the Engineer.

Remove and dispose of USTs as non-hazardous waste. USTs removed and transported as non-hazardous waste must be triple-rinsed and certified by a CIH. Do not remove the UST system from the excavation until a copy of the certification for each UST system is presented to the representatives of the OCHCA and OCFA.

UST System Cleaning and Inerting: Comply with the following procedures unless otherwise directed by the Engineer in consultation with the OCHCA and OCFA representatives:

- 1. If the amount of remaining materials in each UST exceeds 60 gallons and is a liquid gasoline or diesel fuel, obtain a flammable content permit. Notify the OCHCA/OCFA 48 hours in advance to schedule the flammable/content removal inspection. Remove as much material from each UST as possible and dispose of properly.
- Purge all piping of materials and vapors by flushing a sufficient quantity of water through all piping back into the USTs. The USTs must be cleaned by pressure washing/rinsing and removal of contents with a vacuum pump system designed for the safe handling of flammable liquids.
- 3. Excavate to expose the USTs and piping, being careful not to puncture the USTs or cause a spark. Only the top of the USTs may be uncovered at this point. Disconnect, but leave in place, all piping in trenches. Equipment and supplies must be readily available to control any vapor emissions, such as bulldozer, back hoe, skip loader, water with an OCHCA/OCFA approved vapor suppressant.
- 4. Access the USTs through existing openings. Do not cut any new, or expand existing, openings without prior approval from a CIH. Only cold cutting on top of USTs with an atmosphere of less than 10 percent of the lower explosive limit (LEL) will be permitted.
- 5. Degass USTs according to OCFA and AQMD regulations. Clean USTs and properly collect waste rinse material for disposal. Continue degassing as necessary. After achieving the acceptable permit level and demonstrating an acceptable level to the Engineer in consultation with the OCHCA and OCFA representatives cut holes on the top of the UST for access as needed. After cleaning and triple rinsing is completed, the USTs must be inspected, certified, and marked by a CIH. An official signed inspection certificate must be shown to the OCFA representative prior to further excavating around the USTs. Complete and show appropriate shipping documentation to the OCHCA/OCFA representatives prior to the rinse waste leaving the site.

- 6. Seepage of groundwater into the UST system excavation is not anticipated. However, should groundwater accumulate in the excavation, remove and dispose of the groundwater as necessary to complete UST system removal activities. Sampling of the groundwater may be required by the OCHCA inspector in accordance with the "Sampling" section of these provisions. Dispose of groundwater in accordance with the requirements outlined in the "Disposal" section of these provisions.
- 7. Upon completion of the excavation, do not remove the UST until the Engineer, in consultation with the OCFA representative, gives approval. An additional LEL or oxygen reading may be necessary at this time. An UST with an oxygen concentration above 10 percent must not be removed and shall require the addition of dry ice (10 pounds per 1,000 gallons of UST capacity).
- 8. A crane is required for removal of all USTs with greater than 550 gallon capacity. After lifting a UST from the excavation, the OCHCA representative will inspect for evidence of a release and determine the overall condition. Upon completion of this evaluation, transfer the UST system to an approved transportation vehicle and properly secure it.
- 9. All fuel piping and electrical wiring associated with the USTs and dispensers must be removed and disposed of properly. After the removal of the USTs, no fuel piping may remain underground.
- 10. Excavated soil must not be used as backfill unless analytical sample results demonstrate that soil is not contaminated above the allowable thresholds established by the San Diego RWQCB.

Sampling: Collect soil samples after removal of each of the UST systems. If groundwater is present in the excavation, collect groundwater samples. Sample in conformance with the approved TRWP or as directed by the Engineer in consultation with the OCHCA representative. Coordinate with the Engineer and the OCHCA representative to meet OCHCA's specific requirements prior to sampling.

Use sample collection, storage, transport, chain of custody procedures, and analytical methods consistent with Chapter 9 of U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846). The analytical laboratory used to perform analytical testing must be certified by the CA Department of Public Health Environmental Laboratory Accreditation Program for all analyses to be performed. Soil samples may only be collected in brass or stainless steel cylinders with caps, using Teflon liners. Label all samples. A sealable cooler, with a cooling material, must be on site prior to the start of any sampling.

A minimum of one sample will be taken from below the fill end and one sample from below the turbine end of each UST. Collect soil samples from at least 2 feet below native soil (not from fill). A separate sample is required from at least 2 feet below native soil beneath each dispenser, and at every 20 linear feet of piping and/or at each joint, bend, or connection. Additional sampling may be required, especially if areas of discoloration or odors are noted by OCHCA.

Sample and analyze soil stockpiled from the UST excavations. A minimum of three discrete samples will be required per each 50 cubic yards of stockpiled soil.

Based on known site conditions, groundwater is not expected to be encountered during excavation of the UST systems. However, be prepared to collect groundwater samples and if groundwater is encountered, collect groundwater samples for analysis as directed by the Engineer in consultation with the OCHCA representative. Analyze all soil and groundwater samples for the contaminants of concern as listed in the following table:

Material in the UST	Contaminants of Concern	US EPA
		Analytical Method
Gasoline	Total Petroleum Hydrocarbons (TPH) (C ₄ -C ₁₂)	8015M
	VOCs (including Benzene, Toluene, Ethylbenzene, and	8260B
	total Xylenes [BTEX] and fuel oxygenates)	
	CA Title 22 Metals (CAM 17)	
		6010B/7000
		series
Diesel	TPH $(C_{10}$ - $C_{24})$	8015M
	VOCs (including BTEX and fuel oxygenates)	8260B
	CA Title 22 Metals (CAM 17)	6010B/7000
		series
Waste Oil	TPH (C ₄ -C ₄₀)	8015 Fuel
		Screen
	VOCs (including BTEX and fuel oxygenates)	8260B
	Semi-VOCs (SVOCs)	8270B
	CA Title 22 Metals (CAM 17)	6010B/7000
		series

Disposal: Dispose of

- 1. residual liquids, solids, and sludges, removed from USTs,
- 2. waste water generated as a result of rinsing the USTs
- 3. soils generated from excavation of UST systems containing contaminants of concern above San Diego RWQCB allowable thresholds as documented in WASTE DISCHARGE REQUIREMENTS FOR THE DISPOSAL AND/OR REUSE OF THE PETROLEUM FUEL CONTAMINATED SOILS (FCS) IN THE SAN DIEGO REGION (ORDER NO. R9-2002-0342)
- 4. groundwater

All disposals must be in accordance with:

- 1. Health and Safety Code Division 20, chapter 6.5,
- 2. Title 22, California Code of Regulations chapter 32, section 6738.1,
- 3. Title 23 California Code of Regulations.

All material disposed must be transported to a facility with an appropriate California permit to receive the waste. Use an appropriate shipping document or bill of lading indicating the amount of material disposed.

Removal of Hydraulic Lifts

Remove and dispose of hydraulic lifts as shown on the plans. Comply with the following procedures:

- 1. Drain all oil from the lift and piping system. Manage the oil in compliance with Health and Safety Code, Division 20, Chapter 6.5. Properly contain and transport the oil using appropriate shipping documents to a California licensed treatment, storage and disposal facility (TSDF) or recycling facility.
- 2. Remove lifts and piping, taking care to prevent releases of residual oil to the ground.
- 3. Transport the lifts to an appropriate disposal facility in accordance with applicable Federal, State, and local requirements. Documentation of the acceptance of each lift should be obtained.
- 4. Collect one soil sample from at least 2 feet below native soil at the base of each lift, and from beneath the former oil supply lines every 20 linear feet of piping and at each joint, bend, and connection.
- 5. Analyze all soil samples for TPH (specify hydraulic oil range) by EPA Method 8015B. The sample with the greatest concentration of TPH must be further analyzed for polychlorinated biphenyls by EPA Method 8082A and for VOCs by EPA Method 8260B.
- 6. Soil stockpiled from the excavation shall be sampled and analyzed for TPH (specify hydraulic oil range). At a minimum, three discrete samples will be required per each 50 cubic yards of stockpiled soil. The Engineer in consultation with the OCHCA representative will direct soil sample collection and will determine the actual number of samples to be collected and analyses to be run for each hydraulic lift removal. Coordinate with the Engineer and the OCHCA representative to meet OCHCA's specific requirements prior to sampling.
- 7. Use sample collection, storage, transport, chain of custody procedures, and analytical methods consistent with Chapter 9 of U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846). The analytical laboratory used to perform analytical testing must be certified by the CA Department of Public Health Environmental Laboratory Accreditation Program for all analyses to be performed. Label all samples. A sealable cooler, with a cooling material, must be on site prior to the start of any sampling.
- 8. Excavated soil must not be used as backfill unless analytical sample results demonstrate that soil is not contaminated above the allowable thresholds established by the San Diego RWOCB.
- 9. Dispose of soils generated from excavation of the hydraulic lifts containing contaminants of concern above San Diego RWQCB allowable thresholds as documented in WASTE DISCHARGE REQUIREMENTS FOR THE DISPOSAL AND/OR REUSE OF THE PETROLEUM FUEL CONTAMINATED SOILS (FCS) IN THE SAN DIEGO REGION (ORDER NO. R9-2002-0342). All disposal must be in accordance with:
 - 9.1 Health and Safety Code Division 20, chapter 6.5,
 - 9.2 Title 22, California Code of Regulations chapter 32, section 6738.1,
 - 9.3 Title 23 California Code of Regulations.

10. All material disposed must be transported to a facility with an appropriate California permit to receive the waste. Use an appropriate shipping document or bill of lading indicating the amount of material disposed.

Removal of Remediation/Vapor Extraction System (VES)

The Remediation/VES is operational on the Chevron West Site. Information regarding the VES is available in the State Water Resources Control Board Geotracker system which can be accessed at http://geotracker.waterboards.ca.gov/. The Chevron West Site Geotracker number is T0605902510. Remove and dispose of the VES including associated piping, wiring and boxes. Comply with the following procedures:

- 1. At a minimum collect two soil samples from the stockpiled soil. Samples must be analyzed for volatile organic compounds, TPH (specify full range) and Title 22 Metals in accordance with U.S. EPA Test Methods 8260, 8015-Modified and 6010, respectively. The analysis will be part of soil profiling for disposal purposes;
- 2. Use sample collection, storage, transport, chain of custody procedures, and analytical methods consistent with Chapter 9 of U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846). The analytical laboratory used to perform analytical testing must be certified by the CA Department of Public Health Environmental Laboratory Accreditation Program for all analyses to be performed. Label all samples. A sealable cooler, with a cooling material, must be on site prior to the start of any sampling.
- 3. Evaluate the results of the soil samples relative to applicable hazardous waste criteria and allowable thresholds established by the San Diego RWQCB.
- 4. Excavated soil must not be used as backfill unless analytical sample results demonstrate that soil is not contaminated above the allowable thresholds established by the San Diego RWQCB.
- 5. Dispose of soils generated from excavation of the VES containing contaminants of concern above hazardous waste criteria or San Diego RWQCB allowable thresholds as documented in WASTE DISCHARGE REQUIREMENTS FOR THE DISPOSAL AND/OR REUSE OF THE PETROLEUM FUEL CONTAMINATED SOILS (FCS) IN THE SAN DIEGO REGION (ORDER NO. R9-2002-0342). All disposal must be in accordance with:
 - 5.1 Health and Safety Code Division 20, chapter 6.5,
 - 5.2 Title 22, California Code of Regulations chapter 32, section 6738.1,
 - 5.3 Title 23 California Code of Regulations.
- 6. All material disposed must be transported to a facility with an appropriate California permit to receive the waste. Use an appropriate shipping document or bill of lading indicating the amount of material disposed.

MEASUREMENT AND PAYMENT

The contract unit price paid for removal of underground storage tank system includes full compensation for furnishing all labor, training, permits, materials, tools, equipment, and incidentals, and for doing all the work involved in managing removal and disposal of the UST system, including removal of all piping that connect the UST system to the related dispensers and all related dispenser piping, preparation and implementation of the Health and Safety Plan, providing safety training, preparation, and implementation of a Tank Removal Work Plan, removal of any soil necessary for this work, shoring, disposal of waste water generated as a result of rinsing operations, and the preparation and submittal of an approved UST system Closure report and related reports and submittals.

The contract unit price paid for removal of hydraulic lift includes full compensation for furnishing all labor, training, materials, testing, tools, equipment, transportation, disposal, fees, reporting, submittals, and incidentals; and for doing all the work involved and related to the removal and disposal including earth work.

The contract unit price paid for removal of remediation\vapor extraction system includes full compensation for furnishing all labor, training, materials, tools, equipment, transportation, disposal of remediation\VES, fees, reporting, submittals, and incidentals; and for doing all the work involved and related to the removal and disposal including earth work.

The contract unit price paid for removal of underground waste oil tank system includes full compensation for furnishing all labor, training, permits, materials, tools, equipment, and incidentals, and for doing all the work involved in managing removal and disposal of the UST system, including removal of all piping, safety training, removal of any soil necessary for this work, shoring, disposal of waste water generated as a result of rinsing operations, and the preparation and submittal of an approved UST system Closure report and related reports and submittals.

The contract price paid per cubic yard of removal and disposal of Petroleum Hydrocarbon contaminated soil includes full compensation for furnishing all labor, training, permits, materials, tools, equipment, testing, reporting, and incidentals, and for doing all the work involved in managing the removal and disposal of all petroleum hydrocarbon contaminated soil including FCS that cannot be reused on site per these special provisions and has to be properly disposed. The contract bid price also includes excavation, sampling, testing analysis, reporting requirements, compliance with necessary agency permits, fees, loading from stockpiles, transporting and disposing of material, including sampling and analysis and reporting requirements as specified in these special provisions, and as directed by the Engineer.

The contract price paid per cubic yard of removal and disposal of Pea Gravel includes full compensation for furnishing all labor, training, permits, materials, tools, equipment, testing, loading, transporting, reporting, incidentals, and for doing all the work involved as specified by these special provisions, and as directed by the Engineer.

The contract price paid per cubic yard for backfilling and compaction of soil includes full compensation for furnishing all labor, training, permits, materials, tools, equipment, incidentals, and for doing all the work involved in backfilling and compaction as specified by these special provisions, and as directed by the Engineer.

10-1.33 DESTRUCTION OF MONITORING WELLS AND REMEDIATION WELLS, AND INSTALLATION OF MONITORING WELLS

GENERAL

Summary

This work includes destruction of groundwater monitoring wells and remediation wells and installation of monitoring wells.

Attention is directed to "Removal of Underground Storage Tank (UST) System, Removal of Underground Waste Oil Tank System, Removal of Hydraulic Lift, Removal of Remediation/Vapor Extraction System (VES), Removal and Disposal of Petroleum Hydrocarbon Contaminated Soil, Removal and Disposal of Pea Gravel, and Backfilling and Compaction of Soil" and "Management of Contaminated Groundwater" of these special provisions.

Site Conditions: Two former gasoline stations are located at 26988 Ortega Highway, San Juan Capistrano (Chevron West), and at 27112 Ortega Highway, San Juan Capistrano (Chevron East). Groundwater monitoring wells and remediation wells must be destroyed prior to construction activities. Replacement monitoring wells must be installed after roadway construction is completed. Information regarding the groundwater monitoring wells and remediation wells at the Chevron stations is available in the information handout and at the following locations:

- State Water Resources Control Board Geotracker system which can be accessed at http://geotracker.waterboards.ca.gov/. The Chevron West Site Geotracker number is T0605902510. The Chevron East Site Geotracker number is T0605902453.
- 2. San Diego Regional Water Quality Control Board (RWQCB) located at 9174 Sky Park Court, Suite 100, San Diego, California, 92123-4340, phone number 858-467-2952.

Submittals

Well Destruction Work Plan: Inspect the work site with the Engineer and identify all monitoring wells to be destroyed. At least 20 days prior to destruction of monitoring and remediation wells, submit a well destruction work plan to the Engineer for approval. The Engineer will have 20 days to review the work plan. If revisions are required by the Engineer, revise and resubmit the work plan within 7 days of receipt of the Engineer's comments. The Engineer will have 10 days to review the revisions. The final work plan must address and incorporate review comments issued by the Engineer. The work plan must be prepared, signed, and sealed by a geologist or civil engineer licensed by the state of California and include:

- 1. map showing well locations and reference features
- 2. explanation of why each well destruction is necessary
- 3. well investigation prior to destruction
- 4. current and valid C-57 license of driller
- 5. well destruction methods and procedures
- 6. equipment and materials
- description of methods that will be used to ensure that the boreholes are properly sealed after well materials are removed
- 8. sampling and analysis of wastes generated
- 9. name and address of the laboratory that will perform chemical analyses,

10. plan to manage, containerize, transport and dispose of wastes

Application for Well Destruction Permit: Complete and submit an Application for Well Destruction permit and pay fees to the Orange County Health Care Agency, Environmental Health Division (OCHCA).

Well Destruction Report: Submit a well destruction report to the OCHCA and the DWR for each well destroyed. Reports must be received by the agencies within 60 days of well destruction. Forms and instructions are accessible at: http://wwwdpla.water.ca.gov/sd/groundwater/wells.html

Well Destruction Summary Report: Within 10 days after destruction of the last well, submit a Well Destruction Summary Report to the Engineer. The Engineer will have 20 days to review the report. If revisions are required by the Engineer, revise and resubmit the report within 7 days of receipt of the Engineer's comments. The Engineer will have 10 days to review the revisions. The report must address all monitoring and remediation wells destroyed. The report must be prepared, signed, and sealed by a geologist or civil engineer licensed by the state of California, document well destruction activities, and include:

- 1. discussion and explanation of deviations from the work plan,
- 2. discussion of unexpected and problematic conditions,
- 3. figures,
- 4. copies of well destruction logs for each well,
- 5. copies of permits for each well,
- 6. copies of Well Destruction Reports submitted to OCHCA and DWR for each well,
- 7. laboratory testing results, chain of custody, and disposal documentation of wastes generated.

Application for Well Construction Permit: Submit an Application for Well Construction permit and pay fees to the OCHCA.

Well Installation Work Plan: Within 20 days after receiving well location from the Engineer, submit a Well Installation Work Plan to the Engineer for approval. The Engineer will have 20 days to review the Well Installation Work Plan. If revisions are required by the Engineer, revise and resubmit the work plan within 7 days of receipt of the Engineer's comments. The Engineer will have 10 days to review the revisions. The final work plan must address and incorporate review comments issued by the Engineer and the RWQCB. For bidding purposes assume that well construction design will be the same as those of the existing monitoring wells on Chevron West. The work plan must comply with site specific design requirements of the RWQCB and include:

- 1. signature and seal of the California licensed geologist or civil engineer who prepared the work plan,
- 2. map showing well locations and reference features,
- 3. well construction methods and procedures,
- 4. soil sampling during drilling and laboratory analysis of samples,
- 5. well design including surface completion and security,
- 6. equipment and materials such as filter pack, screen, and casing,
- 7. well development methods and procedures,
- 8. containment and management of drill cuttings and development water,
- 9. sampling and analysis of wastes generated,
- 10. name and address of the laboratory that will perform chemical analyses,
- 11. current and valid C-57 license of driller
- 12. proper transport and disposal of wastes

Well Completion Report: Submit a well completion report to the OCHCA and the DWR for each well installed. Reports must be received by the agencies within 60 days of well installation. Forms and instructions are accessible at: http://wwwdpla.water.ca.gov/sd/groundwater/wells.html

Well Installation Report: Within 20 days after installation of all monitoring wells, submit a Well Installation Report to the Engineer. The Engineer will have 30 days to review the Well Installation Work Plan. If revisions are required by the Engineer, revise and resubmit the work plan within 7 days of receipt of the Engineer's comments. The Engineer will have 10 days to review the revisions. The final work plan must address and incorporate review comments issued by the Engineer and the RWQCB. The report must be prepared, signed and sealed by a geologist or civil engineer licensed in the state of California, document well installation activities and include:

- 1. discussion and explanation of deviations from the work plan,
- 2. discussion of unexpected and problematic conditions,
- 3. figures including a well location map

- 4. geologic boring logs for each well drilled
- 5. copies of well construction as-built diagrams for each well,
- 6. survey data for each well
- 7. copies of permits for each well,
- 8. copies of Well Completion Reports submitted to OCHCA and DWR for each well,
- 9. laboratory testing results and chain of custody for samples collected during drilling
- 10. laboratory testing results, chain of custody, and disposal documentation of wastes generated.

Quality Control and Assurance

Destruction of monitoring wells and remediation wells and re-installation of monitoring wells must be in conformance with all applicable rules and regulations including, but not limited to, those of the following agencies:

- 1. California Environmental Protection Agency,
- 2. California Department of Health Services,
- 3. California Department of Water Resources,
- 4. California Division of Occupational Safety and Health Administration,
- 5. San Diego Regional Water Quality Control Board, Region 9 (RWQCB)
- 6. Orange County Health Care Agency, Environmental Health Division (OCHCA),

Conduct well destruction and installation in accordance with the Orange County Well Ordinance (County Ordinance No. 2607), the State of California Department of Water Resources (DWR) Southern District California Well Standards – Water Well Standards (Bulletins 74-81 and 74-90), and Water Code, §§ 13750.5–13753.

Laboratories used to perform sample analysis must hold current certification from the CA Department of Public Health Environmental Laboratory Accreditation Program for all analyses to be performed.

MATERIALS

Well Destruction

Unless otherwise required by OCHCA and the RWQCB, sealing materials must be either of the following:

- 1. Neat cement consisting of:
 - 1.1. 94 lb of cement
 - 1.2. Not more than 6 gal of clean water
 - 1.3. Up to 6 percent by weight of bentonite
 - 1.4. 2 percent by weight of calcium chloride
- 2. Bentonite clay

Do not use drilling mud as sealing material.

CONSTRUCTION

Health and Safety

Comply with health and safety and health and safety training requirements in "Removal of Underground Storage Tank (UST) System, Removal of Hydraulic Lift, Removal of Remediation/Vapor Extraction System (VES), Removal of Underground Waste Oil Tank System, Removal and Disposal of Petroleum Hydrocarbon Contaminated Soil, Removal and Disposal of Pea Gravel, and Backfilling and Compaction of Soil" of these special provisions.

Well Destruction

Destroy wells in accordance with the approved Well Destruction Work Plan.

Contact Underground Services Alert (DigAlert) at least 2 business days before beginning well destruction activities for clearance information. Notify the OCHCA at least 2 business days before well destruction activities begin.

Investigate each well prior to destruction. Sound each well before it is destroyed to ensure there are no obstructions that would interfere with destruction. Each well casing must be cleared of any debris before destruction and disposal. Destroy the wells by over-drilling the well casing and annular material to a depth of two feet below the bottom of each casing. All materials within the original borehole, including the well casing, filter pack, and annular seal must be removed. Remove concrete at the wellhead. The borehole must be completely backfilled with

an appropriate sealing material in accordance with DWR Water Well Standards. Place sealing material such that it is placed in one continuous operation. Use methods that prevent jamming, bridging, free fall, or dilution. Do not allow separation of the aggregate and cement. Completely fill the well with sealing material such that the sealing material spills over the casing. At the time of placement, verify that the combined volume of sealing material is at least equal to the volume of the empty well. Do not disturb the well for 48 hours after placing the sealing material. Fill depressions around the well with native material and compact to finish grade. Native material must not contain organic matter.

Contain waste generated by destruction activities in Department of Transportation (DOT) approved 55-gallon drums or bins for disposal at an appropriate receiving facility in accordance with applicable local and state requirements. Sample waste material and analyze in accordance with the receiving facility's requirements.

Transport waste material with a completed shipping document by an appropriately licensed waste hauler.

Well Installation

Construct monitoring wells at the same location as those removed or as directed by the Engineer. Monitoring wells must be constructed to the same elevation as the well removed or as directed by the Engineer.

Install wells in accordance with the approved Well Installation Work Plan.

Contact Underground Services Alert (DigAlert) at least 2 business days before beginning well installation activities for clearance information. Notify the OCHCA at least 2 business days before well installation activities begin.

During drilling collect soil samples in accordance with EPA Method 5035 at 5-foot depth intervals to the total depth explored and perform chemical testing. Analyze samples for total petroleum hydrocarbons by EPA Method 8015B and volatile organic compounds and oxygenates by EPA Method 8260B.

Monitoring wells must be surveyed in accordance with the "California SWRCB, GeoTracker, Survey XYZ, Well Data, and Site Map Guidelines and Restrictions" available at:

http://www.waterboards.ca.gov/ust/electronic_submittal/docs/geotrackersurvey_xyz_4_14_05.pdf.

Secure monitoring wells to prevent tampering. Monitoring wells must be housed in a secure box set in concrete and, if in roadways, driveways, or parking areas, the box must be traffic rated in accordance with the American Association of State Highway and Transportation Officials (AASHTO) Standard for "H-20" truck loadings.

Waste generated by construction activities, including well development wastewater, must be contained in DOT approved 55-gallon drums or bins for storage and disposal in accordance with applicable local and state requirements.

The waste material must be sampled and analyzed in accordance with the receiving facility's requirements.

MEASUREMENT AND PAYMENT

The contract unit price paid for destruction of monitoring well or remediation well includes full compensation for complying with all requirements of this Special Provision, including but not limited to inspection and identification of wells, labor, material, tools equipment, transportation, waste disposal, sampling and analysis, contact and approval with regulatory agencies, payment of fees, permits, preparation of required work plans and reports, data, graphics and incidentals and performing all the work specified in the Standard Specifications and in this special provision.

The contract unit price paid for installation of monitoring well includes full compensation for complying with all requirements of this Special Provision, including but not limited to labor, material, tools equipment, transportation, waste disposal, sampling and analysis, contact and approval with regulatory agencies, payment of fees, permits, preparation of required work plans and reports, data, graphics, survey work, and incidentals and performing all the work specified in the Standard Specifications and in this special provision.

10-1.34 CLEARING AND GRUBBING

Clearing and grubbing shall conform to the provisions in Section 16, "Clearing and Grubbing," of the Standard Specifications and these special provisions.

Vegetation shall be cleared and grubbed only within the excavation and embankment slope lines.

10-1.35 EARTHWORK

Earthwork shall conform to the provisions in Section 19, "Earthwork," of the Standard Specifications and these special provisions.

Lean concrete backfill shall conform to the provisions for slurry cement backfill in Section 19-3.062, "Slurry Cement Backfill," of the Standard Specifications, except that aggregate shall be sand suitable for making commercial quality concrete.

Surplus excavated material shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Where a portion of the existing surfacing is to be removed, the outline of the area to be removed shall be cut on a neat line with a power-driven saw to a minimum depth of 0.17-foot before removing the surfacing. Full compensation for cutting the existing surfacing shall be considered as included in the contract price paid per cubic yard for roadway excavation and no additional compensation will be allowed therefor.

The portion of imported borrow placed within 4 feet of the finished grade shall have a Resistance (R-Value) of not less than 40.

Reinforcement or metal attached to reinforced concrete rubble placed in embankments shall not protrude above the grading plane. Prior to placement within 2 feet below the grading plane of embankments, reinforcement or metal shall be trimmed to no greater than 3/4 inch from the face of reinforced concrete rubble. Full compensation for trimming reinforcement or metal shall be considered as included in the contract prices paid per cubic yard for the types of excavation shown in the Engineer's estimate, or the contract prices paid for furnishing and placing imported borrow or embankment material, as the case may be, and no additional compensation will be allowed therefor.

Imported borrow shall be mineral material including rock, sand, gravel, or earth. The Contractor shall not use man-made refuse in imported borrow including:

- A. Portland cement concrete
- B. Asphalt concrete
- C. Hot mix asphalt
- D. Material planed from roadway surfaces
- E. Residue from grooving or grinding operations
- F. Metal
- G. Rubber
- H. Mixed debris
- I. Rubble

Imported borrow will be measured and paid for by the cubic yard and the quantity to be paid for will be computed in the following manner:

- A. The total quantity of embankment will be computed in conformance with the provisions for roadway excavation in Section 19-2.08, "Measurement," of the Standard Specifications, on the basis of the planned or authorized cross section for embankments as shown on the plans and the measured ground surface.
- B. The Contractor, at the Contractor's option, may compact the ground surface on which embankment is to be constructed before placing any embankment thereon. If the compaction results in an average subsidence exceeding 0.25-foot, the ground surface will be measured after completion of the compaction. The Engineer shall be allowed the time necessary to complete the measurement of an area before placement of embankment is started in that area.
- C. The quantities of roadway excavation, structure excavation and ditch excavation, which have been used in the embankment, will be adjusted by multiplying by a grading factor to be determined in the field by the Engineer. No further adjustment will be made in the event that the grading factor determined by the Engineer does not equal the actual grading factor.
- D. The quantity of imported borrow to be paid for will be that quantity remaining after deducting the adjusted quantities of excavation from the total embankment quantity and then adding a quantity of 100 cubic yards for the anticipated effect of subsidence. No adjustment will be made in the event that the anticipated subsidence does not equal the actual subsidence.
- E. The Contractor may propose a plan whereby the Contractor would be paid on the basis of measured settlement in lieu of the allowance specified above. The proposal shall include complete details of the subsidence-measuring devices and a detailed plan of each installation. If the proposed plan is approved by the Engineer, the Contractor, at the Contractor's expense, shall provide, install and maintain the subsidence-measuring devices. The Engineer will take necessary readings to determine the progress of subsidence, if any, and the Contractor shall provide necessary assistance to make the readings.

- F. Installed devices which are determined by the Engineer to have been damaged will not be used for the determination of subsidence for the area the devices represent in the pattern of approved installations. The subsidence of the area represented by that installation shall be considered zero, regardless of the subsidence measured at other installations.
- G. The volumes required as a result of subsidence will be computed by the average-end-area method from the original measurements and the final measurements, including zero subsidence at all points and for all areas as provided herein. It shall be understood and agreed that the subsidence at the point of intersection of the side slopes (and end slopes at structures) with the ground line as established by the original cross sections shall be considered as zero. Unless otherwise agreed to by the Engineer, the subsidence shall be considered as zero at the points on the cross sections 50 feet beyond the beginning and ending of the instrumented area. The computed volumes for such subsidence will be added to the quantities of embankment measured as specified herein.
- H. Detachable elements of the subsidence-measuring devices which can be salvaged without damage to the work shall remain the property of the Contractor and shall be removed from the highway right of way after final measurements are made.

Settlement periods are required for the roadway embankments at the earth retaining structures listed in the following table.

Surcharge embankments shall be constructed above the bottom of the excavation, as shown on the plans, where listed in the following table.

Earth Retaining Structure Number	Surcharge Height (feet)	Settlement Period (days)
Retaining Wall No. 513	As shown on the plans	180
(Bridge No. 55E0118)	•	

The duration of the required settlement period at each location will be determined by the Engineer. The estimated duration of the settlement periods are listed in the tables of settlement data. The Engineer may order an increase or decrease in any settlement period. An ordered increase or decrease in any settlement period will result in an increase or decrease in the number of contract working days if the settlement period involved is considered to be the current controlling operation in conformance with the provisions in Section 8-1.06, "Time of Completion," of the Standard Specifications. Adjustments of contract time due to increases or decreases in settlement periods will be made by contract change order.

Attention is directed to sub section "Post-construction wall movement monitoring" of "Retaining Structures" of these special provisions for submittals of working drawings.

Soil settlement platforms shall be installed and soil settlement shall be measured at the bottom of excavation at Station 514+75, 515+25, and 515+75 of Retaining Wall No. 513, as shown on the plans. Measurement devices shall be installed according to California Test Method 112.

Soil settlement data shall be collected twice daily (one data at the beginning of work and second data at the end of the work day) during and until the completion of surcharge embankment listed on the table above. Soil settlement data may be collected twice a week if there is no work performed on surcharge embankment. Once the surcharge embankment is completed, soil settlement data shall be collected once a week for a minimum period of six months. Engineer can terminate settlement monitoring during six months, if 90% of soil settlement occurs. All the soil settlement data shall be provided to Engineer as soon as data are collected by the Contractor.

PAYMENT

The contract price paid per cubic yard for surcharge embankment includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing surcharge embankment, complete in place, including removal of surplus embankment material placed as surcharge embankment after the settlement period is finished, disposal of surcharge embankment, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Material resulting from removal of surcharge embankment shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications

Full compensation for installing soil settlement platforms, collecting all the soil settlement data during entire settlement monitoring period, and furnishing all the data to the Engineer shall be considered as included in the contract price paid per square foot for earth retaining structure and no additional compensation will be allowed therefor.

GEOCOMPOSITE DRAIN

Geocomposite drain shall conform to the details shown on the plans and the following:

- A. Geocomposite wall drain shall consist of a manufactured core not less than 0.25 inch thick nor more than 2 inches thick with one or both sides covered with a layer of filter fabric that will provide a drainage void. The drain shall produce a flow rate through the drainage void of at least 2.0 gallons per minute per foot of width at a hydraulic gradient of 1.0 and a minimum externally applied pressure of 3,500 psf.
- B. A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications shall be furnished for the geocomposite drain certifying that the drain produces the required flow rate and complies with these special provisions. The Certificate of Compliance shall be accompanied by a flow capability graph for the geocomposite drain showing flow rates for externally applied pressures and hydraulic gradients. The flow capability graph shall be stamped with the verification of an independent testing laboratory.
- C. Filter fabric for geocomposite wall drain shall conform to the provisions in Section 88-1.02, "Filtration," of the Standard Specifications. Filter fabric shall be Class A.
- D. The manufactured core shall be either a preformed grid of embossed plastic, a mat of random shapes of plastic fibers, a drainage net consisting of a uniform pattern of polymeric strands forming 2 sets of continuous flow channels, or a system of plastic pillars and interconnections forming a semirigid mat.
- E. The core material and filter fabric shall be capable of maintaining the drainage void for the entire height of geocomposite drain. Filter fabric shall be integrally bonded to the side of the core material with the drainage void. Core material manufactured from impermeable plastic sheeting having nonconnecting corrugations shall be placed with the corrugations approximately perpendicular to the drainage collection system.
- F. The geocomposite drain shall be installed with the drainage void and the filter fabric facing the embankment. The fabric facing the embankment side shall overlap a minimum of 3 inches at all joints and wrap around the exterior edges a minimum of 3 inches beyond the exterior edge. If additional fabric is needed to provide overlap at joints and wrap-around at edges, the added fabric shall overlap the fabric on the geocomposite drain at least 6 inches and be attached thereto.
- G. Should the fabric on the geocomposite drain be torn or punctured, the damaged section shall be replaced completely or repaired by placing a piece of fabric that is large enough to cover the damaged area and provide a minimum 6-inch overlap.
- H. Plastic pipe shall conform to the provisions for edge drain pipe and edge drain outlets in Section 68-3, "Edge Drains," of the Standard Specifications.
- I. Treated permeable base to be placed around the slotted plastic pipe at the bottom of the geocomposite drain shall be cement treated permeable base conforming to the provisions for cement treated permeable base in Section 29, "Treated Permeable Bases," of the Standard Specifications and these special provisions.
- J. The treated permeable base shall be enclosed with a high density polyethylene sheet or PVC geomembrane, not less than 10 mils thick, that is bonded with a suitable adhesive to the concrete and geocomposite drain. Surfaces to receive the polyethylene sheet shall be cleaned before applying the adhesive. The treated permeable base shall be compacted with a vibrating shoe type compactor.

MEASUREMENT AND PAYMENT

Geocomposite drain will be measured and paid for by the square foot. The area of geocomposite drain to be paid for shall be measured as the projected area on a vertical surface.

Unless otherwise provided, geocomposite drain placed as shown on the plans or directed by the Engineer will be paid for at the contract price per square foot for geocomposite drain, with no allowance for laps, which price shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and placing the geocomposite drains, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

If structure excavation or structure backfill for bridges is not otherwise designated by type and payment for the structure excavation or structure backfill has not otherwise been provided for in the Standard Specifications or these special provisions, the structure excavation or structure backfill will be measured and paid for as structure excavation (bridge) or structure backfill (bridge), respectively.

If structure excavation or structure backfill for retaining walls is not otherwise designated by type and payment for the structure excavation or structure backfill has not otherwise been provided for in the Standard Specifications or these special provisions, the structure excavation or structure backfill will be measured and paid for as structure excavation (retaining wall) or structure backfill (retaining wall), respectively.

Full compensation for furnishing and installing expanded polystyrene, as shown on the plans, shall be considered as included in the contract price paid per cubic yard for structure backfill (retaining wall) and no additional compensation will be allowed therefor.

Lean concrete backfill will be measured and paid for by the cubic yard as lean concrete backfill in the same manner specified for structure backfill in Section 19-3.07, "Measurement," and Section 19-3.08, "Payment," of the Standard Specifications.

Full compensation for filter fabric, treated permeable base, plastic pipes, and drainage pads located at the bottom of geocomposite drains shall be considered as included in the contract price paid per cubic yard for structure backfill (retaining wall) and no additional compensation will be allowed therefor.

10-1.36 LIGHTWEIGHT FILL (CELLULAR CONCRETE)

The work shall consist of constructing an embankment with lightweight fill (cellular concrete) to the lines, grades, and dimensions shown on the plans, in accordance with the Standard Specifications and these special provisions.

The Contractor shall submit a mix design which will produce a cast density, at point of placement, of maximum 30 pcf with a minimum compressive strength of 60 psi at 28 days for lightweight fill (cellular concrete) Class II and a cast density, at point of placement, of maximum 42 pcf with a minimum compressive strength of 120 psi at 28 days for lightweight fill (cellular concrete) Class IV as shown on the plans. The Contractor shall submit to the Engineer for approval a Work Plan at least 30 working days prior to placement.

The Work Plan shall include the following:

- 1. Material list of items and manufacturer's specifications for those items.
- 2. Mix design(s), including laboratory data using the mix design verifying mass and strength requirements.
- 3. Proposed equipment and procedures including staging of lifts and supports for steel reinforcement.
- 4. Form work for installation of lightweight fill (cellular concrete), including precast concrete wall panels and temporary form systems. Temporary form systems shall conform to the manufacturer's specifications. Form work shall be water tight and must be capable of supporting loads of 3 times the calculated load of the lightweight fill (cellular concrete).

At the Contractor's option, a mix design of the lightweight fill (cellular concrete) having a higher compressive strength than that shown on the plans may be submitted.

Admixtures for accelerating the set time may be used in accordance with the manufacturer's recommendations. Chemical admixtures shall conform to the requirements in ASTM C 494 and shall be in accordance with manufacturer's recommended dosage or as determined by trial mixtures. A foaming agent shall be used and shall be tested in accordance with ASTM C 796 and ASTM C 869. Mixing water shall be potable and free of deleterious amounts of acids, alkali, salts, oils, and organic materials.

Portland cement shall comply with ASTM C 150, Type II. Pozzolans and other cementitious materials may be used when specifically approved by the manufacturer of the foaming agent. For cellular concrete in contact with native soils, the first lift, or a minimum of one foot, Portland cement shall be Type V.

At the point of placement, the density shall be in accordance with the specified cast density. In addition to quality control density tests performed every 30 minutes and recorded onsite, a single cast density test shall represent the lesser of 300 cubic yards or one shift's production.

The compressive strength shall be tested in accordance with ASTM C 796 and ASTM C 495, except as follows:

- 1. Unless otherwise approved by the Engineer, the specimens shall be 3-inch by 6-inch cylinders. During molding, place the concrete in 2 approximately equal layers, and raise and drop the cylinders approximately one inch 3 times on a hard surface after placing each layer. Rodding will not be allowed. Specimens shall be covered and protected immediately after casting to prevent damage and loss of moisture.
- 2. Specimens shall be moist cured in the molds for a period of 7 days prior to the 28-day compressive strength test. Specimens shall not be oven dried.

Lightweight fill (cellular concrete) shall be placed to the designated dimensions and grades as shown on the plans.

Lift thickness for lightweight fill (cellular concrete) shall not exceed 2.5 feet. After curing, any crumbling on the surface shall be removed and the surface scarified before the next lift is placed. The last lift of lightweight fill (cellular concrete) shall not be less than 2 feet.

Each lifts shall be placed to encapsulate steel reinforcement (welded wire fabric) roughly centered. Steel supports for the steel reinforcement shall be provided. No timber supports are allowed.

Longitudinal construction joints are not allowed along the top lift of lightweight fill (cellular concrete).

A minimum 24-hour waiting time between lifts shall be required. If ambient temperatures are anticipated to be below 40°F within 24 hours after placement, the mixing water shall be heated when specifically approved by the manufacturer of the foaming agent, or placement shall be prohibited during such period. Placement shall not be allowed on frozen ground.

Lightweight fill area shall be controlled to maintain consistency. For a given pour the area shall be limited to a volume that can be placed in a 3 hour period. This is typically accomplished using plywood forms.

Lightweight fill (cellular concrete) shall be job site batched, mixed with foaming agent, and placed with specialized and calibrated equipment certified by the manufacturer. Slurry coats and multilayer casting are acceptable methods of installation. Subgrade to receive lightweight fill (cellular concrete) shall be free of all loose and extraneous material. Subgrade shall be uniformly moist, and any excess water standing on the surface shall be removed prior to placing lightweight fill (cellular concrete).

Upper surface of the lightweight fill (cellular concrete) shall be installed in stair stepped lifts and filling in the steps to create a sloping roadway profile, since cellular concrete cannot be placed with a slope. Steps shall be 2 inches, minimum, to 6 inches, maximum. Steps shall be relatively clean and tight with minmal texture.

High points or abrupt corners on steps more than 6 inches shall be surface planed with light equipment, and low points shall be filled in with additional base material, to avoid hard points that may project through and cause cracking of the pavement surface layer.

A minimum of 1 foot of base material is placed between top corners of the steps of the lightweight fill (cellular concrete) and surface of pavement layer.

Construction vehicles and equipment will not be allowed on the final or top lift of the lightweight fill (cellular concrete) until after the lightweight fill (cellular concrete) has attained its full specified compressive strength as shown on the plans. Construction vehicles and equipment shall be at least 6 feet from the edge of the top layer of the lightweight fill (cellular concrete) during construction. Construction vehicles and equipment are not allowed on the intermediate lifts of the lightweight fill (cellular concrete).

Prior to place next lift of lightweight fill (cellular concrete), all intermediate surfaces shall be free of all soil debris and standing water. The top surface of the final layer of lightweight fill (cellular concrete) shall be clean, smooth, and free of depressions or sharp edges.

Placement and compaction of the pavement structural section atop the lightweight fill (cellular concrete) shall not damage the lightweight fill (cellular concrete) or the underlying waterproofing membrane. Sheep foot rollers shall not be used. Damaged areas shall be removed and repaired by the Contractor at the Contractor's expense. Roadway pavement structural section shall not be placed until the lightweight fill (cellular concrete) has attained its full compressive strength. The exposed sides of the lightweight fill (cellular concrete) shall be covered with embankment material compacted to a relative compaction of not less than 90 percent.

Full compensation for furnishing and placing the lightweight fill (cellular concrete) of the types shown on the plans and all the work related to lightweight fill (cellular concrete), including work plan submittals, is included in the contract price paid per square foot for retaining structure, and no separate payment will be made therefor.

10-1.37 RETAINING STRUCTURES

Retaining structures, consisting of precast concrete face panels, welded wire mats, structure backfill and lightweight fill (cellular concrete), shall conform to the details shown on the plans and these special provisions.

Attention is directed to "Precast Concrete Quality Control" of these special provisions.

At the Contractor's option, one of the following acceptable alternative earth retaining systems may be constructed:

Proprietary Earth Retaining System	Address and Phone Number	Web Site
Reinforced Earth – 5 ft square	The Reinforced Earth Company	www.reinforcedearth.com
	1660 Hotel Circle North, Suite 304	
	San Diego, CA 92108	
	(619) 688-2400	
Retained Earth	The Reinforced Earth Company	www.reinforcedearth.com
	1660 Hotel Circle North, Suite 304	
	San Diego, CA 92108	
	(619) 688-2400	

Only one type of earth retaining system shall be used at any one location.

The above list of acceptable alternative earth retaining systems has been selected from the Department's current list of prequalified earth retaining systems and is limited only to those systems determined to have characteristics suitable for this project. Among the alternatives shown, some systems may be proprietary.

The list of prequalified earth retaining systems has been developed from data previously furnished by suppliers or manufacturers of each system. Approval of additional earth retaining systems is contingent on the system meeting the full range of parameters for which prequalification is required. The prequalification requirements are available at:

http://www.dot.ca.gov/hq/esc/Translab/NewProducts/index.htm

WORKING DRAWINGS

If the Contractor elects to use a proprietary earth retaining system from the list of acceptable alternative systems, the Contractor shall submit complete working drawings for each installation of the system in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. For initial review, 5 sets of drawings shall be submitted. After review between 6 and 12 sets, as requested by the Engineer, shall be submitted for final approval and use during construction. Working drawings shall be submitted to the Offices of Structure Design, Documents Unit.

Working drawings shall be 11" x 17" in size, and each drawing and calculation sheet shall include the State assigned designations for the contract number, bridge number, full name of the structure as shown on the contract plans, and District-County-Route-Post Mile. The design firm's name, address, and phone number shall be shown on the working drawings. Each sheet shall be numbered in the lower right hand corner and shall contain a blank space in the upper right hand corner for future contract sheet numbers.

The Contractor shall verify the existing ground elevations at the site before preparing the working drawings. The working drawings shall contain all information required for the proper construction of the system at each location including existing ground line at face of wall as verified at the site and any required revisions or additions to drainage systems or other facilities. The working drawings shall include "General Notes" that contain design parameters, material notes, and wall construction procedures. The working drawings shall be stamped and signed by an engineer who is registered as a Civil Engineer in the State of California. The Contractor shall allow the Engineer 30 days to review the drawings after a complete set has been received.

Unless otherwise specified, at the completion of each structure for which working drawings were submitted and if the work detailed in these working drawings is permanent, the Contractor shall submit to the Engineer one set of corrected as-built prints 11" x 17" in size and on 20-pound (minimum) bond paper, showing as built conditions. Asbuilt drawings that are common to more than one structure shall be submitted for each structure.

MATERIALS

Earthwork

Excavation and backfill shall conform to the details shown on the plans, the provisions in Section 19, "Earthwork," of the Standard Specifications, and these special provisions.

Structure backfill for retaining structures with soil reinforcement shall be free of organic material and substantially free of shale or other soft materials of poor durability. Structure backfill shall not contain slag aggregate or recycled materials such as glass, shredded tires, portland cement concrete rubble, asphaltic concrete rubble, or other unsuitable material as determined by the Engineer.

Structure backfill for retaining structures with soil reinforcement shall conform to the following requirements:

Gradation Requirements			
Sieve Size	Percentage Passing	California Test	
6"	100	202	
3"	78-100	202	
No. 4		202	
No. 30	0-60	202	
No. 200	0-15	202	

Property Requirements			
Test	Requirement	California Test	
Sand Equivalent	12 minimum	217	
Plasticity Index	6 maximum	204	
Minimum Resistivity	2000 ohm-cm	643	
Chlorides	< 250 ppm	422	
Sulfates	< 500 ppm	417	
pН	5.5 to 10.0	643	

If 12 percent or less passes the No. 200 sieve and 50 percent or less passes the No. 4, the Sand Equivalent and Plasticity Index requirements shall not apply.

Permeable material shall be used for the portion of the structure backfill for retaining structures with soil reinforcement within the limits shown on the plans. Permeable material shall be Class 1, Type B, conforming to the provisions in Section 68-1.025, "Permeable Material," of the Standard Specifications.

Permeable material for retaining structures with metallic soil reinforcement shall conform to the following requirements:

Property Requirements		
Test	Requirement	California Test
Minimum Resistivity	2000 ohm-cm	643
Chlorides	< 250 ppm	422
Sulfates	< 500 ppm	417
рН	5.5 to 10.0	643

Water used for earthwork or dust control within 500 feet of retaining structures with metallic soil reinforcement shall conform to the provisions for water in Section 90-2.03, "Water," of the Standard Specifications.

Concrete

Concrete used in precast and cast-in-place reinforced concrete members of retaining structures shall conform to the details shown on the plans, the provisions in Section 51, "Concrete Structures," of the Standard Specifications, and these special provisions.

The concrete leveling pads for the retaining structures shall conform to the provisions in Section 90-10, "Minor Concrete," of the Standard Specifications.

Reinforcement

Reinforcement shall conform to the provisions in Section 52, "Reinforcement," of the Standard Specifications and these special provisions.

Galvanizing

Soil reinforcement, connecting elements, and other steel components that are in contact with the earth shall be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications.

Inspection Elements

If a proprietary alternative system is selected, inspection elements representative of the particular soil reinforcement shall be furnished in the same number and approximate location as shown on the plans for the MSE system.

When metallic soil reinforcement is used, the threaded end of the inspection wire may be formed before or after galvanizing. The end 4 inches of the wire shall be coated with two applications of an approved unthinned commercial quality zinc-rich primer (organic vehicle type). The threaded end of the wire shall be encapsulated with corrosion inhibiting, mastic filled, round vinyl enclosure secured with a nylon tie as shown on the plans. If the threaded end is galvanized after threading, the threads shall be cleaned before painting. There shall be no damage to the unthreaded portion of the galvanized inspection wire.

Drainage System

The drainage system shall conform to the details shown on the plans and these special provisions.

Perforated plastic pipe underdrains, underdrain outlets, risers, and plastic pipes (slotted and unslotted) shall conform to the provisions in Section 68-1, "Underdrains," of the Standard Specifications.

Filter fabric shall conform to the provisions in Section 88-1.02, "Filtration," of the Standard Specifications and these special provisions. Filter fabric shall be Class A.

Adhesive for bonding filter fabric to concrete panels shall be commercial grade.

Soil Reinforcement

Soil reinforcement shall conform to the details shown on the contract plans, the approved working drawings, the preapproved proprietary system details, and these special provisions.

W15 and W25 steel wire shall conform to the requirements in ASTM Designation: A 82/A 82M. The welded wire mat shall conform to the requirements in ASTM Designation: A 185/A 185M. D11 and D20 deformed steel wire may be substituted for W11 and W20 steel wire, respectively. The welded wire mat utilizing deformed steel wire shall conform to the requirements in ASTM Designation: A 496/A 496M and ASTM Designation: A 497/A 497M.

The button on button-head wires shall conform to the provisions in Section 50-1.05, "Prestressing Steel," of the Standard Specifications.

The coupler at the wire mat connection shall be a seamless steel sleeve. The coupler shall be applied over the button-head wires and swaged by means of a hydraulic press. The coupler shall develop the minimum tensile strength of the wire without exceeding a total slip of the wires of 3/16 inch.

Sample button-head wire and coupler connectors shall develop the minimum tensile requirements for W15 and W25 steel wire in ASTM Designation: A 82/A 82M without exceeding a total slip of the wires of 3/16 inch when tested in conformance with the provisions for tension testing of round wire samples in ASTM Designation: A 370. When D15 and D25 deformed steel wire are substituted, samples shall develop the minimum tensile requirements contained in ASTM Designation: A 496/A 496M. An independent testing laboratory shall perform button-head wire and coupler connection testing. Samples shall consist of 2 button-head wires each 24 inches long connected by a swaged coupler.

Prior to the start of wall construction, the Contractor shall furnish test results to the Engineer from tension and slip tests conducted on 6 proposed button-head wire and coupler connections. Failure of any of the proposed button-head wire and coupler connector samples to meet the slip and tensile strength requirements herein shall require the connection be redesigned by the Contractor.

No installation of face panels shall be allowed until the Contractor has successfully completed tension and slip testing for proposed button-head wire and coupler connectors.

During wall construction, the Contractor shall furnish test results to the Engineer from tension and slip testing of 4 samples of production button-head wire and coupler connections for each lot of 500 individual mat wire connections incorporated into the work. Production testing shall consist of testing each of the 4 sample connections for both slip and tensile requirements herein. If 2 or more of the production samples fail to meet slip or tensile test requirements, the entire lot represented by these samples shall be rejected. If one of the production samples fails to meet slip or tensile test requirements, an additional 4 samples shall be tested. Should any of the additional samples fail to meet the slip or tensile requirements, the entire lot represented by these samples shall be rejected.

Splicing of the welded wire mat along its length shall be by mechanical coupler that shall develop the minimum tensile strength of the wire. The mechanical coupler shall be approved by the Engineer.

Geogrid soil reinforcement roll identification, storage, and handling shall be in accordance with ASTM Designation: D 4873, and as specified in the preapproved proprietary details. The geogrid shall be shipped and stored such that the material is not placed directly on the ground. The geogrid shall be covered and protected at all times during shipment and storage such that it is fully protected from UV radiation including sunlight, site construction damage, precipitation, chemicals, flames including welding sparks, temperatures less than 20 °F or greater than 140 °F, or other conditions that may damage the physical property values of the geogrid. The Contractor shall prevent foreign materials from coming into contact with or affixing to the geogrid.

CONSTRUCTION

Retaining structures shall be constructed to the lines, grades, and details shown on the plans, and shall conform to these special provisions.

Earthwork

Attention is directed to "Lightweight fill (Cellular concrete)" of these special provisions.

The foundation for the structure shall be graded level for a width equal to the length of soil reinforcement elements plus 12 inches or as shown on the contract plans. The foundation material shall be compacted to a relative compaction of not less than 95 percent. The Engineer shall approve the compacted foundation area prior to commencement of wall construction.

The Contractor shall remove unsuitable material as determined and directed by the Engineer. This work shall be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

Structure backfill material shall be placed and compacted simultaneously with the erection of the facing panels. Placement and compaction shall be accomplished without distortion of the soil reinforcement or displacement of facing panels. Structure backfill at the front of the wall shall be completed prior to backfilling more than 15 feet above the bottom of the lowermost face element.

Vertical and horizontal alignment tolerances of panels shall not exceed 3/4 inch when measured along a 10-foot straightedge. The maximum allowable offset in any panel joint shall not exceed 3/4 inch.

Structure backfill for retaining structures with soil reinforcement shall be compacted to a relative compaction of not less than 95 percent.

A relative compaction of not less than 95 percent shall be obtained for embankment under retaining structures with soil reinforcement within the limits established by inclined planes sloping 1.5:1 (horizontal:vertical) out and down from lines one foot outside the bottom limits of the structure, including permeable material when required.

Soil reinforcement shall be tensioned in the direction perpendicular to the wall face with enough force to remove any slack in the connection or in the soil reinforcement itself. Soil reinforcement shall be secured in place to prevent movement during placement of additional soil reinforcement and structure backfill until the initial lift of structure backfill is compacted.

Soil reinforcement shall be covered with structure backfill during the same work shift that it is placed.

Placement and compaction of structure backfill shall begin one foot from the back face of wall panels and progress towards the free end of the soil reinforcement. Compaction equipment shall be operated parallel to the wall facing. The remaining width of backfill behind the wall panels shall be placed and compacted after soil reinforcement has been covered to a depth of 6 inches.

Sheepsfoot or grid-type rollers shall not be used for compacting material within the limits of the soil reinforcement. Hand-held or hand-guided compacting equipment shall be used to compact structure backfill material within 3 feet of the facing panels.

Construction equipment shall not be operated directly on the soil reinforcement. A layer of structure backfill material not less than 6 inches in thickness shall be maintained between the soil reinforcement and construction equipment of any type.

Structure backfill material for retaining structures with geogrid soil reinforcement shall be placed in lifts not to exceed 6 inches where hand-operated compacting equipment is used and 8 inches where heavy compaction equipment is used.

At each level of the soil reinforcement the structure backfill shall be constructed to a plane 2 inches above the elevation of the soil reinforcement connection and shall start 3 feet from the back of the face panel and extend for at least the remaining length of soil reinforcement. This grading shall be complete before placing the next layer of soil reinforcement.

Permeable material and filter fabric shall be placed along with structure backfill as shown on the plans. Permeable material shall be placed in layers not exceeding 2 feet in thickness. Compaction of the permeable material for the drainage system outside the limits of the soil reinforcement is not required, and equipment shall not be operated directly on the permeable material or filter fabric. If a sloped layer of permeable material is placed to facilitate the work or to satisfy safety considerations, the vertical limits of permeable material shall remain unchanged and the thickness of the layer of permeable material shall be measured normal to the slope.

The Contractor shall grade the reinforced backfill to rapidly drain away from the wall face at the end of each work shift. Berms or ditches shall be provided to direct runoff away from the wall site. The Contractor shall not allow surface runoff from adjacent areas to enter the wall construction site.

Filter Fabric

Filter fabric shall be placed at the locations and in conformance with the details shown on the plans and these special provisions.

Immediately prior to placing filter fabric, the subgrade to receive the filter fabric shall conform to the compaction and elevation tolerance specified for the material involved and shall be free of loose or extraneous material and sharp objects that may damage the filter fabric during installation.

Concrete panel surfaces to receive filter fabric shall be dry and thoroughly cleaned of dust and deleterious materials.

Filter fabric shall be handled and placed in conformance with the manufacturer's recommendations.

Filter fabric shall be stretched, aligned, and placed in a wrinkle-free manner.

Adjacent borders of filter fabric shall be stitched or overlapped from 12 inches to 18 inches. The preceding roll shall overlap the following roll in the direction the material is being spread or shall be stitched. When filter fabric is joined by stitching it shall be stitched with yarn of a contrasting color. The size and composition of the yarn shall be as recommended by the filter fabric manufacturer. The stitches shall number 5 to 7 per inch of seam.

If the filter fabric is damaged during installation, it shall be repaired by placing a piece of filter fabric that is large enough to cover the damaged area and that meets the overlap requirement.

During spreading of the permeable material, a minimum of 6 inches of the material shall be maintained between the filter fabric and the Contractor's equipment. Where structure backfill material is to be placed on filter fabric, a minimum of 18 inches of structure backfill material shall be maintained between the filter fabric and the Contractor's equipment. Equipment or vehicles shall not be operated or driven directly on filter fabric.

Concrete

Concrete for the leveling pads shall be placed at least 24 hours prior to erecting face panels.

Attention is directed to "Architectural Texture (Textured Concrete)" of these special provisions.

After placement of an inspection element and placement of backfill to a level at least 2 feet above the inspection element, the void in the face panel shall be dry packed with mortar as shown on the plans. Dry pack shall conform to the provisions in Section 51-1.135, "Mortar," of the Standard Specifications, except that the proportion of cementitious material to sand shall be that required to achieve a 28-day mortar compressive strength of 1000 psi to 1500 psi.

Proprietary Earth Retaining Systems

If the Contractor elects to construct one of the acceptable proprietary alternative earth retaining systems, the structure shall be constructed to the lines and grades shown on the plans. Vertical and horizontal alignment shall be checked at every course throughout the erection process. The construction shall include a drainage system where shown on the plans, and shall conform to the details shown on the approved working drawings, approved proprietary system details, and these special provisions.

The Contractor shall supply a Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications stating the supplied material meets the respective index criteria set forth when the proprietary alternative earth retaining system was prequalified by the Department, as measured in accordance with all test methods and standards specified in the Standard Specifications, these special provisions, and the approved working drawings.

A qualified representative of the proprietary earth retaining system manufacturer shall be present during erection and backfill of the first 10 feet of height of the entire length of the wall and shall be available during any remaining installations. The manufacturer's representative shall not be an employee of the Contractor.

Alternative earth retaining structures shall be constructed to accommodate the wall-mounted lighting, the wall mounted drainpipe, and the panels for future drainage inlets, as shown on the plans.

The top of wall profile of alternative earth retaining systems shall conform to the profile shown on the plans. The bottom of wall elevations or face panels shall be at or below the elevations shown on the plans. The height and length to be used for any system shall be the minimums for that system that will effectively retain the earth behind the structure for the loading conditions and the contours, profile, or slope lines shown on the plans. The length of soil reinforcement for any system shall be not less than that shown on the plans. In addition, if the plans or special provisions indicate limiting parameters for alternative systems, the system shall conform to those parameters.

The top of face panels, assuming no leveling pad settlement, shall be covered by the coping lip or concrete barrier slab lip at a minimum of 7 inches.

The top level of soil reinforcement shall be placed parallel to the top of the concrete panel at a distance below the top of the wall as shown on the plans. The top level of soil reinforcement shall also be (1) placed a minimum of 3 inches below the bottom of the barrier slab lip or the bottom of the concrete gutter behind coping and (2) placed a minimum of 5 inches below the top edge of the concrete panel.

POST-CONSTRUCTION WALL MOVEMENT MONITORING

The Contractor shall submit a complete working drawing submittal for wall movement monitoring for Retaining Wall No. 513 to the Offices of Structure Design in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Working drawings shall be 11" x 17" in size. For initial review, 3 sets of drawings shall be submitted. After review, between 3 and 6 sets, as requested by the Engineer, shall be submitted to Offices of Structure Design for final approval and use during construction.

The working drawing submittal for wall movement monitoring shall contain all information required for the construction and quality control of the wall movement monitoring, including plan showing the exact locations of monitoring points, and description of the devices used for monitoring.

The Contractor shall allow the Engineer 3 weeks to review the working drawings after a complete submittal has been received.

All the monitoring shall be measured along the retaining wall at Stations 514+75, 515+25, and 515+75. Monitoring shall be started once the retaining wall is constructed. Wall settlements, rotation and lateral movement at top of the walls shall be measured. In addition wall rotation and lateral movement shall be measured at the points located on the face of the walls at one-third height from the finish grade.

Frequency of collecting the data are shown below on the table:

Time period	Frequency of
	data collection
First 3 months	weekly
3 to 9 months	biweekly
9 to 21 months	monthly
Until Engineer	Once every 4
recommends to terminate	months
monitoring	

All the movement monitoring data shall be provided to Engineer as soon as data are collected by the Contractor.

MEASUREMENT AND PAYMENT

Retaining structure will be measured and paid for by the square foot. Regardless of the type of retaining structure actually constructed, the square foot area for payment will be based on the length and vertical height of each section of system shown on the plans that was or would have been constructed. The vertical height of each section will be taken as the difference in elevation on the outer face from the top of leveling pad to the top of face panel.

The contract price paid per square foot for retaining structure at each location shown on the plans shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the retaining structure and inspection elements, including earthwork, lightweight fill (cellular concrete), leveling pad, coping, bearing pads, and drainage systems, roughening back of concrete face panels, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract price paid per cubic yard for permeable material of the types shown in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in backfilling completely, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for submitting working drawings for wall movement monitoring, installing wall movement monitoring points, collecting all the wall movement monitoring data during entire settlement monitoring period, and furnishing all the data to the Engineer shall be considered as included in the contract price paid per square foot for retaining structure and no additional compensation will be allowed therefor.

Full compensation for furnishing and testing sample mechanical connectors shall be considered as included in the contract price paid per square foot for retaining structure, and no separate payment will be made therefor.

Full compensation for revisions to the barrier support, drainage system, or other facilities made necessary by the use of an alternative earth retaining system shall be considered as included in the contract price paid per square foot for retaining structure, and no separate payment will be made therefor.

The contract price paid per cubic yard for structural concrete, barrier slab shall include full compensation for furnishing all labor, materials including bar reinforcing steel, tools, equipment, and incidentals, and for doing all the work involved in constructing the barrier slab, including treated permeable base, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.38 CONTROLLED LOW STRENGTH MATERIAL

Controlled low strength material shall consist of a workable mixture of aggregate, cementitious materials, and water and shall conform to the provisions for slurry cement backfill in Section 19-3.062, "Slurry Cement Backfill," of the Standard Specifications and these special provisions.

At the option of the Contractor, controlled low strength material may be used as structure backfill for pipe culverts, except that controlled low strength material shall not be used as structure backfill for culverts having a diameter or span greater than 20 feet.

When controlled low strength material is used for structure backfill, the width of the excavation shown on the plans may be reduced so that the clear distance between the outside of the pipe and the side of the excavation, on each side of the pipe, is a minimum of 12 inches. This minimum may be reduced to 6 inches when the height of cover is less than or equal to 20 feet or the pipe diameter or span is less than 42 inches.

Controlled low strength material in new construction shall not be permanently placed higher than the basement soil. For trenches in existing pavements, permanent placement shall be no higher than the bottom of the existing pavement permeable drainage layer. If a drainage layer does not exist, permanent placement in existing pavements shall be no higher than one inch below the bottom of the existing asphalt concrete surfacing or no higher than the top of base below the existing portland cement concrete pavement. The minimum height that controlled low strength material shall be placed, relative to the culvert invert, is 0.5 diameter or 0.5 height for rigid culverts and 0.7 diameter or 0.7 height for flexible culverts.

When controlled low strength material is proposed for use, the Contractor shall submit a mix design and test data to the Engineer for approval prior to excavating the trench for which controlled low strength material is proposed for use. The test data and mix design shall provide for the following:

- A. A 28-day compressive strength between 50 pounds per square inch and 100 pounds per square inch for pipe culverts having a height of cover of 20 feet or less and a minimum 28-day compressive strength of 100 pounds per square inch for pipe culverts having a height of cover greater than 20 feet. Compressive strength shall be determined in conformance with the requirements in ASTM Designation: D 4832.
- B. Cement shall be any type of portland cement conforming to the requirements in ASTM Designation: C 150; or any type of blended hydraulic cement conforming to the requirements in ASTM Designation: C 595M or the physical requirements in ASTM Designation: C 1157M. Testing of cement will not be required.
- C. Admixtures may be used in conformance with the provisions in Section 90-4, "Admixtures," of the Standard Specifications. Chemical admixtures containing chlorides as Cl in excess of one percent by weight of admixture, as determined in conformance with the requirements of California Test 415, shall not be used. If an air-entraining admixture is used, the maximum air content shall be limited to 20 percent. Mineral admixtures shall be used at the Contractor's option.

Materials for controlled low strength material shall be thoroughly machine-mixed in a pugmill, rotary drum or other approved mixer. Mixing shall continue until the cementitious material and water are thoroughly dispersed throughout the material. Controlled low strength material shall be placed in the work within 3 hours after introduction of the cement to the aggregates.

When controlled low strength material is to be placed within the traveled way or otherwise to be covered by paving or embankment materials, the material shall achieve a maximum indentation diameter of 3 inches prior to covering and opening to public traffic. Penetration resistance shall be measured in conformance with the requirements in ASTM Designation: D 6024.

Controlled low strength material used as structure backfill for pipe culverts will be considered structure backfill for compensation purposes.

10-1.39 LIGHTWEIGHT FILL (EPS GEOFOAM)

GENERAL

Summary

This work includes supplying and placing Expanded Polystyrene (EPS) Geofoam blocks and Gasoline Resistant Geomembrane (GRG) for lightweight fill (EPS Geofoam).

Reference

ASTM D 6817- Standard Specification for Rigid, Cellular Polystyrene Geofoam.

Submittals

Submit a Certificate of Compliance for EPS Geofoam blocks and Gasoline Resistant Geomembrane (GRG) to the Engineer under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

Submit EPS Geofoam manufacturer's product literature and Technical Data, including the physical properties in compliance with ASTM D6817 Type specified, and 10-year physical property warranty.

Submit shop drawings to the Engineer for approval before fabricating EPS Geofoam blocks. Show the layout of all EPS blocks in each layer. Match plan details and construction requirements.

Submit summary of the manufacturer's test compliance with specified performance characteristics and physical properties.

Manufacturer shall supply a product certificate showing evidence of Third Party Quality Control.

MATERIALS

Expanded Polystyrene (EPS) Geofoam Blocks

Except as specified herein, EPS geofoam block material need to meet or exceed the requirements of the ASTM D6817, Type EPS29. Manufacturer's standard size EPS geofoam blocks measuring approximately 2-ft x 4-ft x 8-ft are acceptable. Use custom-cut or field-cut blocks for irregular slope areas and roadway subgrade geometrics.

EPS geofoam block must comply with:

Physical Property	ASTM	Acceptance Value
	Designation	
Density	C 303	1.5 lb/ft ³ Minimum
		2 lb/ft ³ Maximum
Compressive	D 1621	14.5 psi Minimum
Strength (at 1%		
deformation)		
Flexural Strength	C 203	43.5 psi Minimum
Tensile Strength	D 1623	20 psi Minimum
Water Absorption	C 272	2.0% Maximum by
		Volume

Gasoline Resistant Geomembrane (GRG)

GRG must be a reinforced or unreinforced tri-polymer membrane manufactured from polyvinyl chloride (PVC), ethylene interpolymer alloy and polyurethane, or a comparable polymer combination. GRG must confine spilled liquid hydrocarbons, including gasoline, diesel fuel, kerosene, hydraulic fluid, methanol, ethanol, mineral spirits, and naptha. GRG must cover and closely conform to 90-degree edges and corners of EPS blocks at ambient temperatures down to 45°F, without applying heat.

Physical Property	ASTM Designation	Acceptance Value ¹
Unleaded Gasoline	D 814	0.4 oz./ft ² Maximum per
Permeability		24 hours
Thickness	D 751 ²	28 mils Minimum
Grab Tensile Strength (1"	D 751 ²	600 lbf Minimum in
grip, 4" x 8" sample)		each direction
Tensile Strength	D 1623	20 psi Minimum
Elongation at break	D 4632 ²	20 percent Minimum
Toughness (Percent	N/A	14,000 lbf Minimum
elongation x Grab Tensile		
Strength)		
Puncture Resistance (ball	D 751 ³	800 lbf Minimum
tip)		
Cold Crack Resistance (1"	D 2138 ²	Pass at -30°F
mandrel, 4 hours)		
Factory Produced Seams,	D 751 ⁴	1.25" Minimum
Bonded Width		
Factory Produced Seams,	D 751 ⁴	320 lbf Minimum
Shear Strength		
Field Produced Seams,	D 5641	Pass
Vapor Tight Seal		
10		1

¹Specified as Minimum or Maximum, not average roll properties.

CONSTRUCTION

Comply with approved shop drawings and construction details. Comply with manufacturer's instructions for handling, seaming and placement of materials.

Prevent mechanical damage to EPS block during delivery, storage and construction. Protect EPS block from petroleum products and ultraviolet light exposure. During construction, if EPS block in the fill area will be exposed to sunlight more than 12 hours, cover EPS block with a temporary material that blocks ultraviolet light. Weigh down cover material completely to prevent exposure to sunlight.

Replace damaged EPS block at your expense. Replace or perform authorized repairs on GRG at your expense. Do not operate construction equipment directly on GRG or EPS block.

Conform to Section 19, "Earthwork" of the Standard Specifications for subgrade. Remove loose or extraneous materials and sharp protruding objects.

If soil materials larger than the No. 4 sieve are encountered in the subgrade then the Contractor shall place 0.5 foot of clean sand bedding prior to placing the Geomembrane and the EPS block. Contractor shall place 0.5 feet of sand bedding over EPS beneath protective layer.

Completely encase EPS block within GRG. Bond all GRG field seams using an electrically-heated hot-wedge device, following manufacturer's instructions. Produce vapor-tight seams. Do not use hot air extrusion welding devices or solvent bonding chemicals. Cool field seams to below 165°F before placing GRG in contact with EPS block.

Place roadway structural section materials over completed lightweight fill (EPS block) system. Placement method shall meet manufacturer's specifications and shall not damage EPS block or GRG.

Construct lightweight fill (EPS block) to the lines, grades and dimensions shown on the plans. The horizontal surface of each layer of EPS blocks shall be level across the planned slope of each layer, with a maximum vertical grade differential of ± 0.05 -foot over any 10-foot interval.

²Or ASTM test method appropriate for specific polymer.

³Or FTMS 101C, Method 2065.

⁴Modified per NSF Standard No. 54.

Fit blocks accurately against adjacent blocks. Maximum distance between vertical joints is 0.05-foot.

Minimum thickness of any EPS block layer is 0.5-foot. Adjust EPS block dimensions to meet plan excavation and roadway subgrade geometrics and elevations.

Rotate the long axis of EPS blocks horizontally 90 degrees to adjacent layers. Minimize continuous joints by offsetting the edges of EPS blocks in adjacent layers.

Use timber fasteners or glue recommended by the EPS block manufacturer to prevent EPS blocks from sliding along horizontal joints. Timber fasteners must have 16 prongs on opposite sides of the fastener. Prongs must be 1-inch apart on center and must penetrate 1/2-inch into EPS block layers above and below the horizontal joint. Place timber fasteners at least 0.75-foot from edges of EPS blocks.

Construct glue joints as recommended by the manufacturer. If glue joints require testing, they must develop a minimum of 12.3 psi shear strength in accordance with ASTM D 732 test procedures.

Construct the topmost surface of lightweight fill (EPS block) to a tolerance of ±0.3-foot of finished grade.

MEASUREMENT

The contract item for gasoline resistant geomembrane is measured by the square yard for the actual area placed. The contract item for lightweight fill (expanded polystyrene block) is measured by the cubic yard on the basis of the planned or authorized quantity for planned areas.

PAYMENT

The contract price paid per square yard for gasoline resistant geomembrane includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing Gasoline Resistant Geomembrane, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract price paid per cubic yard for lightweight fill (Expanded Polystyrene Block) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing lightweight fill (Expanded Polystyrene Block), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.40 EROSION CONTROL (COMPOST BLANKET)

GENERAL

Summary

This work includes removing and disposing of weeds, applying erosion control materials seed and compost to erosion control (compost blanket) areas shown on the plans.

Comply with Section 20-3, "Erosion Control," of the Standard Specifications.

The Engineer will designate the ground location of all erosion control (compost blanket) areas in increments of one acre or smaller by directing the placing of stakes or other suitable markers. Furnish all tools, labor, materials, and transportation required to adequately indicate the various erosion control (compost blanket) locations.

MATERIALS

Seed

Seed not required to be labeled under the California Food and Agricultural Code shall be tested for purity and germination by a seed laboratory certified by the Association of Official Seed Analysts or by a seed technologist certified by the Society of Commercial Seed Technologists. Measure and mix individual seed species in the presence of the Engineer.

Seed must contain at most 1.0 percent total weed seed by weight.

Deliver seed to the job site in unopened separate containers with the seed tag attached. Containers without a seed tag attached will be rejected. The Engineer takes a sample of approximately one ounce or 0.25 cup of seed for each seed lot greater than 2 pounds.

Seed Mix (Type I)

Botanical Name	Percent Germination	Pounds Pure Live Seed Per Acre
(Common Name)	(Minimum)	(Slope Measurement)
Festuca rubra ¹	40%	30
(Red Fescue)		
Clarkia rubicunda ¹	30%	2
(Herald of Summer)		
Coreopsis bigelovii ¹	30%	1
(Bigelow's Coreopsis)		
Eschscholzia californica ¹	40%	3
(California Poppy)		
	Total	36

Applicable when numbers below are shown after a Botanical Name/(Common Name) above:

Seed Mix (Type II)

Botanical Name (Common Name)	Percent Germination (Minimum)	Pounds Pure Live Seed Per Acre (Slope Measurement)
Festuca rubra ¹	40%	4
(Red Fescue)	10 /2	·
Clarkia rubicunda ¹	30%	4
(Herald of Summer)		
Coreopsis bigelovii ¹	30%	2
(Bigelow's Coreopsis)		
Eschscholzia californica ¹	40%	6
(California Poppy)		
	Total	16

Applicable when numbers below are shown after a Botanical Name/(Common Name) above:

Seed Sampling Supplies

At the time of seed sampling, provide the Engineer a glassine lined bag and custody seal tag for each seed lot sample.

Compost

The compost producer must be fully permitted as specified under the California Department of Resources Recycling and Recovery, Local Enforcement Agencies and any other State and Local Agencies that regulate Solid Waste Facilities. If exempt from State permitting requirements, the composting facility must certify that it follows guidelines and procedures for production of compost meeting the environmental health standards of Title 14, California Code of Regulations, Division 7, Chapter 3.1, Article 7.

The compost producer must be a participant in United States Composting Council's Seal of Testing Assurance program.

Compost may be derived from any single, or mixture of the following feedstock materials:

- Green material consisting of chipped, shredded, or ground vegetation, or clean processed recycled wood products
- 2. Biosolids
- 3. Manure
- 4. Mixed food waste

Compost feedstock materials to reduce weed seeds, pathogens and deleterious materials as specified under Title 14, California Code of Regulations, Division 7, Chapter 3.1, Article 7, Section 17868.3.

Seed produced in California only.

Seed produced in California only.

Compost must not be derived from mixed municipal solid waste and must be reasonably free of visible contaminates. Compost must not contain paint, petroleum products, pesticides or any other chemical residues harmful to animal life or plant growth. Compost must not possess objectionable odors.

Metal concentrations in compost must not exceed the maximum metal concentrations listed under Title 14, California Code of Regulations, Division 7, Chapter 3.1, Section 17868.2.

Compost must comply with the following:

Physical/Chemical Requirements

Property	Test Method	Requirement
	*TMECC 04.11-A	6.0–8.0
pН		6.0-8.0
	Elastometric pH 1:5 Slurry Method	
~ ~ .	pH Units	0.100
Soluble Salts	TMECC 04.10-A	0-10.0
	Electrical Conductivity 1:5 Slurry Method	
	dS/m (mmhos/cm)	
Moisture Content	TMECC 03.09-A	30-60
	Total Solids & Moisture at 70+/- 5 deg C	
	% Wet Weight Basis	
Organic Matter	TMECC 05.07-A	30–65
Content	Loss-On-Ignition Organic Matter Method (LOI)	
	% Dry Weight Basis	
Maturity	TMECC 05.05-A	
•	Germination and Vigor	
	Seed Emergence	80 or Above
	Seedling Vigor	80 or Above
	% Relative to Positive Control	
Stability	TMECC 05.08-B	
Stability	Carbon Dioxide Evolution Rate	
	mg CO ₂ -C/g OM per day	8 or below
Particle Size	TMECC 02.02-B	100% Passing, 3 inch
Tarticle Size	Sample Sieving for Aggregate Size Classification	90-100% Passing, 1 inch
	% Dry Weight Basis	65-100% Passing, 3/4 inch
	% Dry weight basis	
		0 - 75% Passing, 1/4 inch
		Maximum length 6 inches
Pathogen	TMECC 07.01-B	
i umogen	Fecal Coliform Bacteria	Pass
	< 1000 MPN/gram dry wt.	1 455
Pathogen	TMECC 07.01-B	
raulogen	Salmonella	Pass
		r ass
Diam're 1 Company'r and	< 3 MPN/4 grams dry wt. TMECC 02.02-C	
Physical Contaminants		Combined Totals
	Man Made Inert Removal and Classification:	Combined Total:
	Plastic, Glass and Metal	< 1.0
	% > 4mm fraction	
Physical Contaminants	TMECC 02.02-C	
	Man Made Inert Removal and Classification:	
	Sharps (Sewing needles, straight pins and hypodermic	None Detected
	needles)	
	% > 4mm fraction	

^{*}TMECC refers to "Test Methods for the Examination of Composting and Compost," published by the United States Department of Agriculture and the United States Compost Council (USCC).

Before compost application, provide the Engineer with a copy of the compost producer's compost technical data sheet and a copy of the compost producer's Seal of Testing Assurance certification.

The compost technical data sheet must include:

1. Laboratory analytical test results

2. List of product ingredients

Before compost application, provide the Engineer with a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

CONSTRUCTION

Site Preparation

Immediately prior to applying seed and compost to erosion control (compost blanket) areas remove trash, debris and weeds.

Removed weeds must be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Application

Apply seed and compost to a uniform thickness.

Erosion control (compost blanket) must extend to the edge of retaining sidewalks, walls, curbs, dikes, paving, and to within 4 feet from the flow line of paved and unpaved drainage ditches.

MEASUREMENT AND PAYMENT

Erosion control (compost blanket) will be measured by the cubic yard of compost in the vehicle at the point of delivery in conformance with the provisions in Section 9-1.01, "Measurement of Quantities," of the Standard Specifications.

The contract price paid per cubic yard for erosion control (compost blanket) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in erosion control (compost blanket), as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.41 ROCK BLANKET

Rock blanket shall be placed as shown on the plans and in conformance with these special provisions.

MATERIALS

Rock for the rock blanket shall be clean, smooth rock obtained from a single source.

Rock shall conform to the following grading:

Screen Size (Inches)	Percentage Passing
8	100
6	50-85
4	0-50

A sample of the rock shall be submitted to the Engineer for approval prior to delivery of the rock to the project site.

Rock shall be secured in place with Class 2 concrete conforming to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions. Concrete aggregate size shall be 3/4 inch maximum.

SITE PREPARATION

Areas to receive rock blanket shall be cleared of trash and debris. Weeds shall be removed to the ground level. Cleared trash, debris and removed weeds shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

After clearing, the areas shall be excavated to the depth shown on the plans, graded to a smooth uniform surface and compacted to a minimum relative compaction of 90 percent.

After compaction, the areas shall be sterilized with oxadiazon. The sterilant shall be applied at the maximum label rate and shall not be applied more than 12 inches beyond the rock blanket limits. Soil sterilant shall conform to the provisions in Section 20-4.026, "Pesticides," of the Standard Specifications.

PLACEMENT

Rock shall be placed while concrete is still plastic, and spaced a maximum of 1/2 inch apart. Rocks shall have a 1 inch maximum separation between the top of adjacent rock surfaces. The Contractor shall remove concrete adhering to the exposed surfaces of the rock. Loose rocks, or rock with a gap greater than 3/8 inch, measured from the edge of the rock to the surrounding concrete bedding shall be reset at the Contractor's expense by methods determined by the Engineer.

MEASUREMENT AND PAYMENT

Rock blanket will be measured by the square yard as determined from actual measurements made parallel to the ground slope.

The contract price paid per square yard for rock blanket shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing rock blanket, complete in place, including furnishing and applying soil sterilant, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.42 INTERLOCKING CONCRETE PAVERS (SIDEWALK)

Interlocking paver work shall consist of furnishing and installing interlocking pavers, including earthwork, sub-base and bedding sand, as shown on the plans and in conformance with these special provisions, and as directed by the Engineer.

MATERIALS

Interlocking Pavers

Interlocking pavers shall meet the following requirements set forth in ASTM C 936, standard specification for interlocking concrete paving units:

- A. Average compressive strength of 8,000 psi with no individual unit under 7,250 psi.
- B. Average absorption of 5% with no unit greater than 7% when tested in accordance with ASTM C 140.
- C. Resistance to 50 freeze-thaw cycles when tested in accordance with ASTM C 67.

Paver thickness shall be 2 3/8 inches.

Paver field rectangular length and width shall be $8\frac{1}{4}$ " x $5\frac{1}{2}$ " x $2\frac{3}{8}$ ". Paver field square length and width shall be $5\frac{1}{2}$ " x $5\frac{1}{2}$ " x $2\frac{3}{8}$ ". Paver band length and width shall be 8" x 4" x $2\frac{3}{8}$ ". Paver length and width shall not vary by more than 1/16". Paver height shall not vary by more than 1/8" from specified height.

Interlocking pavers shall be of colors based on the following:

- A. Paver Field Terracotta/Brown
- B. Paver Band Terracotta

Interlocking pavers units shall have spacer bars to ensure a minimum joint width between units in which the sand is placed. These spacer bars shall not be flush with the unit surface or chamfered edge.

A sample paver, to indicate color, is available for review by perspective bidders at the Office of Landscape Architecture, 3347 Michelson Drive, Irvine, CA 92612.

The Contractor shall submit 2 sets of working drawings to the Engineer for approval, as provided in Section 5-1.02, "Plans and Working Drawings" of the Standard Specifications. The working drawings shall be at a sufficient scale to show the pattern.

Concrete Base

Concrete for Concrete base shall conform to the provisions in Section 90-10, "Minor Concrete" of the Standard Specifications. Concrete base shall be a minimum depth as shown on plans.

Mortar

Cement shall conform to the provisions in Section 90-2.01, "Cementitious Materials," of the Standard Specifications.

Hydrated lime shall conform to ASTM Designation: C 207, Type S.

Mortar sand shall be commercially produced for masonry work and free of organic impurities and lumps of clay and shale.

Mortar for laying concrete pavers shall consist, by volume, of one part cementitious material, 0 to 1/2 part of hydrated lime, and 2-1/4 to 3 parts of mortar sand. Sufficient water shall be added to make a workable mortar. Each batch of mortar shall be accurately measured and thoroughly mixed. Mortar shall be freshly mixed as required. Mortar shall not be retempered more than one hour after mixing. The amount of lime shall be reduced as necessary to prevent leaching and efflorescence on finished surfaces.

A proprietary, premixed packaged blend of cement, lime, and sand, without color, that requires only water to prepare for use as brick mortar or grout may be furnished for mortar. Packages of premix shall bear the manufacturer's name, brand, weight, and color identification. The manufacturer's recommended mixing proportions and procedures shall be furnished to the Engineer.

Mortar shall conform to the provisions in Section 51-1.135 "Mortar" and as shown on plans.

Aggregate Base

Aggregate for aggregate base shall conform to the provisions specified for 3/4 inch, maximum, aggregate grading in Section 26-1.02A, "Class 2 Aggregate Base," of the Standard Specifications.

Aggregate base shall be a minimum depth as shown on the plans. Aggregate base shall be spread and compacted in conformance with the provisions in Section 26-1.04, "Spreading," and Section 26-1.05, "Compacting," of the Standard Specifications.

Filter Fabric

Filter fabric shall conform to Section 88-1.03, 'Filter Fabric', of the Standard Specifications and these special provisions.

Bedding Sand

Sand for sand bedding and joints shall be a well-graded, clean washed sand, free from clay or organic material. Grading of sand samples for the bedding course and joints shall be done according to ASTM C 136. Bedding sand shall conform to grading requirements of ASTM C 33 as described below:

Sieve Size	Percentage Passing
3/8 inch	100
No. 4	95 to 100
No. 8	85 to 100
No. 16	50 to 85
No. 30	25 to 60
No. 50	10 to 30

Joint Sand

Bedding sand maybe used for joint sand. Extra effort in sweeping and compacting may be required to completely fill joints. Joint sand should never be used for bedding sand. If joint sand other than bedding sand is used, it shall conform to the grading requirements of ASTM C 144 as described below:

Sieve Size	Natural Sand Percentage Passing	Manufactured Sand Percentage Passing
No. 4	100	100
No. 8	95 to 100	95 to 100
No. 16	70 to 100	70 to 100
No. 30	40 to 75	40 to 100
No. 50	10 to 35	20 to 40

Sand Joints shall 1/8 inch with a tolerance of 1/32 inch.

EARTHWORK AND PLACEMENT

Earthwork

Areas to receive interlocking pavers shall be cleared and excavated and compacted, to the depth as shown on the plans, and in conformance with the provisions in Section 19, "Earthwork," of the Standard Specifications and these special provisions.

The grading plane shall not be more than 1/2 inch above the grade established by the Engineer.

A relative compaction of not less than 95 percent shall be obtained for a minimum depth of 6 inch below the grading plane.

Surplus excavated material shall become the property of the Contractor and shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Placement

Interlocking pavers shall not be placed on the project without written approval by the Engineer.

Interlocking pavers shall be installed on aggregate base and sand bedding course as shown on the plans.

Interlocking pavers shall be compacted per the manufacture's recommendation. After compaction, the pavers shall meet the required grade and have a uniform surface.

Interlocking pavers shall be swept clean of sand and debris and sealed with a water based sealer as recommended by the paver manufacturer.

MEASUREMENT AND PAYMENT

Interlocking pavers will be measured by the square foot in place in the field.

The contract price paid per square foot for interlocking pavers shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing interlocking pavers, complete in place, including earthwork, aggregate base and concrete baseas shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.43 IRRIGATION CROSSOVERS

Irrigation crossovers shall conform to the provisions in Section 20-5, "Irrigation Systems," of the Standard Specifications and these special provisions.

Conduits shall be placed in open trenches in conformance with the provisions in Section 20-5.03B, "Conduit for Irrigation Crossovers," of the Standard Specifications.

Conduits shall be corrugated high density polyethylene (CHDPE) pipe. Corrugated high density polyethylene pipe shall conform to the requirements in ASTM Designation: F 405 or F 667, or AASHTO Designation: M 252 or M 294 and shall be Type S. Couplings and fittings shall be as recommended by the pipe manufacturer.

Water line crossovers shall conform to the provisions in Section 20-5.03C, "Water Line Crossovers," of the Standard Specifications.

Fittings for water line crossovers shall be Schedule 80.

Sprinkler control crossovers shall conform to the provisions in Section 20-5.027D, "Sprinkler Control Crossovers," of the Standard Specifications.

Installation of pull boxes shall conform to the provisions in Section 20-5.027I, "Conductors, Electrical Conduit and Pull Boxes," of the Standard Specifications. When no conductors are installed in electrical conduits, pull boxes for irrigation crossovers shall be installed on a foundation of compacted soil.

10-1.44 IRRIGATION SLEEVE

Irrigation sleeves shall be polyvinyl chloride (PVC) plastic pipe and shall conform to the provisions in Section 20-2.15B(1), "Plastic Pipe Supply Line," of the Standard Specifications and these special provisions.

Irrigation sleeves less than 6 inches in diameter shall have a pressure rating (PR) 315.

Irrigation sleeves 6 inches or larger in diameter shall be Schedule 40.

Fittings shall be Schedule 40.

Irrigation sleeves shall be installed where shown on the plans.

Irrigation sleeves shall be installed not less than 1.5 feet below finished grade measured to the top of the sleeve. Sleeves shall extend 6 inches beyond paving. The ends of the sleeve shall be capped until use.

Quantities of irrigation sleeve to be paid will be determined from the slope length designated by the Engineer. Irrigation sleeve placed in excess of the lengths designated will not be paid for.

The contract price paid per linear foot for irrigation sleeve shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in irrigation sleeve, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.45 AGGREGATE SUBBASE

Aggregate subbase must comply with Section 25, "Aggregate Subbases," of the Standard Specifications and these special provisions.

Aggregate subbase must be Class 2 or 3.

Do not store reclaimed asphalt concrete or aggregate subbase with reclaimed asphalt concrete within 100 feet measured horizontally of any culvert, watercourse, or bridge.

10-1.46 AGGREGATE BASE

Aggregate base must comply with Section 26, "Aggregate Bases," of the Standard Specifications and these special provisions.

Aggregate base must be Class 2.

Do not store reclaimed asphalt concrete or aggregate base with reclaimed asphalt concrete within 100 feet measured horizontally of any culvert, watercourse, or bridge.

10-1.47 LEAN CONCRETE BASE

Lean concrete base shall conform to the provisions in Section 28, "Lean Concrete Base," of the Standard Specifications and these special provisions.

The finished surface of lean concrete base shall not be above the grade established by the Engineer, or more than 0.05-foot below the grade established by the Engineer.

10-1.48 HOT MIX ASPHALT

GENERAL

Summary

This work includes producing and placing hot mix asphalt (HMA) Type A using the QC/QA process. Comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

Submittals

Quality Control / Quality Assurance Projects

With the job mix formula (JMF) submittal, submit:

- 1. California Test 204 plasticity index results
- 2. California Test 371 tensile strength ratio results for untreated HMA
- 3. California Test 371 tensile strength ratio results for treated HMA if untreated HMA tensile strength ratio is below 70

At project start-up and once during production, submit samples split from your HMA production sample for California Test 371 to the Engineer and the Transportation Laboratory, Attention: Moisture Test.

With the JMF submittal, at project start-up, and each 5,000 tons, submit the California Test 371 test results for mix design and production to the Engineer and electronically to:

Moisture_Tests@dot.ca.gov

Quality Control and Assurance

Quality Control / Quality Assurance Projects

For the mix design, determine the plasticity index of the aggregate blend under California Test 204. Choose an antistrip treatment and use the corresponding laboratory procedure for the mix design in compliance with:

Antistrip Treatment Lab Procedures for Mix Design

Antistrip Treatment	Lab Procedure
Plasticity index from 4 to 10 ^a	
Dry hydrated lime with marination	LP-6
Lime slurry with marination	LP-7
Plasticity index less than 4	
Liquid	LP-5
Dry hydrated lime without marination	LP-6
Dry hydrated lime with marination	LP-6
Lime slurry with marination	LP-7

Notes:

For the mix design, determine tensile strength ratio under California Test 371 on untreated HMA. If the tensile strength ratio is less than 70:

- 1. Choose from the antistrip treatments specified based on plasticity index.
- 2. Test treated HMA under California Test 371.
- 3. Treat to a minimum tensile strength ratio of 70.

On the first production day and at least every 5,000 tons, sample HMA and test under California Test 371.

The Department does not use California Test 371 test results for JMF verification and production to determine specification compliance.

MATERIALS

Asphalt Binder

The grade of asphalt binder mixed with aggregate for HMA Type A must be PG 64-10.

Aggregate

The aggregate for HMA Type A must comply with the 3/4 inch grading.

CONSTRUCTION

Vertical Joints

Before opening the lane to public traffic, pave shoulders and median borders adjacent to a lane being paved. Do not leave a vertical joint more than 0.15 foot high between adjacent lanes open to public traffic.

Conform Tapers

Place shoulder conform tapers concurrently with the adjacent lane's paving.

Place additional HMA along the pavement's edge to conform to road connections and private drives. Hand rake, if necessary, and compact the additional HMA to form a smooth conform taper.

10-1.49 RUBBERIZED HOT MIX ASPHALT (GAP GRADED)

GENERAL

Summary

This work includes producing and placing rubberized hot mix asphalt (gap graded) (RHMA-G) using the Standard process.

Comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

^a If the plasticity index is greater than 10, do not use that aggregate blend.

MATERIALS

Asphalt Binder

Asphalt binder mixed with asphalt modifier and crumb rubber modifier (CRM) for asphalt rubber binder must be PG 64-16.

Aggregate

The aggregate for RHMA-G must comply with the 3/4 inch grading.

Asphalt Rubber Binder Content

Determine the amount of asphalt rubber binder to be mixed with the aggregate for RHMA-G under California Test 367 except:

- 1. Determine the specific gravity used in California Test 367, Section B, "Void Content of Specimen," using California Test 308, Method A.
- 2. California Test 367, Section C, "Optimum Bitumen Content," is revised as follows:
 - 2.1. Base the calculations on the average of 3 briquettes produced at each asphalt rubber binder content.
 - Use California Test 309 to determine theoretical maximum specific gravity and density of the RHMA-G.
 - 2.3. Plot asphalt rubber binder content versus average air voids content based on California Test 309 for each set of three specimens on Form TL-306 (Figure 3), and connect adjacent points with a best-fit curve.
 - 2.4. Plot asphalt rubber binder content versus average Hveem stability for each set of three specimens and connect adjacent points with a best-fit curve.
 - 2.5. Calculate voids in mineral aggregate (VMA) and voids filled with asphalt (VFA) for each specimen, average each set, and plot the average versus asphalt rubber binder content.
 - 2.6. Calculate the dust proportion and plot versus asphalt rubber binder content.
 - 2.7. From the curve plotted in Step 2.3, select the theoretical asphalt rubber binder content that has 5 percent air voids.
 - 2.8. At the selected asphalt rubber binder content, evaluate corresponding voids in mineral aggregate, voids filled with asphalt, and dust proportion to verify compliance with requirements. If necessary, develop an alternate composite aggregate gradation to conform to the RHMA-G requirements.
 - 2.9. Record the asphalt rubber binder content in Step 2.7 as the Optimum Bitumen Content (OBC).
 - 2.10. To establish a recommended range, use the OBC as the high value and 0.3 percent less as the low value. Notwithstanding, the recommended range must not extend below 7.0 percent. If the OBC is 7.0 percent, then there is no recommended range, and 7.0 percent is the recommended value.
- 3. Laboratory mixing and compaction must comply with California Test 304, except the mixing temperature of the aggregate must be between 300 °F and 325 °F. The mixing temperature of the asphalt-rubber binder must be between 375 °F and 425 °F. The compaction temperature of the combined mixture must be between 290 °F and 300 °F.

CONSTRUCTION

Vertical Joints

Before opening the lane to public traffic, pave shoulders and median borders adjacent to a lane being paved. Do not leave a vertical joint more than 0.15 foot high between adjacent lanes open to public traffic.

Conform Tapers

Place shoulder conform tapers concurrently with the adjacent lane's paving.

Place additional RHMA-G along the pavement's edge to conform to road connections and private drives. Hand rake, if necessary, and compact the additional RHMA-G to form a smooth conform taper.

10-1.50 HOT MIX ASPHALT (MISCELLANEOUS AREAS)

GENERAL

Summary

This work includes producing hot mix asphalt (HMA) and placing it on miscellaneous areas. Comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

CONSTRUCTION

In median areas adjacent to slotted median drains, each layer of HMA must not exceed 0.25 foot maximum compacted thickness.

MEASUREMENT AND PAYMENT

If there is a contract item for place hot mix asphalt (miscellaneous area) paid for by the square yard, this item is limited to the areas listed on the plans and is in addition to the contract items for the materials involved.

10-1.51 MINOR HOT MIX ASPHALT

GENERAL

Summary

This work includes producing hot mix asphalt (HMA) at a central mixing plant and placing it as specified.

MATERIALS

For minor HMA:

- 1. Do not submit a job mix formula.
- 2. Choose the 3/8-inch or 1/2-inch HMA Type A or Type B aggregate gradation under Section 39-1.02E, "Aggregate," of the Standard Specifications.
- 3. Minimum asphalt binder content must be 6.8 percent for 3/8-inch aggregate gradation and 6.0 percent for 1/2-inch aggregate gradation.
- 4. Choose asphalt binder Grade PG 64-10, PG 64-16, or PG 70-10 under Section 92, "Asphalts," of the Standard Specifications.

If you request and the Engineer authorizes, you may reduce the minimum asphalt binder content.

Tack coat must comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

10-1.52 HOT MIX ASPHALT AGGREGATE LIME TREATMENT - SLURRY METHOD

GENERAL

Summary

This work includes treating hot mix asphalt (HMA) aggregate with lime using the slurry method and placing it in stockpiles to marinate.

Treat aggregate for HMA Type "A" with lime slurry.

Submittals

Determine the exact lime proportions for fine and coarse virgin aggregate and submit them as part of the proposed job mix formula (JMF) under Section 39, "Hot Mix Asphalt," of the Standard Specifications.

Submit the averaged aggregate quality test results to the Engineer within 24 hours of sampling.

Submit a treatment data log from the slurry proportioning device in the following order:

- 1. Treatment date
- 2. Time of day the data is captured
- 3. Aggregate size being treated
- 4. Wet aggregate flow rate collected directly from the aggregate weigh belt
- 5. Moisture content of the aggregate just before treatment, expressed as a percent of the dry aggregate weight
- 6. Dry aggregate flow rate calculated from the wet aggregate flow rate
- 7. Lime slurry flow rate measured by the slurry meter
- 8. Dry lime flow rate calculated from the slurry meter output
- 9. Approved lime ratio for each aggregate size being treated

- 10. Actual lime ratio calculated from the aggregate weigh belt and the slurry meter output, expressed as a percent of the dry aggregate weight
- 11. Calculated difference between the approved lime ratio and the actual lime ratio
- 12. Dry lime and water proportions at the slurry treatment time

Every day during lime treatment, submit the treatment data log on electronic media in tab delimited format on a removable CD-ROM storage disk. Each continuous treatment data set must be a separate record using a line feed carriage return to present the specified data on one line. The reported data must include data titles at least once per report.

Quality Control and Assurance

Your quality control plan (QCP) must include aggregate quality control sampling and testing during aggregate lime treatment. Perform sampling and testing in compliance with:

Aggregate Quality Control During Lime Treatment

Quality Characteristic	Test Method	Minimum sampling and
		testing frequency
Sand Equivalent	CT 217	Once per 1,000 tons of
		aggregate treated with
		lime
Percent of crushed particles	CT 205	
Los Angeles Rattler	CT 211	As necessary and as
Fine aggregate angularity	CT 234	designated in the QCP
Flat and elongated particles	CT 235	

Note: During lime treatment, sample coarse and fine aggregate from individual stockpiles. Combine aggregate in the JMF proportions. Run tests for aggregate quality in triplicate and report test results as the average of 3 tests.

The Engineer orders proportioning operations stopped for any of the following if you:

- 1. Do not submit the treatment data log.
- 2. Do not submit the aggregate quality control data.
- 3. Submit incomplete, untimely, or incorrectly formatted data.
- 4. Do not take corrective actions.
- 5. Take late or unsuccessful corrective actions.
- 6. Do not stop treatment when proportioning tolerances are exceeded.
- 7. Use malfunctioning or failed proportioning devices.

If you stop treatment, notify the Engineer of any corrective actions taken and conduct a successful 20-minute test run before resuming treatment.

For the aggregate to be treated, determine the moisture content at least once during each 2 hours of treatment. Calculate moisture content under California Test 226 or California Test 370 and report it as a percent of dry aggregate weight. Use the moisture content calculations as a set point for the proportioning process controller.

MATERIALS

High-calcium hydrated lime and water must comply with Section 24-1.02, "Materials," of the Standard Specifications.

Before virgin aggregate is treated, it must comply with the aggregate quality specifications. Do not test treated aggregate for quality control except for gradation. The Engineer does not test treated aggregate for acceptance except for gradation.

The Engineer determines the combined aggregate gradation during HMA production after you have treated aggregate. If reclaimed asphalt pavement (RAP) is used, the Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.

Treated aggregate must not have lime balls or clods.

CONSTRUCTION

General

Notify the Engineer at least 24 hours before the start of aggregate treatment.

Treat aggregate separate from HMA production.

Do not treat RAP.

Add lime to the aggregate as slurry consisting of mixed dry lime and water at a ratio of 1 part lime to between 2 parts and 3 parts water by weight. The slurry must completely coat the aggregate.

Lime treat and marinate coarse and fine aggregates separately.

Immediately before mixing lime slurry with aggregate, water must not visibly separate from aggregate.

Treat aggregate and stockpile for marination only once.

The lime ratio is the pounds of dry hydrated lime per 100 pounds of dry virgin aggregate expressed as a percent. Water content of slurry or untreated aggregate must not affect the lime ratio.

Lime ratio ranges are:

Aggregate Gradation	Lime Ratio
Coarse	0.4 to 1.0
Fine	1.5 to 2.0
Combined virgin aggregate	0.8 to 1.5

The lime ratio for fine and coarse aggregate must be within ± 0.2 percent of the lime ratio in the accepted JMF. The lime ratio must be within ± 0.2 percent of the approved lime ratio when you combine the individual aggregate sizes in the JMF proportions. The lime ratio must be determined before the addition of RAP.

If 3 consecutive sets of recorded treatment data indicate deviation more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment.

If a set of recorded treatment data indicates a deviation of more than 0.4 percent above or below the lime ratio in the accepted JMF, stop treatment and do not use the material represented by that set of data in HMA.

If 20 percent or more of the total daily treatment indicates deviation of more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment and do not use the day's total treatment in HMA.

If you stop treatment for noncompliance, you must implement corrective action and successfully treat aggregate for a 20-minute period. Notify the Engineer before beginning the 20-minute treatment period.

Lime Slurry Proportioning

Proportion lime and water with a continuous or batch operation.

The device controlling slurry proportioning must produce a treatment data log. The log consists of a series of data sets captured at 10-minute intervals throughout daily treatment. The data must be a treatment activity register and not a summation. The material represented by the data set is the amount produced 5 minutes before and 5 minutes after the capture time. For the contract's duration, collected data must be stored by the controller.

Proportioning and Mixing Lime Slurry Treated Aggregate

Treat HMA aggregate by proportioning lime slurry and aggregate by weight in a continuous operation.

Marinate treated aggregate in stockpiles from 24 hours to 60 days before using in HMA. Do not use aggregate marinated longer than 60 days.

MEASUREMENT AND PAYMENT

Full compensation for treating aggregates with lime slurry shall be considered as included in the contract price paid per ton for HMA as designated in the Engineer's Estimate and no separate payment will be made therefor.

10-1.53 HOT MIX ASPHALT AGGREGATE LIME TREATMENT - DRY LIME METHOD GENERAL

Summary

This work includes treating hot mix asphalt (HMA) aggregate with lime using the dry lime method either with marination or without.

Treat aggregate for HMA Type "A" with dry lime.

Marinate aggregate if the plasticity index determined under California Test 204 is from 4 to 10.

Submittals

Determine the exact lime proportions for fine and coarse virgin aggregate and submit them as part of the proposed job mix formula (JMF) under Section 39, "Hot Mix Asphalt," of the Standard Specifications.

If marination is required, submit in writing the averaged aggregate quality test results to the Engineer within 24 hours of sampling.

Submit in writing a treatment data log from the dry lime and aggregate proportioning device in the following order:

- 1. Treatment date
- 2. Time of day the data is captured
- 3. Aggregate size being treated
- 4. HMA type and mix aggregate size
- 5. Wet aggregate flow rate collected directly from the aggregate weigh belt
- 6. Aggregate moisture content, expressed as a percent of the dry aggregate weight
- 7. Flow rate of dry aggregate calculated from the flow rate of wet aggregate
- 8. Dry lime flow rate
- 9. Lime ratio from the accepted JMF for each aggregate size being treated
- 10. Lime ratio from the accepted JMF for the combined aggregate
- 11. Actual lime ratio calculated from the aggregate weigh belt output, the aggregate moisture input, and the dry lime meter output, expressed as a percent of the dry aggregate weight
- 12. Calculated difference between the approved lime ratio and the actual lime ratio

Every day during lime treatment, submit the treatment data log on electronic media in tab delimited format on a removable CD-ROM storage disk. Each continuous treatment data set must be a separate record using a line feed carriage return to present the specified data on one line. The reported data must include data titles at least once per report.

Quality Control and Assurance

If marination is required, the quality control plan (QCP) specified in Section 39-4, "Quality Control / Quality Assurance," must include aggregate quality control sampling and testing during lime treatment. Perform sampling and testing in compliance with:

Quality Characteristic	Test Method	Minimum sampling and	
		testing frequency	
Sand Equivalent	CT 217	Once per 1,000 tons of	
		aggregate treated with	
		lime	
Percent of crushed particles	CT 205		
Los Angeles Rattler	CT 211	As necessary and as	
Fine aggregate angularity	CT 234	designated in the QCP	
Flat and elongated particles	CT 235		

Note: During lime treatment, sample coarse and fine aggregate from individual stockpiles. Combine aggregate in the JMF proportions. Run tests for aggregate quality in triplicate and report test results as the average of 3 tests.

The Engineer orders proportioning operations stopped for any of the following if you:

- 1. Do not submit the treatment data log
- 2. Do not submit the aggregate quality control data for marinated aggregate
- 3. Submit incomplete, untimely, or incorrectly formatted data
- 4. Do not take corrective actions
- 5. Take late or unsuccessful corrective actions
- 6. Do not stop treatment when proportioning tolerances are exceeded
- 7. Use malfunctioning or failed proportioning devices

If you stop treatment, notify the Engineer of any corrective actions taken and conduct a successful 20-minute test run before resuming treatment.

MATERIALS

Lime must be high-calcium hydrated lime. Lime and water must comply with Section 24-1.02, "Materials," of the Standard Specifications.

Before virgin aggregate is treated, it must comply with the aggregate quality specifications. Do not test treated aggregate for quality control except for gradation. The Engineer does not test treated aggregate for acceptance except for gradation.

The Engineer determines the combined aggregate gradation during HMA production after you have treated aggregate. If reclaimed asphalt pavement (RAP) is used, the Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.

Treated aggregate must not have lime balls or clods.

CONSTRUCTION

General

Notify the Engineer in writing at least 24 hours before the start of aggregate treatment.

Do not treat RAP.

If marination is required:

- 1. Treat and marinate coarse and fine aggregates separately.
- 2. Treat aggregate and stockpile for marination only once.
- 3. Treat aggregate separate from HMA production.

The lime ratio is the pounds of dry hydrated lime per 100 pounds of dry virgin aggregate expressed as a percent. Water content of untreated aggregate must not affect the lime ratio.

Lime ratio ranges are:

Aggregate Gradation	Lime Ratio	
Coarse	0.4 to 1.0	
Fine	1.5 to 2.0	
Combined virgin aggregate	0.8 to 1.5	

You may reduce the combined aggregate lime ratio for open graded friction course to between 0.5 and 1.0 percent.

The lime ratio for fine and coarse aggregate must be within ± 0.2 percent of the lime ratio in the accepted JMF. The lime ratio must be within ± 0.2 percent of the approved lime ratio when you combine the individual aggregate sizes in the JMF proportions. Determine the lime ratio before you add RAP.

Proportion dry lime by weight with a continuous operation.

The device controlling dry lime and aggregate proportioning must produce a treatment data log. The log consists of a series of data sets captured at 10-minute intervals throughout daily treatment. The data must be a treatment activity register and not a summation. The material represented by a data set is the amount produced 5 minutes before and 5 minutes after the capture time. For the duration of the contract, collected data must be stored by the controller.

If 3 consecutive sets of recorded treatment data indicate deviation more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment of lime treated aggregates.

If a set of recorded treatment data indicates a deviation of more than 0.4 percent above or below the lime ratio in the accepted JMF, stop treatment of lime treated aggregates and do not use the material represented by that set of data in HMA.

If 20 percent or more of the total daily treatment indicates deviation of more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment and do not use the day's treated aggregate in HMA.

If you stop treatment for noncompliance, you must implement corrective action and successfully treat aggregate for a 20-minute period. Notify the Engineer before beginning the 20-minute treatment period.

If you use a batch-type proportioning operation for HMA production, control proportioning in compliance with the specifications for continuous mixing plants. Use a separate dry lime aggregate treatment operation from HMA batching operations including:

- 1. Pugmill mixer
- 2. Controller
- 3. Weigh belt for the lime
- 4. Weigh belt for the aggregate

If using a continuous mixing operation for HMA without lime marinated aggregates, use a controller that measures the blended aggregate weight after any additional water is added to the mixture. The controller must determine the amount of lime added to the aggregate from the aggregate weigh belt input in connection with the manually input total aggregate moisture, the manually input target lime content, and the lime proportioning system output. Use a continuous aggregate weigh belt and pugmill mixer for the lime treatment operation in addition to the weigh belt for the aggregate proportioning to asphalt binder in the HMA plant. If you use a water meter for moisture control for lime treatment, the meter must comply with California Test 109.

At the time of mixing dry lime with aggregate, the aggregate moisture content must ensure complete lime coating. The aggregate moisture content must not cause aggregate to be lost between the point of weighing the combined aggregate continuous stream and the dryer. Add water for mixing and coating aggregate to the aggregate before dry lime addition. Immediately before mixing lime with aggregate, water must not visibly separate from aggregate.

The HMA plant must be equipped with a bag house dust system. Material collected in the dust system must be returned to the mix.

Mixing Dry Lime and Aggregate

Mix aggregate, water, and dry lime with a continuous pugmill mixer with twin shafts. Immediately before mixing lime with aggregate, water must not visibly separate from aggregate. Store dry lime in a uniform and free flowing condition. Introduce dry lime to the pugmill in a continuous operation. The introduction must occur after the aggregate cold feed and before the point of proportioning across a weigh belt and the aggregate dryer. Prevent loss of dry lime.

If marination is required, marinate treated aggregate in stockpiles between 24 hours and 60 days before using in HMA. Do not use aggregate marinated more than 60 days.

The pugmill must be equipped with paddles arranged to provide sufficient mixing action and mixture movement. The pugmill must produce a homogeneous mixture of uniformly coated aggregates at mixer discharge.

If the aggregate treatment operation is stopped longer than 1 hour, clean the equipment of partially treated aggregate and lime.

Aggregate must be completely treated before introduction into the mixing drum.

MEASUREMENT AND PAYMENT

Full compensation for dry lime treating HMA aggregate including marination shall be considered as included in the contract price paid per ton for HMA as designated in the Engineer's Estimate and no separate payment will be made therefor.

10-1.54 LIQUID ANTISTRIP TREATMENT

GENERAL

Summary

This work includes treating asphalt binder with liquid antistrip (LAS) treatment to bond the asphalt binder to aggregate in hot mix asphalt (HMA).

Submittals

For LAS, submit with the proposed job mix formula (JMF) submittal under Section 39, "Hot Mix Asphalt," of the Standard Specifications:

- 1. Materials Safety Data Sheet (MSDS)
- 2. One 1-pint sample
- 3. Infrared analysis including copy of absorption spectra

Submit a certified copy of test results and a MSDS for each LAS lot.

Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each LAS shipment. With each certificate also submit:

- 1. Your signature and printed name
- 2. Shipment number
- 3. Material type
- 4. Material specific gravity
- 5. Refinery
- 6. Consignee
- 7. Destination
- 8. Quantity
- 9. Contact or purchase order number
- 10. Shipment Date

Submit proportions for LAS as part of the JMF submittal specified in Section 39-1.03, "Hot Mix Asphalt Mix Design Requirements," of the Standard Specifications. If you change the brand or type of LAS, submit a new JMF.

For each job site delivery of LAS, submit one 1/2-pint sample to the Transportation Laboratory. Submit shipping documents to the Engineer. Label each LAS sampling container with:

- 1. LAS type
- 2. Application rate
- 3. Sample date
- 4. Contract number

At the end of each day's production shift, submit production data in electronic and printed media. Present data on electronic media in tab delimited format. Use line feed carriage return with one separate record per line for each production data set. Allow sufficient fields for the specified data. Include data titles at least once per report. For each mixing operation type, submit in order:

1. Batch Mixing:

- 1.1. Production date
- 1.2. Time of batch completion
- 1.3. Mix size and type
- 1.4. Each ingredient's weight
- 1.5. Asphalt binder content as percentage of dry aggregate weight
- 1.6. LAS content as percentage of asphalt binder weight

2. Continuous Mixing:

- 2.1. Production date
- 2.2. Data capture time
- 2.3. Mix size and type
- 2.4. Flow rate of wet aggregate collected directly from the aggregate weigh belt
- 2.5. Aggregate moisture content as percentage of dry aggregate weight
- 2.6. Flow rate of asphalt binder collected from the asphalt binder meter
- 2.7. Flow rate of LAS collected from the LAS meter
- 2.8. Asphalt binder content as percentage of dry aggregate weight calculated from:
 - 2.8.1. Aggregate weigh belt output
 - 2.8.2. Aggregate moisture input
 - 2.8.3. Asphalt binder meter output
- 2.9. LAS content as percentage of asphalt binder weight calculated from:
 - 2.9.1. Asphalt binder meter output
 - 2.9.2. LAS meter output

Quality Control and Assurance

For continuous mixing and batch mixing operations, sample asphalt binder before adding LAS. For continuous mixing operations, sample combined asphalt binder and LAS after the static mixer.

The Engineer orders proportioning operations stopped for any of the following if you:

- 1. Do not submit data
- 2. Submit incomplete, untimely, or incorrectly formatted data
- 3. Do not take corrective actions
- 4. Take late or unsuccessful corrective actions
- 5. Do not stop production when proportioning tolerances are exceeded
- 6. Use malfunctioning or failed proportioning devices

If you stop production, notify the Engineer of any corrective actions taken before resuming.

MATERIALS

LAS-treated asphalt binder must comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications. LAS does not substitute for asphalt binder.

LAS total amine value must be 325 minimum when tested under ASTM D 2074.

Use only 1 LAS type or brand at a time. Do not mix LAS types or brands.

Store and mix LAS under the manufacturer's recommendations.

CONSTRUCTION

LAS must be between 0.5 and 1.0 percent by weight of asphalt binder.

If 3 consecutive sets of recorded production data show actual delivered LAS weight is more than ± 1 percent of the approved mix design LAS weight, stop production and take corrective action.

If a set of recorded production data shows actual delivered LAS weight is more than ±2 percent of the approved mix design LAS weight, stop production. If the LAS weight exceeds 1.2 percent of the asphalt binder weight, do not use the HMA represented by that data.

The continuous mixing plant controller proportioning the HMA must produce a production data log. The log consists of a series of data sets captured at 10-minute intervals throughout daily production. The data must be a production activity register and not a summation. The material represented by the data is the amount produced 5 minutes before and 5 minutes after the capture time. For the duration of the contract, collected data must be stored by the plant controller or a computer's memory at the plant.

MEASUREMENT AND PAYMENT

Full compensation for LAS is included in the contract price paid per ton for HMA as designated in the Engineer's Estimate and no separate payment will be made therefor.

10-1.55 JOINTED PLAIN CONCRETE PAVEMENT (RAMP TERMINI)

GENERAL

Summary

This work includes constructing jointed plain concrete pavement (Ramp Termini).

Comply with Section 40, "Concrete Pavement," of the Standard Specifications.

Submittals

Submit coefficient of thermal expansion test results to the Engineer and at the web site http://169.237.179.13/cte/

Quality Control and Assurance

General

Perform profilograph testing on concrete shoulders. Testing and test results must comply with the specifications for concrete pavement smoothness, profilograph test procedure, and corrective action for traffic lanes.

Prepaving Conference

Meet with the Engineer at a prepaying conference at a mutually agreed time and place. Discuss methods of performing the production and paying work.

Prepaving conference attendees must sign an attendance sheet provided by the Engineer. The prepaving conference must be attended by your:

- 1. Project superintendent
- 2. Quality control manager
- 3. Paving construction foreman
- 4. Subcontractor's workers including:
 - 4.1. Foremen
 - 4.2. Concrete plant manager
 - 4.3. Concrete plant operator
 - 4.4. Personnel performing saw cutting and joint sealing

Liquid Joint Sealant

Liquid joint sealant for Longitudinal and Transverse Construction Joint must be Silicone.

Liquid Joint Sealant for Isolation Joints

Liquid joint sealant for isolation joints must be Silicone.

Joint Seal

Use compression seal for "A1".

Tack Coat

Tack coat must comply with Section 39, "Hot Mix Asphalt," of the Standard Specifications.

CONSTRUCTION

Tie Bar Spacing On Curves

If the curvature of a concrete pavement slab prevents equal spacing of tie bars to maintain the minimum clearance from transverse joints, space them from 15 to 18 inches.

Transverse Contraction Joints

Transverse contraction joints must be Type "A1". If widening existing concrete pavement, do not construct transverse contraction joints to match the existing pavement's joint spacing or skew unless specified. Transverse joints in concrete pavement on a curve must be on a single straight line through the curve's radius point.

Longitudinal Contraction Joints

Longitudinal contraction joints must be Type "A2".

Transition Joints With Hot Mix Asphalt

If a joint between concrete pavement and hot mix asphalt is specified, apply tack coat between the concrete pavement and hot mix asphalt.

Concrete Pavement Removal

When removing and replacing concrete, remove it to full depth and width.

Removal and Replacement of Slabs Without Bar Reinforcement

For full depth and partial length slab removal, saw cut the full depth and width.

Saw cut full slabs at the longitudinal and transverse joints. Saw cut partial slabs at joints and where the Engineer orders. You may make additional saw cuts within the removal area to facilitate slab removal or to prevent binding of the saw cut at the removal area's edge. Saw cut perpendicular to the slab surface.

Use slab lifting equipment with lifting devices that attach to the slab. After lifting the slab, paint the cut ends of dowels and tie bars.

Construct transverse and longitudinal construction joints between the new slab and existing concrete using dowel bars. For longitudinal joints, offset dowel bar holes from original tie bars by 3 inches. For transverse joints, offset dowel bars holes from the original dowel bars by 3 inches.

Drill holes and use chemical adhesive to bond the dowel bars to the existing concrete. Use an automated dowel bar drilling machine. Holes must be at least 1/8-inch greater than the dowel bar diameter. Clean the holes in compliance with the chemical adhesive manufacturer's instructions. Holes must be dry when you place chemical adhesive.

Immediately after inserting dowel bars into the chemical adhesive-filled holes, support the dowel bars and leave them undisturbed for the minimum cure time recommended by the chemical adhesive manufacturer.

Clean the faces of joints and underlying base from loose material and contaminants. Coat the faces with a double application of pigmented curing compound under Section 28-1.07, "Curing," of the Standard Specifications. For partial slab replacements, place preformed sponge rubber expansion joint filler at new transverse joints in compliance with ASTM D 1752.

MEASUREMENT AND PAYMENT

If the Engineer accepts a test strip and it remains as part of the paving surface, the test strip is measured and paid for as jointed plain concrete pavement (Ramp Termini), seal pavement joint, and seal isolation joint as the case may be.

The contract item for concrete pavement transition panel as designated in the Bid Item List is measured by the cubic yard. The Engineer calculates the pay quantity volume based on the plan dimensions. The Engineer does not measure concrete pavement placed outside those dimensions unless it was ordered by the Engineer

The contract price paid per cubic yard for concrete pavement transition panel as designated in the Bid Item List includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the concrete pavement, complete in place including bar reinforcement, tie bars, and dowel bars as shown on the plans and as specified in these specifications and the special provisions, and as directed by the Engineer.

Full compensation for providing a facility for and attending the prepaving conference is included in the contract price paid per cubic yard for jointed plain concrete pavement (Ramp Termini) and no additional compensation is allowed therefor.

Full compensation for applying tack coat at transverse transition joints, Seal Pavement Joint and end anchors is included in the contract price paid per cubic yard for jointed plain concrete pavement (Ramp Termini) and no separate payment is made therefor.

If the curvature of a slab affects tie bar spacing and additional tie bars are required, they are included in the contract price paid per cubic yard for jointed plain concrete pavement (Ramp Termini) and no additional compensation is allowed therefor.

10-1.56 CONTINUOUSLY REINFORCED CONCRETE PAVEMENT (RAPID STRENGTH CONCRETE) GENERAL

Summary

This work includes constructing continuously reinforced concrete pavement RSC. Comply with Section 40, "Concrete Pavement," of the Standard Specifications.

Definitions

early age: Time less than 10 times the concrete's final set time.

final set time: Time a specific penetration resistance of 4,000 psi is achieved, determined under ASTM C 403. **opening age:** Time the concrete achieves the specified strength for opening to traffic.

Submittals

If epoxy-coated steel is used in continuously reinforced concrete pavement (Rapid Strength Concrete), submit a copy of the certification for each plant used.

Submit coefficient of thermal expansion test results to the Engineer and at the website http://169.237.179.13/cte/.

Quality Control and Assurance

General

Perform coefficient of thermal expansion testing under AASHTO T 336 at a frequency of 1 test for each 5,000 cubic yards of paving but not less than 1 test for projects with less than 5,000 cubic yards of CRCP (Rapid Strength Concrete). This test is not going to be used for acceptance. Provide a split test sample to METS.

Prepaving Conference

Meet with the Engineer at a prepaying conference at a mutually agreed time and place. The conference facility must be within 3 miles of the job site. Discuss methods of performing the production and paying work.

Prepaving conference attendees must sign an attendance sheet provided by the Engineer. The prepaving conference must be attended by your:

- 1. Project superintendent
- 2. Quality control manager
- 3. Paving construction foreman
- 4. Subcontractor's workers including:
 - 4.1. Foremen
 - 4.2. Concrete plant manager
 - 4.3. Concrete plant operator
 - 4.4. Personnel performing saw cutting and joint sealing

Do not start paving activities including trial slab until the listed personnel have attended a prepaving conference.

Quality Control Program

General

Establish a quality control program. The quality control program assures the Engineer that methods and procedures are in place to produce and place RSC in compliance with the specifications.

If the quality control program is not implemented and followed, the Engineer orders RSC work stopped.

Quality Control Managers

For the project, designate a lead QCM and assistant QCMs.

The lead QCM administers the quality control plan (QCP). The lead QCM must hold current American Concrete Institute (ACI) certification as "Concrete Field Testing Technician-Grade I" and "Concrete Laboratory Testing Technician-Grade II." Assistant QCMs must hold current ACI certification as "Concrete Field Testing Technician-Grade I" and either "Concrete Laboratory Testing Technician-Grade II" or "Concrete Laboratory Testing Technician-Grade II."

The QCM responsible for the production period involved must review and sign the sampling, inspection, and test reports before submittal to the Engineer. At least 1 QCM must be present for:

- 1. Each stage of mix design
- 2. Trial slab construction
- 3. Production and construction of RSC
- 4. Meetings with the Engineer relating to production, placement, or testing.

A QCM must not be a member of this project's production or paving crews, an inspector, or a tester. A QCM must have no duties during the production and placement of RSC except those specified.

Quality Control Plan

The QCP describes the procedures you will use to control the production process including:

- 1. Determining if changes to the production process are needed
- 2. Procedures for proposing changes
- 3. Procedures for implementing changes

Do not start RSC work until the QCP has been accepted by the Engineer. The Engineer accepts the QCP based the inclusion and adequacy of:

- 1. The names and qualifications of the lead Quality Control Manager (QCM) and assistant QCMs.
- 2. An outline procedure for the placement and testing of trial slab
- 3. An outline procedure for the production, transportation, and placement of RSC
- 4. An outline procedure for sampling and testing to be performed during and after RSC construction
- 5. A contingency plan for correcting problems in production, transportation, or placement. Include the quantity and location of standby material in your contingency plan.
- 6. Provisions for determining if RSC placement must be suspended and temporary roadway pavement structure constructed
- 7. Forms to report inspection, sampling, and testing
- 8. The location of your quality control testing laboratory and testing equipment during and after paving operations
- 9. A list of the testing equipment to be used including date of last calibration
- 10. The names and certifications of quality control personnel including those performing sampling and testing

At the time of QCP submission, the Department qualifies the quality control samplers and testers through the Independent Assurance Program (IAP) for the sampling and testing they perform.

Quality Control Inspection, Sampling, and Testing

Perform quality control sampling, testing, and inspection throughout RSC production and placement. Before any sampling and testing, give the Engineer at least 2 business days notice. Give the Engineer unrestricted access to your quality control inspectors, samplers, testers, and laboratories. Submit testing results within 15 minutes of testing completion. Record inspection, sampling, and testing on the forms accepted with the QCP and submit them within 48 hours of completion of each paving shift and within 24 hours of 7-day modulus of rupture tests.

Provide a testing laboratory to perform quality control tests. Maintain sampling and testing equipment in proper working condition. Perform sampling under California Test 125.

Testing laboratories and testing equipment must comply with the Department's Independent Assurance Program.

Production Process Control and Quality Control Testing

Contingency plan equipment and personnel must be present at the job site.

Provide continuous process control and quality control sampling and testing throughout RSC production and placement.

During production of RSC, sample and test aggregates at least once for every 650 cubic yards of RSC produced, but not less than once per placement shift. Test aggregates for compliance with gradations, cleanness value, and sand equivalent specifications.

At least once for every 650 cubic yards of RSC produced, but not less than twice per placement shift, sample and test for:

- 1. Yield
- 2. Penetration
- 3. Air content
- 4. Unit weight

During placement of RSC, fabricate beams and test for modulus of rupture within the first 30 cubic yards, at least once every 130 cubic yards, and within the final truckload.

If the Engineer requests, submit split samples and fabricate test beams for the Engineer's testing.

For determining early age modulus of rupture, cure beams under the same conditions as the pavement until 1 hour before testing. Cure beams fabricated for the 7-day test under California Test 524. The Engineer uses modulus of rupture test results for accepting or rejecting the replacement pavement and pay factor adjustment for low modulus of rupture.

Dispose of materials resulting from the construction of the test beams, temporary roadway pavement structure, and rejected replacement pavement under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Weighmaster Certificates

Weighmaster certificates for RSC, regardless of the proportioning method used, must include the information necessary to trace the manufacturer and the manufacturer's lot number for the cement being used. If proportioned into fabric containers, the weighmaster certificates for the cement must contain date of proportioning, location of proportioning, and actual net draft cement weight. If proportioned at the pour site from a storage silo, the weighmaster certificates must contain date of proportioning, location of proportioning, and the net draft cement weight used in the load.

Engineer's Acceptance for Modulus of Rupture

RSC pavement must develop a minimum modulus of rupture of 400 psi before opening to traffic. RSC pavement must develop a minimum modulus of rupture of 600 psi 7 days after placement. The Engineer may accept RSC pavement that does not attain the specified moduli of rupture as specified in "Pay Factor Adjustment for Low Modulus of Rupture." The Engineer determines the modulus of rupture by testing 3 beam specimens under California Test 524 and averaging the results. You may fabricate beam specimens using an internal vibrator under ASTM C 31. No single test represents more than that day's production or 130 cubic yards, whichever is less.

Beam specimens for early age must be cured so the temperature in the specimens is within 5 °F of the temperature in the pavement. You must determine the modulus of rupture at other ages using beams cured and tested under California Test 524 except place them in sand from 5 to 10 times the final set time or 24 hours, whichever is earlier. You must perform the testing to determine modulus of rupture values of the RSC pavement in the presence of the Engineer.

Pay Factor Adjustment for Low Modulus of Rupture

The Engineer adjusts payment for RSC for modulus of rupture as follows:

- 1. Payment for RSC with a modulus of rupture of 400 psi or greater before opening to traffic and 7-day modulus of rupture of 600 psi or greater is not adjusted.
- 2. Payment for RSC with a 7-day modulus of rupture less than 500 psi is not adjusted and no payment is made. Remove this RSC and replace it at your expense with RSC that complies with the specifications.
- 3. Payment for RSC with a modulus of rupture less than 350 psi before opening to traffic is not adjusted and no payment is made. Remove this RSC and replace it at your expense with RSC that complies with the specifications.
- 4. Payment for RSC with a modulus of rupture of 350 psi or greater before opening to traffic and a 7-day modulus of rupture greater than or equal to 500 psi is reduced by the percentage in the pay table for the quantity represented by the tests.

Percentage Pay Table

Modulus of Rupture (psi) at opening	7-Day Modulus of Rupture (psi)		
to traffic	Greater than or equal to 600	Less than 600 and greater than or equal to 550	Less than 550 and greater than or equal to 500
Greater than or equal to 400	100%	95%	90%
Less than 400 and greater than or equal to 350	95%	95%	90%
Less than 350	0%	0%	0%

MATERIALS

Rapid Strength Concrete

RSC must be one of the following:

1. Concrete complying with section 90 "Portland Cement Concrete", except you may use Type III portland cement.

- 2. Concrete complying with section 90 "Portland Cement Concrete", except:
 - 2.1. You may use any cement that complies with the definition of hydraulic cement or blended hydraulic cement in ASTM C 219 and the requirements shown in the following table:

Hydraulic Cement^c

Test Description	Test Method	Requirement ^b
Contraction in air	California Test 527,W/C Ratio = 0.39 ±0.010	0.053 %, max.
Mortar expansion in water	ASTM C 1038	0.04 %, max.
Soluble chloridea	California Test 422	0.05 %, max.
Soluble sulfatesa	California Test 417	0.30 %, max.
Thermal stability	California Test 553	90 %, min.
Compressive strength @ 3 days	ASTM C 109	2,500 psi

Note:

2.2. You may use citric acid or borax if you submit a written request from the cement manufacturer and a test sample.

Supplementary cementitous material is not required in RSC.

Choose the combined aggregate grading for RSC from either the 1-1/2 inch maximum or the 1-inch maximum combined grading under Section 90-3.04, "Combined Aggregate Gradings," of the Standard Specifications.

You may use Type C accelerating and Type E accelerating and water reducing chemical admixtures as specified in Section 90-4, "Admixtures," of the Standard Specifications. The requirement for air entrainment of concrete in freeze-thaw areas only applies when portland cement is used.

Mix Design

At least 10 days before use, submit a mix design for RSC that includes:

- 1. Opening age
- 2. Proposed aggregate gradation
- 3. Proportions of hydraulic cement and aggregate
- 4. Types and amounts of chemical admixtures
- 5. Maximum time allowed between batching and placing
- 6. Range of ambient temperatures over which the mix design is effective
- 7. Final set time
- 8. Any special instructions or conditions such as water temperature requirements

Submit more than 1 mix design to plan for ambient temperature variations anticipated during RSC placement. Each mix design must have a maximum ambient temperature range of 18 °F.

Submit modulus of rupture development data for each mix design. You may use modulus of rupture development data from laboratory-prepared samples. The testing ages for modulus of rupture development data must include 1 hour before opening age, opening age, one hour after opening age, 24 hours, 7 days, and 28 days.

Calibration Testing Certificates of Compliance

Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications with each delivery of aggregate, cement, and admixtures to be used for calibration tests. Submit certified copies of the weight of each delivery. The Certificate of Compliance must state the source of materials used for the calibration tests is from the same source to be used in the work. The Certificate of Compliance must be signed by your authorized representative.

Cement and Admixtures

At least 45 days before intended use, submit a sample of cement from each proposed lot and samples of proposed admixtures in the quantities ordered by the Engineer.

^a Perform test on a cube specimen fabricated under ASTM C 109. Cure the specimen at least 14 days and then pulverized to 100 percent passing the No. 50 sieve.

^bIf you use chemical admixtures, include them when testing.

^cThe requirements of this table does not apply to portland cement.

During RSC pavement operations, submit uniformity reports for hydraulic cement at least once every 30 days to the Transportation Laboratory, Attention: Cement Laboratory. Uniformity reports must comply with ASTM C 917, except testing age and water content may be modified to suit the particular material.

Add enough air-entraining admixture in compliance with Section 90-4, "Admixtures," of the Standard Specifications to attain an air content of 4 ± 1.5 percent in the freshly mixed concrete.

During concrete mix design, perform coefficient of thermal expansion testing under AASHTO T 336 from trial mixture samples. The Department will approve the mix based on your reported value of the CoTE test. Provide a split test sample to METS. For mix design acceptance, the coefficient of thermal expansion must not exceed 6.0×10^{-6} inch/inch/degree Fahrenheit.

If changing an aggregate supply source or the mix properties or proportions, perform coefficient of thermal expansion testing for the new concrete mix. The CoTE for new mix must comply with the requirement of the preceding paragraph. The Engineer does not adjust contract time for performing sampling, testing, and qualifying new mix for coefficient of thermal expansion.

Transverse Bar Assembly

You may use transverse bar assemblies to support longitudinal reinforcement instead of transverse reinforcement and other support devices. Transverse bar assemblies must comply with the following:

- 1. Minimum W5 wire size number under ASTM A 82/A 82M for clips
- 2. Minimum W2 wire size number under ASTM A 82/A 82M for chairs
- 3. Welded under Section 7.4 of ASTM A 185/A 185M

CONSTRUCTION

Rapid Strength Concrete

General

Concrete pavement penetration specified in Section 90-6.06, "Amount of Water and Penetration," of the Standard Specifications does not apply to RSC.

RSC must develop the specified opening age and 7-day modulus of rupture strengths.

Proportioning

Weighing, measuring, and metering devices used for proportioning materials must comply with Section 9-1.01, "Measurement of Quantities," of the Standard Specifications.

For batches with a volume of 1 cubic yard or more, proportioning must comply with one of the following methods:

- 1. Batch the ingredients at a central batch plant and charge them into a mixer truck for transportation to the pour site. Proportion ingredients under Section 90-5, "Proportioning," of the Standard Specifications.
- 2. Batch the ingredients except the cement at a central batch plant and charge them into a mixer truck for transportation to a cement silo and weigh system, which must proportion cement for charging into the mixer truck.
- 3. Batch ingredients except the cement at a central batch plant and charge them into a mixer truck for transportation to a location where pre-weighed containerized cement is added to the mixer truck. The cement pre-weighing operation must utilize a platform scale. The platform scale must have a maximum capacity of 2.75 tons with a maximum graduation size of 1 pound. Pre-weigh cement into a fabric container. The minimum amount of cement to be proportioned into any single container must be 1/2 of the total amount required for the load of RSC being produced.
- 4. Cement, water, and aggregate are proportioned volumetrically.

For central batch plants, indicators for weighing and measuring systems such as over and under dials must be grouped so that each indicator's smallest increment can be accurately read from the control point of the proportioning operation. In addition, indicators for weighing and measuring cement batched from a remote weighing system must be placed so that each indicator can be accurately read from the control point of the proportioning operation.

Weighing equipment must be insulated from other equipment's vibration or movement. When the plant is operating, each draft's material weight must not vary from the designated weight by more than the specified tolerances. Each scale graduation must be 0.001 of the usable scale capacity.

Aggregate must be weighed cumulatively. Equipment for weighing aggregate must have a zero tolerance of ± 0.5 percent of the aggregate's designated total batch weight. Equipment for the separate weighing of the cement must have a zero tolerance of ± 0.5 percent of the cement's designated individual batch draft. Equipment for measuring water must have a zero tolerance of ± 0.5 percent of the water's designated weight or volume.

The weight indicated for any individual batch of material must not vary from the preselected scale setting by more than:

Batch Weight Tolerances

Material	Tolerance
Aggregate	±1.0 percent of designated batch weight
Cement	±0.5 percent of designated batch weight
Water	±1.5 percent of designated batch weight or volume

Proportioning consists of dividing the aggregate into the specified sizes and storing them in separate bins, and then combining the aggregate with cement and water. Proportion dry ingredients by weight. Proportion liquid ingredients by weight or volume.

Handle and store aggregates under Section 90-5.01, "Storage of Aggregates," of the Standard Specifications. Proportion liquid admixtures under Section 90-4.10, "Proportioning and Dispensing Liquid Admixtures," of the Standard Specifications.

Control aggregate discharged from several bins with gates or mechanical conveyors. The means of discharge from the bins and from the weigh hopper must be interlocked so that no more than 1 bin can discharge at a time, and the weigh hopper cannot be discharged until the required quantity from each of the bins has been deposited in the weigh hopper.

At the time of batching, dry and drain aggregates to a stable moisture content. Do not proportion aggregates with visible separation of water from the aggregate during proportioning. At the time of batching, the free moisture content of fine aggregate must not exceed 8 percent of its saturated, surface-dry weight.

If the proportioning plant has separate supplies of the same size group of aggregate with different moisture content, specific gravity, or surface characteristics affecting workability, exhaust 1 supply before using another supply.

Keep cement separated from the aggregate until discharged into the mixer. When discharged into the mixer, cement must be free of lumps and clods. Before reuse, clean fabric containers used for transportation or proportioning of cement.

Weigh systems for proportioning aggregate and cement must be individual and distinct from other weigh systems. Each weigh system must have a hopper, a lever system, and an indicator.

When ordered by the Engineer, determine the gross weight and tare weight of truck mixers on scales designated by the Engineer.

Install and maintain in operating condition an electrically actuated moisture meter. The meter must indicate on a readily visible scale the changes in the fine aggregate moisture content as it is batched. The meter must have a sensitivity of 0.5 percent by weight of the fine aggregate.

Obtain the Engineer's acceptance before mixing water into the concrete during hauling or after arrival at the delivery point. If the Engineer accepts additional water be incorporated into the concrete, the drum must revolve not less than 30 revolutions at mixing speed after the water is added and before starting discharge. Measure water added to the truck mixer at the job site through a meter in compliance with Section 9-1.01, "Measurement of Quantities," of the Standard Specifications.

Volumetric Proportioning

You may choose to proportion RSC by volume.

Handle and store aggregates under Section 90-5.01, "Storage of Aggregates," of the Standard Specifications. Proportion liquid admixtures under Section 90-4.10, "Proportioning and Dispensing Liquid Admixtures," of the Standard Specifications.

Batch-mixer trucks must proportion cement, water, aggregate, and additives by volume. Aggregate feeders must be connected directly to the drive on the cement vane feeder. The cement feed rate must be tied directly to the feed rate for the aggregate and other ingredients. Only change the ratio of cement to aggregate by changing the gate opening for the aggregate feed. The drive shaft of the aggregate feeder must have a revolution counter reading to the nearest full or partial revolution of the aggregate delivery belt.

Proportion aggregate with a belt feeder operated with an adjustable cutoff gate delineated to the nearest quarter increment. The gate opening height must be readily determinable. Proportion cement by any method that complies with the accuracy tolerance specifications. Proportion water with a meter under Section 9-1.01, "Measurement and Payment," of the Standard Specifications.

Calibrate the cutoff gate for each batch-mixer truck used and for each aggregate source. Calibrate batch-mixer trucks at 3 different aggregate gate settings that are commensurate with production needs. Perform at least 2 calibration runs for each aggregate gate.

Individual aggregate delivery rate check-runs must not deviate more than 1.0 percent from the mathematical average of all runs for the same gate and aggregate type. Each test run must be at least 1,000 pounds.

At the time of batching, dry and drain aggregates to a stable moisture content. Do not proportion aggregates with visible separation of water from the aggregate during proportioning. At the time of batching, the free moisture content of fine aggregate must not exceed 8 percent of its saturated, surface-dry weight.

If the proportioning plant has separate supplies of the same size group of aggregate with different moisture content, specific gravity, or surface characteristics affecting workability, exhaust 1 supply before using another supply.

Cover rotating and reciprocating equipment on batch-mixer trucks with metal guards.

Individual cement delivery rate check-runs must not deviate more than 1.0 percent of the mathematical average of 3 runs of at least 1,000 pounds each.

When the water meter operates from 50 to 100 percent of production capacity, the indicated weight of water delivered must not differ from the actual weight delivered by more than 1.5 percent for each of 2 runs of 300 gallons. Calibrate the water meter under California Test 109. The water meter must be equipped with a resettable totalizer and display the operating rate.

Conduct calibration tests for aggregate, cement, and water proportioning devices with a platform scale located at the calibration site. Platform scales for weighing test-run calibration material must have a maximum capacity of 2.75 tons with maximum graduations of 1 pound. Error test the platform scale within 8 hours of calibrating the batch-mixer truck proportioning devices. Perform error-testing with test weights under California Test 109. Furnish a witness scale that is within 2 graduations of the test weight load. The witness scale must be available for use at the production site throughout the production period. Equipment needed for the calibration of proportioning systems must remain available at the production site throughout the production period.

The batch-mixer truck must be equipped so that accuracy checks can be made. Recalibrate proportioning devices every 30 days after production starts or when you change the source or type of any ingredient.

A spot calibration is calibration of the cement proportioning system only. Perform a 2-run spot calibration each time 55 tons of cement passes through the batch-mixer truck. If the spot calibration shows the cement proportioning system does not comply with the specifications, complete a full calibration of the cement proportioning system before you resume production.

Proportion liquid admixtures with a meter.

Locate cement storage immediately before the cement feeder. Equip the system with a device that automatically shuts down power to the cement feeder and aggregate belt feeder when the cement storage level is less than 20 percent of the total volume.

Submit aggregate moisture determinations, made under California Test 223, at least every 2 hours during proportioning and mixing operations. Record moisture determinations and submit them at the end of each production shift.

Equip each aggregate bin with a device that automatically shuts down the power to the cement feeder and the aggregate belt feeder when the aggregate discharge rate is less than 95 percent of the scheduled discharge rate.

Proportioning device indicators must be in working order before starting proportioning and mixing operations and must be visible when standing near the batch-mixer truck.

Identifying numbers of batch-mixer trucks must be at least 3 inches in height, and be located on the front and rear of the vehicles.

Mix volumetric proportioned RSC in a mechanically operated mixer. You may use auger-type mixers. Operate mixers uniformly at the mixing speed recommended by the manufacturer. Do not use mixers that have an accumulation of hard concrete or mortar.

Do not mix more material than will permit complete mixing. Reduce the volume of material in the mixer if complete mixing is not achieved. Continue mixing until a homogeneous mixture is produced at discharge. Do not add water to the RSC after discharge.

Do not use equipment with components made of aluminum or magnesium alloys that may have contact with plastic concrete during mixing or transporting of RSC.

The Engineer determines uniformity of concrete mixtures by differences in penetration measurements made under California Test 533. Differences in penetration are determined by comparing penetration tests on 2 samples of mixed concrete from the same batch or truck mixer load. The differences must not exceed 5/8 inch. Submit samples of freshly mixed concrete. Sampling facilities must be safe, accessible, clean, and produce a sample that is representative of production. Sampling devices and sampling methods must comply with California Test 125.

Do not use ice to cool RSC directly. If ice is used to cool water used in the mix, it must be melted before entering the mixer.

When proportioning and charging cement into the mixer, prevent variance of the required quantity by conditions such as wind or accumulation on equipment.

Each mixer must have metal plates that provide the following information:

- 1. Designed usage
- 2. Manufacturer's guaranteed mixed concrete volumetric capacity
- 3. Rotation speed

The device controlling the proportioning of cement, aggregate, and water must produce production data. The production data must be captured at 15-minute intervals throughout daily production. Each capture of production data represents production activity at that time and is not a summation of data. The amount of material represented by each production capture is the amount produced in the period from 7.5 minutes before to 7.5 minutes after the capture time. The daily production data must be submitted in electronic or printed media at the end of each production shift. The reported data must be in the order including data titles as follows:

- 1. Weight of cement per revolution count
- 2. Weight of each aggregate size per revolution count
- 3. Gate openings for each used aggregate size
- 4. Weight of water added to the concrete per revolution count
- 5. Moisture content of each used aggregate size
- 6. Individual volume of other admixtures per revolution count
- 7. Time of day
- 8. Day of week
- 9. Production start and stop times
- 10. Batch-mixer truck identification
- 11. Name of supplier
- 12. Specific type of concrete being produced
- 13. Source of the individual aggregate sizes
- 14. Source, brand, and type of cement
- 15. Source, brand and type of individual admixtures
- 16. Name and signature of operator

You may input production data by hand into a pre-printed form or it may be captured and printed by the proportioning device. Present electronic media containing recorded production data in a tab delimited format on a CD or DVD. Each capture of production data must be followed by a line-feed carriage-return with sufficient fields for the specified data.

Spreading, Compacting, and Shaping

You may use metal or wood side forms. Wood side forms must not be less than 1-1/2 inches thick. Side forms must be of sufficient rigidity, both in the form and in the connection with adjoining forms, that movement will not occur under forces from subgrading and paving equipment or from the pressure of concrete.

Side forms must remain in place until the pavement edge no longer requires the protection of forms. Clean and oil side forms before each use.

After you deposit the RSC on the subgrade, consolidate RSC with high-frequency internal vibrators. Consolidate adjacent to forms and across the full paving width. Place RSC as nearly as possible to its final position. Do not use vibrators for extensive shifting of RSC.

Spread and shape RSC with powered finishing machines supplemented by hand finishing.

After you mix and place RSC, do not add water to the surface to facilitate finishing. Use surface finishing additives as recommended by the manufacturer of the cement after their use is approved by the Engineer.

Final Finishing

Tinning is not required for this project.

Curing Method

If portland cement is used for RSC, cure per Section 90-7.02 "Curing Pavement." For other types of hydraulic cement, use the curing method recommended by the manufacturer of the cement for RSC.

Temporary Roadway Pavement Structure

Place hot mix asphalt and aggregate base where existing pavement is replaced for construction of a temporary roadway pavement structure. The quantity must be equal to the quantity of pavement removed during the work shift. If you place temporary roadway pavement structure, it must be maintained and later removed as the first order of work when CRCP activities resume. The temporary roadway pavement structure must consist of 3-1/2 inch thick hot mix asphalt over aggregate base. RSC not conforming to the specifications may be used for temporary roadway pavement structure with the Engineer's approval.

Spread and compact aggregate base and hot mix asphalt by methods that produce a well-compacted, uniform base, with a surface of uniform smoothness, texture and density. Surfaces must be free from pockets of coarse or fine material. You may spread aggregate base and hot mix asphalt each in one layer. The finished surface of hot mix asphalt must not vary more than 0.05 foot from the lower edge of a 12-foot long straightedge placed parallel with the centerline and must match the elevation of existing concrete pavement along the joints between the existing pavement and temporary surfacing.

After removing temporary roadway pavement structure, you may stockpile removed aggregate base at the project site and reuse it for temporary roadway pavement structures. When no longer required, dispose of standby material or stockpiled material for temporary roadway pavement structures under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Bar Reinforcement in Curves

For transverse bar reinforcement in a curve with a radius under 2,500 feet, place the reinforcement in a single continuous straight line across the lanes and aligned with the radius point. Place tie bars on the same alignment as the transverse bar reinforcement. If the curve does not allow the specified spacing between transverse bar reinforcement and tie bars, space them a distance that is between one half the specified spacing and the specified spacing.

Repair, Removal, and Replacement

If the Engineer orders removal of continuously reinforced concrete pavement (RSC), remove it to full depth. Cut transverse saw cuts normal to the lane line. Fill saw cuts extending beyond the removal limits with grout.

Remove and replace unconsolidated concrete.

If you damage existing bar reinforcement during removal, lengthen the removal area to provide the specified splicing length. Below the reinforcement at a partial depth saw cut, leave the face of the concrete pavement inclined no more than 1:12 (horizontal:vertical) into the removal area.

You may make additional saw cuts within the removal area to facilitate concrete removal or to alleviate binding of the saw cut at the removal area's edge.

Prevent base damage and prevent spalling of the concrete remaining in place. Remove and replace base material disturbed during removal. Place a minimum 4-mil thick polyethylene sheet between the base and new continuouslyreinforced concrete pavement (RSC). If concrete is used as base, place replacement continually reinforced concrete pavement after the concrete base has gained sufficient strength to prevent displacement.

For transverse joints, connect longitudinal bar reinforcement with lap splices in compliance with Section 52-1.08A, "Lap Splicing Requirements," of the Standard Specifications.

For longitudinal joints, drill and bond tie bars in compliance with Section 40-3.05, "Tie Bar Placement," of the Standard Specifications.

Within 18 hours after inserting tie bars into the chemical adhesive-filled holes, demonstrate the bond strength is 3/4 of the tie bar yield strength when tested under ASTM E 488. If the bond strength does not comply, increase the embedment depth and retest. Do not place replacement continuously reinforced concrete pavement RSC until the bond strength complies with the specifications.

Sawcut and seal expansion joints in the repair area. Use preformed sponge rubber expansion joint filler for expansion joints and longitudinal joints. Preformed sponge rubber expansion joint filler must comply with ASTM D 1752.

MEASUREMENT AND PAYMENT

If the Engineer accepts a trial slab and it remains as part of the paving surface, the trial slab is measured and paid for as continuously reinforced concrete pavement RSC, seal pavement joint, and seal isolation joint as the case may be.

The Engineer adjusts payment for continuously reinforced concrete pavement RSC in compliance with "Pay Factor Adjustment for Low Modulus of Rupture."

Repair, or removal and replacement of damaged pavement and base is at your expense and will not be measured or paid for.

Full compensation for providing a facility for and attending the prepaving conference is included in the contract price paid per cubic yard for continuously reinforced concrete pavement RSC and no additional compensation will be allowed therefor.

Full compensation for epoxy coating of steel reinforcement is included in the contract price paid per cubic yard for continuously reinforced concrete pavement RSC and no additional compensation will be allowed therefor.

10-1.57 CONTINUOUSLY REINFORCED CONCRETE PAVEMENT

GENERAL

Summary

This work includes constructing continuously reinforced concrete pavement. Comply with Section 40, "Concrete Pavement," of the Standard Specifications.

Submittals

If epoxy-coated steel is used in continuously reinforced concrete pavement, submit a copy of the certification for each plant used.

Submit coefficient of thermal expansion test results to the Engineer and at the Web site http://169.237.179.13/cte/ .

Prepaving Conference

Meet with the Engineer at a prepaying conference at a mutually agreed time and place. The conference facility must be within 3 miles of the job site. Discuss methods of performing the production and paying work.

Prepaving conference attendees must sign an attendance sheet provided by the Engineer. The prepaving conference must be attended by your:

- 1. Project superintendent
- 2. Quality control manager
- 3. Paving construction foreman
- 4. Subcontractor's workers including:
 - 4.1. Foremen
 - 4.2. Concrete plant manager
 - 4.3. Concrete plant operator
 - 4.4. Personnel performing saw cutting and joint sealing

Do not start paving activities including test strips until the listed personnel have attended a prepaving conference.

The Engineer may allow paving to start without a test strip if you use a batch plant mixer, paving equipment, and personnel that completed a Department continuously reinforced concrete pavement project within the preceding 12 months. Submit supporting documents and previous project information to the Engineer.

MATERIALS

Concrete

Perform coefficient of thermal expansion (CoTE) testing under AASHTO T 336. The thermal coefficient of expansion determined under AASHTO T 336 for concrete used in continuously reinforced concrete pavement must not exceed 6.0 x 10⁻⁶ inch/inch/ °F. The Department tests a sample provided by the contractor and approves the mix based on the results of the contractor and the Department CoTE testing.

Perform CoTE testing where there is a change in mix design. The Department approves the change based on the result of its CoTE testing.

Transverse Bar Assembly

You may use transverse bar assemblies to support longitudinal reinforcement instead of transverse reinforcement and other support devices. Transverse bar assemblies must comply with the following:

- 1. Minimum W5 wire size number under ASTM A 82/A 82M for clips
- 2. Minimum W2 wire size number under ASTM A 82/A 82M for chairs
- 3. Welded under Section 7.4 of ASTM A 185/A 185M

CONSTRUCTION

Transverse Contraction Joints

If widening existing concrete pavement, do not construct transverse contraction joints to match the existing pavement's joint spacing or skew unless specified. Transverse joints in pavement on curves must be straight and aligned with the curve's radius point.

Bar Reinforcement in Curves

For transverse bar reinforcement in a curve with a radius under 2,500 feet, place the reinforcement in a single continuous straight line across the lanes and aligned with the radius point. Place tie bars on the same alignment as the transverse bar reinforcement. If the curve does not allow the specified spacing between transverse bar reinforcement and tie bars, space them a distance that is between one half the specified spacing and the specified spacing.

Repair, Removal, and Replacement

If the Engineer orders removal of continuously reinforced concrete pavement, remove it to full depth. Cut transverse saw cuts normal to the lane line. Fill saw cuts extending beyond the removal limits with grout.

Replace unconsolidated concrete.

If you damage existing bar reinforcement during removal, lengthen the removal area to provide the specified splicing length. Below the reinforcement at a partial depth saw cut, leave the face of the concrete pavement inclined no more than 1:12 (horizontal:vertical) into the removal area.

You may make additional saw cuts within the removal area to facilitate concrete removal or to alleviate binding of the saw cut at the removal area's edge.

Prevent base damage and prevent spalling of the concrete remaining in place. Remove and replace base material disturbed during removal. Place a minimum 4-mil thick polyethylene sheet between the base and new continually reinforced concrete pavement. If concrete is used as base, place replacement continually reinforced concrete pavement after the concrete base has gained sufficient strength to prevent displacement.

For transverse joints, connect longitudinal bar reinforcement with lap splices in compliance with Section 52-1.08A, "Lap Splicing Requirements," of the Standard Specifications.

For longitudinal joints, drill and bond tie bars in compliance with Section 40-3.05, "Tie Bar Placement," of the Standard Specifications.

Within 18 hours after inserting tie bars into the chemical adhesive-filled holes, demonstrate the bond strength is 3/4 of the tie bar yield strength when tested under ASTM E 488. If the bond strength does not comply, increase the embedment depth and retest. Do not place replacement continuously reinforced concrete pavement until the bond strength complies with the specifications.

Sawcut and seal expansion joints in the repair area. Use preformed sponge rubber expansion joint filler for expansion joints and longitudinal joints. Preformed sponge rubber expansion joint filler must comply with ASTM D 1752.

MEASUREMENT AND PAYMENT

Continuously reinforced concrete pavement (Terminal Joint), continuously reinforced concrete pavement (Expansion Joint), and continuously reinforced concrete pavement (Pavement Anchor) of the types designated in the Verified Bid Item List are measured by the linear foot from field measurements.

If the Engineer accepts a test strip and it remains as part of the paving surface, the test strip is measured and paid for as continuously reinforced concrete pavement, seal pavement joint, and seal isolation joint as the case may be.

Full compensation for providing a facility for and attending the prepaving conference is included in the contract price paid per cubic yard for continuously reinforced concrete pavement and no additional compensation will be allowed therefor.

Full compensation for epoxy coating of steel reinforcement is included in the contract price paid per cubic yard for continuously reinforced concrete pavement and no additional compensation will be allowed therefor.

10-1.58 CONCRETE PAVEMENT JUST-IN-TIME-TRAINING

GENERAL

Summary

Your personnel required to attend the prepaying conference must also complete Just-In-Time-Training (JITT). JITT is a formal training class for the following pavement types:

	Pavement Types for JITT		
Ī	Concrete Pavement (Ramp Termini)		
Ī	Concrete Pavement (Rapid Strength Concrete)		

Submittals

At least 7 business days before JITT, submit the instructor's name and listed experience, the JITT facility's location, and 1 copy each of the course syllabus, handouts, and presentation materials.

The Engineer provides training evaluation forms and each attendee must complete them. Five business days after JITT, submit completed training evaluation forms to the Engineer and to:

Construction_Engineering_HQ@dot.ca.gov

Just-In-Time-Training

JITT must be:

- 1. At least 4 hours long
- 2. At your option, an extension of the prepaving conference
- 3. Conducted within 3 miles of the job site
- 4. Completed at least 20 days before you start paving activities
- 5. Conducted during normal working hours

Provide a JITT instructor who is experienced with the specified pavement construction methods, materials, and tests. The instructor must be neither your employee nor a Department field staff member. Upon JITT completion, the instructor must issue a certificate of completion to each participant.

The Engineer may waive training for personnel who have completed equivalent training within the 12 months preceding JITT. Submit certificates of completion for the equivalent training.

MEASUREMENT AND PAYMENT

The Engineer determines the costs for providing JITT under Section 9-1.03, "Force Account Payment," of the Standard Specifications, except no markups are added and you are paid for one half of the JITT cost. Costs for providing JITT include training materials, class site, and the JITT instructor including the JITT instructor's travel, lodging, meals and presentation materials. The Engineer does not pay your costs for attending JITT.

10-1.59 PILING

GENERAL

Piling shall conform to the provisions in Section 49, "Piling," of the Standard Specifications, and these special provisions.

Concrete for cast-in-place concrete piling shall be prequalified in conformance with the provisions in Section 90-9, "Compressive Strength," of the Standard Specifications.

Unless otherwise specified, welding of any work performed in conformance with the provisions in Section 49, "Piling," of the Standard Specifications, shall be in conformance with the requirements in AWS D1.1.

Attention is directed to "Project Information," and "Welding" of these special provisions.

Difficult pile installation is anticipated at Retaining Wall 533A due to the presence of high ground water, coarse gravel, cobbles, boulders, existing underground culvert, and underground utilities.

Difficult pile installation is anticipated at Retaining Wall 83 due to the presence of high ground water, existing 30" storm drain pipe, and underground utilities.

Difficult pile installation is anticipated at Retaining Wall 10 due to the presence of high ground water, existing underground culvert, and underground utilities.

Difficult pile installation is anticipated at signs 205 and 300 due to the presence of high ground water.

When a calculated nominal driving resistance is shown on the plans for piling, that value shall be utilized in lieu of nominal resistance in Section 49, "Piling," of the Standard Specifications, the plans, and these special provisions.

Driving System Submittal

Before installing driven piles, submit a driving system submittal for each pile type shown in the following table:

Bridge No.	Pile Type
Route 74/5 Separation	Steel Piling (HP)
(Br. No. 55-1104)	
Retaining Wall No. 10	Class 90 (Alt W) Piles,
(Br. No. 55E0117)	and Steel Pipe Piles
Retaining Wall No. 83	Class 90 (Alt W) Piles
(Br. No. 55E0119)	
Retaining Wall No. 533A	Cast In-Steel-Shell
(Br. No. 55E0120)	Concrete Piles

The driving system submittal must comply with Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications.

The driving system submittal must be sealed and signed by an engineer who is registered as a Civil Engineer with the State of California. Allow 15 days for the Department's review. Allow an additional 15 days for the review of any resubmittals.

Submit a revised driving system submittal if the hammers change from those shown in the submittal.

For the driving system submittal, perform driveability studies as follows:

- Model the proposed driving system including hammers, cap blocks, and pile cushions based on a wave equation analysis.
- 2. Use a computer program approved by the Engineer.
- 3. If the driveability analysis hammers indicate that open-ended pipe pile and steel shell penetration rates are less than 1 foot per 200 blows and the driving stresses exceed 80 percent of the yield strength of the pipe and steel shell, include assumptions for drilling through the center of the piles and shells.
- 4. If a follower is used, include an analysis of the driving system with the follower and an analysis of the driving system without the follower.

Include in the driving system submittal:

- 1. Results of the driveability analysis showing that all proposed driving systems will install piles to the specified tip elevation and nominal driving resistance shown on the plans. Driving systems must generate sufficient energy to drive the piles with compressive and tensile stresses not more than 90 percent of the yield strength of the pile as driven. Results must include:
 - 1.1. Pile compressive stress versus blows per foot.
 - 1.2. Pile tensile stress vs. blows per foot.
 - 1.3. Nominal driving resistance vs. blows per foot.

2. Complete description of:

- 2.1. Soil parameters used, including soil quake and damping coefficients, skin friction distribution, and ratio of shaft resistance to total resistance.
- 2.2. Assumptions made regarding the formation of soil plugs, drilling through the center of open-ended steel shells, and the use of closure plates, shoes, and other tip treatment.
- 3. List of all hammer operation parameters assumed in the analysis, including fuel settings, stroke limitations, and hammer efficiency.
- 4. Copies of all test results from any previous pile load tests, dynamic monitoring, and all driving records used in the analyses.
- 5. Completed "Pile and Driving Data Form"

CALIFORNIA DEPARTMENT OF TRANSPORTATION TRANSPORTATION LABORATORY

PILE AND DRIVING DATA FORM

	Contract No.:
	Project:
Structure No.:	Pile Driving Contractor or
Dist./Co./Rte./Post Wii:	Subcontractor(Pile Driven By)
	Manufacturer: Model:
	Type: Serial No.:
	Rated Energy: at Length of Stroke
Ram Hammer	Madi Gastisus
│ 	Modifications:
Anvil	
7	
	Material:
Capblock	Thickness:in Area:in ²
(Hammer Cushion)	Modulus of Elasticity - E:ksi
Cusinon	Coefficient of Restitution - e:
	Helmet
Pile Cap	
	Anvil Block
	Drivehead
	Material:
Pile	Thickness:in Area:in ²
Cushion	Modulus of Elasticity - E:ksi
	Coefficient of Restitution - e:
	Pile Type:
	Length (In Leads):ft
Pile	Lb/ft.:Taper:in
	Cross Sectional Area: in ²
	Design Pile Capacity:kips
	Description of Splice:
	Tip Treatment Description:
	Tip Treatment Description
	2
DISTRIBUTE:	Note: If mandrel is used to drive the pile, attach separate manufacturer's
Translab,	detail sheet(s) including weight and dimensions.
Foundation Testing	
	Submitted By:
Geotechnical Design	Date:Phone No.:
Resident Engineer	
— · II	

Jetting and Drilling

Jetting or drilling to obtain the specified penetration in conformance with the provisions in Section 49-1.05, "Driving Equipment," of the Standard Specifications shall not be used for driven type piles.

Predrilled Holes

Permanent steel casings at Retaining Walls Nos. 10 and 533A, as shown on the plans, shall be installed without any vibration or driving in oversized drilled holes in conformance with the provisions in Section 49-1.06, "Predrilled Holes," of the Standard Specifications. After installing the permanent steel casing, the space outside the permanent steel casing shall be filled to ground surface with dry sand or pea gravel.

In addition, piles which are designated on the plans to be predrilled due to close proximity to an obstruction shall be treated as piles driven in predrilled holes through embankments in conformance with the provisions in Section 49-1.06, "Predrilled Holes," and Section 49-6.02, "Payment," of the Standard Specifications. After driving the pile, the space around the pile shall be filled to ground surface with slurry cement backfill. These locations and corresponding bottom of hole elevations are listed in the following table:

Bridge Name or Number	Abutment Number	Bent Number	Elevation of Bottom of Hole
Retaining Wall 83 (Br. No. 55E0119)	-	-	114.84 feet

CAST-IN-DRILLED-HOLE CONCRETE PILES

GENERAL

Summary

Cast-in-drilled-hole (CIDH) concrete piling shall conform to the provisions in Section 49-4, "Cast-In-Place Concrete Piles," of the Standard Specifications and these special provisions.

The provisions of "Welding" of these special provisions shall not apply to temporary steel casings.

Definitions

dry hole:

- 1. Except for CIDH concrete piles specified as end bearing, a drilled hole that:
 - 1.1. Accumulates no more than 12 inches of water in the bottom of the drilled hole during a period of 1 hour without any pumping from the hole during the hour.
 - 1.2. Has no more than 3 inches of water in the bottom of the drilled hole immediately before placing concrete.
- 2. For CIDH concrete piles specified as end bearing, a drilled hole free of water without the use of pumps.

Submittals

Pile Installation Plan

The Contractor shall submit a pile installation plan to the Engineer for approval for all CIDH concrete piling. The pile installation plan shall be submitted at least 15 days before constructing CIDH concrete piling and shall include complete descriptions, details, and supporting calculations for the following:

- A. Concrete mix design, certified test data, and trial batch reports.
- B. Drilling or coring methods and equipment.
- C. Proposed method for casing installation and removal when necessary.
- D. Methods for placing, positioning, and supporting bar reinforcement. If plastic spacers are proposed for use, include the manufacturer's data and a sample of the plastic spacer.
- E. Methods and equipment for determining the depth of concrete and actual and theoretical volume placed, including effects on volume of concrete when any casings are withdrawn.
- F. Methods and equipment for verifying that the bottom of the drilled hole is clean before placing concrete.
- G. Methods and equipment for preventing upward movement of reinforcement, including the Contractor's means of detecting and measuring upward movement during concrete placement operations.

For concrete placed under slurry, the pile installation plan shall also include complete descriptions, details, and supporting calculations for the following:

- A. Concrete batching, delivery, and placing systems, including time schedules and capacities. Time schedules shall include the time required for each concrete placing operation at each pile.
- B. Concrete placing rate calculations. When requested by the Engineer, calculations shall be based on the initial pump pressures or static head on the concrete and losses throughout the placing system, including anticipated head of slurry and concrete to be displaced.
- C. Suppliers' test reports on the physical and chemical properties of the slurry and any proposed slurry chemical additives, including Material Safety Data Sheet.
- D. Slurry testing equipment and procedures.
- E. Methods of removal and disposal of excavation, slurry, and contaminated concrete, including removal rates.
- F. Methods and equipment for slurry agitating, recirculating, and cleaning.

QUALITY ASSURANCE

Concrete Test Batch

Before concrete is deposited under slurry, a concrete test batch shall be produced and delivered to the project under conditions and in time periods similar to those expected during placement of concrete in the piles. Concrete shall be placed in an excavated hole or suitable container of adequate size to allow for testing as specified herein. Depositing of concrete under slurry will not be required. In addition to meeting the specified nominal slump, the concrete test batch shall meet the following requirements:

- A. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be 2 hours or less, the concrete test batch shall demonstrate that the proposed concrete mix design achieves a slump of at least 7 inches after twice that time has elapsed.
- B. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be more than 2 hours, the concrete test batch shall demonstrate that the proposed concrete mix design achieves a slump of at least 7 inches after that time plus 2 hours has elapsed.

The time period shall begin at the start of placement. Concrete shall not be vibrated or agitated during the test period. Slump tests will be performed in conformance with the requirements in California Test 556.

Upon completion of testing, concrete shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Preconstruction Meeting

A preconstruction meeting for CIDH concrete pile construction shall be held (1) at least 5 business days after submitting the pile installation plan and (2) at least 10 days before the start of CIDH concrete pile construction.

The meeting shall include the Engineer, the Contractor, and any subcontractors involved in the CIDH concrete pile construction.

The purpose of this meeting is to:

- A. Establish contacts and communication protocol between the Contractor, any subcontractors involved in CIDH concrete pile construction, and the Engineer
- B. Review the construction process, acceptance testing, and anomaly mitigation of CIDH concrete piles

The Contractor shall schedule the meeting and provide a facility for the meeting. The Engineer will conduct the meeting. The following will be discussed:

- A. Pile placement plan, dry and wet
- B. Acceptance testing, including gamma-gamma logging, cross-hole sonic logging, and coring
- C. Pile Design Data Form
- D. Mitigation process
- E. Timeline and critical path activities
- F. Structural, geotechnical, and corrosion design requirements
- G. Future meetings, if necessary, for pile mitigation and pile mitigation plan review
- H. Safety requirements, including Cal/OSHA and Tunnel Safety Orders

MATERIALS

Concrete

Concrete deposited under slurry shall have a nominal slump equal to or greater than 7 inches, contain not less than 675 pounds of cementitious material per cubic yard, and be proportioned to prevent excessive bleed water and segregation. The nominal and maximum slump and penetration requirements in Section 90-6.06, "Amount of Water and Penetration," of the Standard Specifications shall not apply.

Aggregate Grading

The combined aggregate grading shall be either the 1-inch maximum grading, the 1/2-inch maximum grading, or the 3/8-inch maximum grading and shall conform to the requirements in Section 90-3, "Aggregate Gradings," of the Standard Specifications.

When concrete is placed under slurry, the combined aggregate grading shall be either the 1/2-inch maximum grading or the 3/8-inch maximum grading and shall conform to the requirements in Section 90-3, "Aggregate Gradings," of the Standard Specifications.

Aggregate shall be used to extend the grout, but only to the extent that the cementitious material content of the grout is not less than 845 pounds per cubic yard of grout. California Test 541 will not be required nor will the grout be required to pass through a sieve with a 0.07-inch maximum clear opening before being introduced into the grout pump. Aggregate shall consist of at least 70 percent fine aggregate and approximately 30 percent pea gravel, by weight. Fine aggregate shall conform to the provisions of Section 90-2, "Materials," of the Standard Specifications. The size of pea gravel shall be such that 100 percent passes the 1/2-inch sieve, a minimum of 90 percent passes the 3/8-inch sieve, and not more than 5 percent passes the No. 8 sieve.

Spacers

Spacers shall conform to Section 52-1.07, "Placing," of the Standard Specifications, except plastic spacers may be used.

Plastic spacers shall conform to Sections 3.4 and 3.5 of the Concrete Reinforcing Steel Institute's "Manual of Standard Practice" and shall have at least 25 percent of their gross plane area perforated to compensate for the difference in the coefficient of thermal expansion between the plastic and concrete. Plastic spacers shall be commercial quality.

Slurry

Mineral Slurry

Mineral slurry shall be mixed and thoroughly hydrated in slurry tanks, and slurry shall be sampled from the slurry tanks and tested before placement in the drilled hole.

Slurry shall be recirculated or continuously agitated in the drilled hole to maintain the specified properties.

Recirculation shall include removal of drill cuttings from the slurry before discharging the slurry back into the drilled hole. When recirculation is used, the slurry shall be sampled and tested at least every 2 hours after beginning its use until tests show that the samples taken from the slurry tank and from near the bottom of the hole have consistent specified properties. Subsequently, slurry shall be sampled at least twice per shift as long as the specified properties remain consistent.

Slurry that is not recirculated in the drilled hole shall be sampled and tested at least every 2 hours after beginning its use. The slurry shall be sampled mid-height and near the bottom of the hole. Slurry shall be recirculated when tests show that the samples taken from mid-height and near the bottom of the hole do not have consistent specified properties.

Slurry shall also be sampled and tested before final cleaning of the bottom of the hole and again just before placing concrete. Samples shall be taken from mid-height and near the bottom of the hole. Cleaning of the bottom of the hole and placement of the concrete shall not start until tests show that the samples taken from mid-height and near the bottom of the hole have consistent specified properties.

Mineral slurry shall be tested for conformance to the requirements shown in the following table:

MINERAL SLURRY			
PROPERTY	REQUIREMENT	TEST	
Density (pcf) - before placement in the drilled hole	64.3* to 69.1*	Mud Weight (Density) API 13B-1 Section 1	
- during drilling - before final cleaning - immediately before placing concrete	64.3* to 75.0*		
Viscosity (seconds/quart) bentonite	28 to 50	Marsh Funnel and Cup API 13B-1 Section 2.2	
attapulgite	28 to 40	Section 2.2	
pН	8 to 10.5	Glass Electrode pH Meter or pH Paper	
Sand Content (percent)		Sand API 13B-1	
- before final cleaning - immediately before placing concrete	less than or equal to 4.0	Section 5	

^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 2 pcf. Slurry temperature shall be at least 40°F when tested.

Any caked slurry on the sides or bottom of hole shall be removed before placing reinforcement. If concrete is not placed immediately after placing reinforcement, the reinforcement shall be removed and cleaned of slurry, the sides of the drilled hole cleaned of caked slurry, and the reinforcement again placed in the hole for concrete placement.

Synthetic Slurry

Synthetic slurries shall be used in conformance with the manufacturer's recommendations and these special provisions. The following synthetic slurries may be used:

PRODUCT	MANUFACTURER	
SlurryPro CDP	KB Technologies Ltd.	
	3648 FM 1960 West	
	Suite 107	
	Houston, TX 77068	
	(800) 525-5237	
Super Mud	PDS Company	
	c/o Champion Equipment Company	
	8140 East Rosecrans Ave.	
	Paramount, CA 90723	
	(562) 634-8180	
Shore Pac GCV	CETCO Drilling Products Group	
	1350 West Shure Drive	
	Arlington Heights, IL 60004	
	(847) 392-5800	
Terragel of Novagel	Geo-Tech Drilling Fluids	
Polymer	220 N. Zapata Hwy, Suite 11A	
	Laredo, TX 78043	
	(210) 587-4758	

Inclusion of a synthetic slurry on the above list may be obtained by meeting the Department's requirements for synthetic slurries. The requirements can be obtained from the Offices of Structures Design, P.O. Box 168041, MS# 9-4/11G, Sacramento, CA 95816-8041.

Synthetic slurries listed may not be appropriate for a given site.

Synthetic slurries shall not be used in holes drilled in primarily soft or very soft cohesive soils as determined by the Engineer.

A manufacturer's representative, as approved by the Engineer, shall provide technical assistance for the use of their product, shall be at the site before introduction of the synthetic slurry into a drilled hole, and shall remain at the site until released by the Engineer.

Synthetic slurries shall be sampled and tested at both mid-height and near the bottom of the drilled hole. Samples shall be taken and tested during drilling as necessary to verify the control of the properties of the slurry. Samples shall be taken and tested when drilling is complete, but before final cleaning of the bottom of the hole. When samples are in conformance with the requirements shown in the following tables for each slurry product, the bottom of the hole shall be cleaned and any loose or settled material removed. Samples shall be obtained and tested after final cleaning and immediately before placing concrete.

SlurryPro CDP synthetic slurries shall be tested for conformance to the requirements shown in the following table:

SLURRYPRO CDP KB Technologies Ltd.				
PROPERTY REQUIREMENT TEST				
Density (pcf) - during drilling	less than or equal to 67.0*	Mud Weight (Density) API 13B-1 Section 1		
- before final cleaning - just before placing concrete	less than or equal to 64.0*			
Viscosity (seconds/quart) - during drilling -before final	50 to 120	Marsh Funnel and Cup API 13B-1 Section 2.2		
cleaning - just before placing concrete	less than or equal to 70			
рН	6 to 11.5	Glass Electrode pH Meter or pH Paper		
Sand Content (percent)		Sand API 13B-1		
- before final cleaning - just before placing concrete	less than or equal to 0.5	Section 5		

Super Mud synthetic slurries shall be tested for conformance to the requirements shown in the following table:

SUPER MUD			
PDS Company			
PROPERTY	TEST		
Density (pcf) - before final cleaning - just before placing concrete	less than or equal to 64.0*	Mud Weight (Density) API 13B-1 Section 1	
Viscosity (seconds/quart) - during drilling - before final cleaning - just before placing	32 to 60 less than or equal to 60	Marsh Funnel and Cup API 13B-1 Section 2.2	
concrete pH	8 to 10.0	Glass Electrode pH Meter or pH Paper	
Sand Content (percent) - before final cleaning -just before placing concrete	less than or equal to 0.5	Sand API 13B-1 Section 5	

^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 2 pcf. Slurry temperature shall be at least 40°F when tested.

Shore Pac GCV synthetic slurries shall be tested for conformance to the requirements shown in the following table:

Shore Pac GCV				
CETCO Drilling Products Group				
PROPERTY REQUIREMENT TEST				
Density (pcf)				
		Mud Weight		
- before final	less than or equal to	(Density)		
cleaning	64.0*	API 13B-1		
- just before placing		Section 1		
concrete				
Viscosity				
(seconds/quart)				
	33 to 74	Marsh Funnel and		
- during drilling		Cup		
		API 13B-1		
1 . C C 1	141	Section 2.2		
- before final	less than or equal to 57			
cleaning	37			
concrete	- just before placing			
Concrete		Glass Electrode pH		
рН	8.0 to 11.0	Meter or pH Paper		
Sand Content	0.0 10 11.0	Tricter of pri i aper		
(percent)		Sand		
(percent)		API 13B-1		
- before final	less than or equal to	Section 5		
cleaning	0.5	Section 5		
-just before placing	0.0			
concrete				
ΨW/1				

^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 2 pcf. Slurry temperature shall be at least 40°F when tested.

Terragel or Novagel Polymer synthetic slurries shall be tested for conformance to the requirements shown in the following table:

TERRAGEL OR NOVAGEL POLYMER				
Geo-Tech Drilling Fluids				
PROPERTY REQUIREMENT TEST				
Density (pcf) - during drilling	less than or equal to 67.0*	Mud Weight (Density) API 13B-1 Section 1		
before final cleaning just before placing concrete	less than or equal to 64.0*	Section 1		
Viscosity (seconds/quart)		Marsh Funnel and		
- during drilling	45 to 104	Cup API 13B-1 Section 2.2		
- before final cleaning - just before placing concrete	less than or equal to 104			
pН	6.0 to 11.5	Glass Electrode pH Meter or pH Paper		
Sand Content (percent)		Sand API 13B-1		
- before final cleaning -just before placing concrete	less than or equal to 0.5	Section 5		
*When approved by the Engineer, slurry may be used in salt				

^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 2 pcf. Slurry temperature shall be at least 40°F when tested.

Water Slurry

At the option of the Contractor, water may be used as slurry when casing is used for the entire length of the drilled hole.

Water slurry shall be tested for conformance to the requirements shown in the following table:

WATER SLURRY					
PROPERTY REQUIREMENT TEST					
Density (pcf) - before final cleaning - just before placing concrete	63.5*	Mud Weight (Density) API 13B-1 Section 1			
Sand Content (percent) - before final cleaning -just before placing concrete	less than or equal to 0.5	Sand API 13B-1 Section 5			

^{*}When approved by the Engineer, salt water slurry may be used and the allowable densities may be increased up to 2 pcf.

CONSTRUCTION

General

CIDH concrete piling 24 inches in diameter or larger may be constructed by excavation and depositing concrete under slurry.

Portions of CIDH concrete piling shown on the plans to be formed shall be formed and finished in conformance with the provisions for concrete structures in Section 51, "Concrete Structures," of the Standard Specifications.

Unless otherwise shown on the plans, the bar reinforcing steel cage shall have at least 3 inches of clear cover measured from the outside of the cage to the sides of the hole or casing.

Spacers shall be placed at least 5 inches clear from any inspection tubes. Plastic spacers shall be placed around the circumference of the cage and at intervals along the length of the cage, as recommended by the manufacturer of the plastic spacer.

Placing Concrete

Concrete deposited under slurry shall be carefully placed in a compact, monolithic mass and by a method that will prevent washing of the concrete. Concrete deposited under slurry need not be vibrated. Placing concrete shall be a continuous operation lasting not more than the time required for each concrete placing operation at each pile, as submitted in the placing plan, unless otherwise approved in writing by the Engineer. Concrete shall be placed with concrete pumps and delivery tube system of adequate number and size to complete the placing of concrete in the time specified. The delivery tube system shall consist of one of the following:

- A. A tremie tube or tubes, each of which are at least 10 inches in diameter, fed by one or more concrete pumps.
- B. One or more concrete pump tubes, each fed by a single concrete pump.

The delivery tube system shall consist of watertight tubes with sufficient rigidity to keep the ends always in the mass of concrete placed. If only one delivery tube is utilized to place the concrete, the tube shall be placed near the center of the drilled hole. Multiple tubes shall be uniformly spaced in the hole. Internal bracing for the steel reinforcing cage shall accommodate the delivery tube system. Tremies shall not be used for piles without space for a 10-inch tube.

Spillage of concrete into the slurry during concrete placing operations shall not be allowed. Delivery tubes shall be capped with a watertight cap, or plugged above the slurry level with a good quality, tight fitting, moving plug that will expel the slurry from the tube as the tube is charged with concrete. The cap or plug shall be designed to be released as the tube is charged. The pump discharge or tremie tube shall extend to the bottom of the hole before charging the tube with concrete. After charging the delivery tube system with concrete, the flow of concrete through a tube shall be induced by slightly raising the discharge end. During concrete placement, the tip of the delivery tube shall be maintained as follows to prevent reentry of the slurry into the tube. Until at least 10 feet of concrete has been placed, the tip of the delivery tube shall be within 6 inches of the bottom of the drilled hole, and then the embedment of the tip shall be maintained at least 10 feet below the top surface of the concrete. Rapid raising or lowering of the delivery tube shall not be permitted. If the seal is lost or the delivery tube becomes plugged and must be removed, the tube shall be withdrawn, the tube cleaned, the tip of the tube capped to prevent entrance of the slurry, and the operation restarted by pushing the capped tube 10 feet into the concrete and then reinitiating the flow of concrete.

When slurry is used, a fully operational standby concrete pump, adequate to complete the work in the time specified, shall be provided at the site during concrete placement. The slurry level shall be maintained 10 feet above the piezometric head or within 12 inches of the top of the drilled hole, whichever is higher.

A log of concrete placement for each drilled hole shall be maintained by the Contractor when concrete is deposited under slurry. The log shall show the pile location, tip elevation, dates of excavation and concrete placement, total quantity of concrete deposited, length and tip elevation of any casing, and details of any hole stabilization method and materials used. The log shall include a 8-1/2" x 11" sized graph of the concrete placed versus depth of hole filled. The graph shall be plotted continuously throughout placing of concrete. The depth of drilled hole filled shall be plotted vertically with the pile tip oriented at the bottom and the quantity of concrete shall be plotted horizontally. Readings shall be made at least at each 5 feet of pile depth, and the time of the reading shall be indicated. The graph shall be labeled with the pile location, tip elevation, cutoff elevation, and the dates of excavation and concrete placement. The log shall be delivered to the Engineer within 1 working day of completion of placing concrete in the pile.

After placing reinforcement and before placing concrete in the drilled hole, if drill cuttings settle out of the slurry, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean.

If a temporary casing is used, maintain concrete placed under slurry at a level at least 5 feet above the bottom of the casing. The equivalent hydrostatic pressure inside the casing must be greater than the hydrostatic pressure on the outside of the casing. The withdrawal of the casing must not cause contamination of the concrete with slurry.

Material resulting from using slurry shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Acceptance Testing and Mitigation

Vertical inspection pipes for acceptance testing shall be provided in all CIDH concrete piling 24 inches in diameter or larger, except when the holes are dry or when the holes are dewatered without the use of temporary casing in a manner that controls ground water.

The furnishing and placing of inspection pipes shall conform to the following:

- A. Inspection pipes shall be Schedule 40 PVC pipe conforming to ASTM D 1785 with a nominal pipe size of 2 inches. Watertight PVC couplers conforming to ASTM D 2466 are permitted to facilitate pipe lengths in excess of those which are commercially available. The Contractor shall log the location of the inspection pipe couplers with respect to the plane of pile cut off, and these logs shall be delivered to the Engineer upon completion of the placement of concrete in the drilled hole.
- B. Each inspection pipe shall be capped at the bottom and shall extend from 3 feet above the pile cutoff down to the bottom of the reinforcing cage. A temporary top cap or similar means shall be provided to keep the pipes clean before testing. If pile cutoff is below the ground surface or working platform, inspection pipes shall be extended to 3 feet above the ground surface or working platform. Approved covers or railings shall be provided and inspection pipes shall be located as necessary to minimize exposure of testing personnel to potential falling hazards.
- C. Inspection pipes shall be completely clean, dry, and unobstructed at the time of testing providing a 2-inch diameter clear opening.
- D. The inspection pipes shall be installed in straight alignment, parallel to the main reinforcement, and securely fastened in place to prevent misalignment during installation of the reinforcement and placing of concrete in the hole. The CIDH concrete piling shall be constructed so that the relative distance of inspection pipes to vertical steel reinforcement shall remain constant.

E. When any changes are made to the tip of CIDH concrete piling, the Contractor shall also extend the inspection pipes to the bottom of the reinforcing cage.

The following additional requirements apply if inspection pipes are not shown on the plans:

- A. Inspection pipes shall be placed radially around the pile, inside the outermost spiral or hoop reinforcement and no more than 1 inch clear of the outermost spiral or hoop reinforcement.
- B. Inspection pipes shall be placed around the pile at a uniform spacing not exceeding 33 inches measured along the circle passing through the centers of inspection pipes. A minimum of 2 inspection pipes per pile shall be used. Inspection pipes shall be placed to provide the maximum diameter circle that passes through the centers of the inspection pipes while maintaining the spacing required herein.
- C. Inspection pipes shall be placed a minimum of 3 inches clear of the vertical reinforcement. When the vertical reinforcement configuration does not permit this clearance while achieving radial location requirements, distance to vertical rebar shall be maximized while still maintaining the requirement for radial location.
- D. Where the dimensions of the pile reinforcement do not permit inspection pipes to be placed per these requirements, a plan for tube placement shall be submitted to the Engineer for approval in the Pile Placement Plan with a request for deviation before fabricating pile reinforcement.

After placing concrete, inspection pipes shall be filled with water to prevent debonding of the pipe. Before requesting acceptance tests, each inspection pipe shall be tested by the Contractor in the presence of the Engineer by passing a 1-1/4-inch-diameter rigid cylinder 4.5 feet long through the length of pipe. If an inspection pipe fails to pass the 1-1/4-inch-diameter cylinder, the Contractor shall immediately fill all inspection pipes in the pile with water.

For each inspection pipe that does not pass the 1-1/4-inch-diameter cylinder, the Contractor shall core a nominal 2-inch diameter hole through the concrete for the entire length of the pile. Cored holes shall be located as close as possible to the inspection pipes they are replacing and shall be no more than 5 inches clear from the reinforcement.

Coring shall not damage the pile reinforcement. Cored holes shall be made with a double wall core barrel system utilizing a split tube type inner barrel. Coring with a solid type inner barrel will not be allowed. Coring methods and equipment shall provide intact cores for the entire length of the pile. The coring operation shall be logged by an Engineering Geologist or Civil Engineer licensed in the State of California and experienced in core logging. Coring logs shall be in conformance with the Department's "Soil and Rock Logging, Classification, and Presentation Manual." Coring logs shall include Core Recovery (REC), Rock Quality Designation (RQD), locations of breaks, and complete descriptions of inclusions and voids encountered during coring, and shall be delivered to the Engineer upon completion. Concrete cores shall be preserved, identified with the exact location the core was recovered from within the pile, and delivered to the Engineer upon completion. The Engineer will evaluate the portion of the pile represented by the cored hole based on the submitted core logs.

Acceptance tests of the concrete will be made by the Engineer, without cost to the Contractor. Acceptance tests will evaluate the homogeneity of the placed concrete. Tests will include gamma-gamma logging conducted in conformance with California Test 233. The Contractor shall not conduct operations within 25 feet of the gamma-gamma logging operations. The Contractor shall separate reinforcing steel as necessary to allow the Engineer access to the inspection pipes to perform gamma-gamma logging or other acceptance testing. After requesting acceptance tests and providing access to the piles, the Contractor shall allow 15 days for the Engineer to conduct these tests and make determination of acceptance.

If acceptance testing performed by the Engineer determines that a pile does not meet the requirements of the specifications and California Test 233, Part 5C, then that pile will be rejected and all depositing of concrete under slurry or concrete placed using temporary casing for the purpose of controlling groundwater shall be suspended until written changes to the methods of pile construction are approved in writing by the Engineer.

The Engineer will determine whether the rejected pile requires mitigation due to structural, geotechnical, or corrosion concerns. The Engineer will consider the estimated size and location of the anomaly and potential effects upon the design. The Engineer will provide the conclusions of this analysis to the Contractor for development of a mitigation plan, if required. The Contractor shall allow 30 days for the Engineer to determine whether the pile requires mitigation and provide information to the Contractor. Day 1 of the 30 days shall be the 1st day after access has been provided to the Engineer to perform acceptance testing. If the Contractor submits additional information to the Engineer that modifies the size, shape, or nature of the anomaly, the Contractor shall allow 10 additional days for the subsequent analysis.

The Engineer may elect to perform additional tests to further evaluate a rejected pile. These tests may include crosshole sonic logging and other means of inspection selected by the Engineer. The pile acceptance test report will indicate if the Department intends to perform any additional testing and when the testing will be performed. The Contractor shall allow the Department 20 additional days for a total of 50 days to perform these tests and to provide supplemental results. The Contractor may progress with the mitigation plan process without waiting for these supplemental results.

Inspection pipes and cored holes shall be dewatered and filled with grout after notification by the Engineer that the pile is acceptable. Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. Inspection pipes and holes shall be filled using grout tubes that extend to the bottom of the pipe or hole or into the grout already placed.

If a rejected pile does not require mitigation, the Contractor may repair the pile per an approved mitigation plan or the Department will deduct the amount shown in the table for each anomaly up to the maximum total deduction:

	Anomaly Deduction		
Anomaly Location	$D < 4 \text{ feet}$ $4 \le D < 6$ $D \ge 6$		$D \ge 6$
Entirely or partially within the	\$1,000	\$2,000	\$4,000
upper 2/3 of the pile length			
Entirely within the lower 1/3 of	\$500	\$1,000	\$2,000
the pile length			
Maximum total deduction	\$2,000	\$4,000	\$8,000

Note:

D = Nominal pile diameter

The Department deducts the amount from any moneys due, or that may become due to the Contractor under the Contract.

If the Engineer determines that a rejected pile requires mitigation, the Contractor shall submit to the Engineer for approval a mitigation plan for repair, supplementation, or replacement for each rejected CIDH concrete pile conforming to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. If the Engineer determines that it is not feasible to repair the rejected pile, the Contractor shall not include repair as a means of mitigation and shall proceed with the submittal of a mitigation plan for replacement or supplementation of the rejected pile.

If the Engineer determines it is not feasible to use one of ADSC's standard mitigation plans to mitigate the pile, the Contractor shall schedule a meeting and meet with the Engineer before submitting a nonstandard mitigation plan. The meeting attendees shall include the Contractor's representatives and the Engineer's representatives involved in the pile mitigation. The purpose of the meeting is to discuss the type of pile mitigation that would be acceptable to the Department. The Contractor shall provide the meeting facility. The Engineer will conduct the meeting.

Pile mitigation plans shall include the following:

- A. The designation and location of the pile addressed by the mitigation plan.
- B. A review of the structural, geotechnical, and corrosion design requirements of the rejected pile.
- C. A step by step description of the mitigation work to be performed, including drawings if necessary.
- D. An assessment of how the proposed mitigation work will address the structural, geotechnical, and corrosion design requirements of the rejected pile.
- E. Methods for preservation or restoration of existing earthen materials.
- F. A list of affected facilities, if any, with methods and equipment for protection of these facilities during mitigation.
- G. The State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Post Mile, and the Contractor's (and Subcontractor's if applicable) name on each sheet.
- H. A list of materials, with quantity estimates, and personnel, with qualifications, to be used to perform the mitigation work.
- I. The seal and signature of an engineer who is licensed as a Civil Engineer by the State of California. This requirement is waived for mitigation plans when either of the following conditions are present:
 - 1. The proposed mitigation will be performed in conformance with the most recent Department-published version of "ADSC Standard Mitigation Plan 'A' Basic Repair" without exception or modification.
 - 2. The Engineer has determined that the rejected pile does not require mitigation due to structural, geotechnical, or corrosion concerns, and the Contractor elects to repair the pile using most recent

Department-published version of "ADSC Standard Mitigation Plan 'B' - Grouting Repair" without exception or modification.

The most recent Department published version of the "ADSC Standard Mitigation Plan" is available at:

http://www.dot.ca.gov/hq/esc/geotech/ft/adscmitplan.htm

For rejected piles to be repaired, the Contractor shall submit a pile mitigation plan that contains the following additional information:

- A. An assessment of the nature and size of the anomalies in the rejected pile.
- B. Provisions for access for additional pile testing if required by the Engineer.

For rejected piles to be replaced or supplemented, the Contractor shall submit a pile mitigation plan that contains the following additional information:

- A. The proposed location and size of additional piles.
- B. Structural details and calculations for any modification to the structure to accommodate the replacement or supplemental piles.

All provisions for CIDH concrete piling shall apply to replacement piles.

The Contractor shall allow the Engineer 20 days to review the mitigation plan after a complete submittal has been received.

When repairs are performed, the Contractor shall submit a mitigation report to the Engineer within 10 days of completion of the repair. This report shall state exactly what repair work was performed and quantify the success of the repairs relative to the submitted mitigation plan. The mitigation report shall be stamped and signed by an engineer that is licensed as a Civil Engineer by the State of California. The mitigation report shall show the State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Post Mile, and the Contractor (and subcontractor if applicable) name on each sheet. The Engineer will be the sole judge as to whether a mitigation proposal is acceptable, the mitigation efforts are successful, and to whether additional repairs, removal and replacement, or construction of a supplemental foundation is required.

OPEN ENDED CAST-IN-STEEL-SHELL CONCRETE PILING

Cast-in-steel-shell concrete piling shall consist of driven open ended steel shells filled with reinforced cast-inplace concrete and shall conform to the provisions in Section 49-4, "Cast-in-Place Concrete Piles," of the Standard Specifications and these special provisions.

In addition to driving, it is anticipated that drilling through the center of open ended steel shells to obtain the specified penetration may be necessary. The diameter of the drilled hole shall be less than the inside diameter of the piling. Equipment or methods used for drilling holes shall not cause quick soil conditions or cause scouring or caving of the hole. Drilling shall not be used within 10 feet of the specified tip elevation.

The piles shall be installed open ended and no internal plates shall be used.

The Contractor shall submit to the Engineer for approval, a cleanout method for open ended cast-in-steel-shell concrete piling. Care shall be taken during cleaning out of open ended steel shells to prevent disturbing the foundation material surrounding the pile. The bottom 10 feet of the pile shall not be cleaned out. Equipment or methods used for cleaning out steel shells shall not cause quick soil conditions or cause scouring or caving around or below the piles. Open ended steel shells shall be free of any soil, rock, or other material deleterious to the bond between concrete and steel before placing reinforcement and concrete.

After the steel shells have been cleaned out, the pile shall be constructed expeditiously in order to prevent deterioration of the surrounding foundation material from the presence of water. Deteriorated foundation materials, including materials that have softened, swollen, or degraded, shall be removed from the bottom of the steel shells and shall be disposed of.

Material resulting from cleaning out the steel shells shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications, unless otherwise specified or permitted by the Engineer.

Reinforcement shall be placed and secured symmetrically about the axis of the pile and shall be securely blocked to clear the sides of the steel shell.

STEEL PIPE PILING GENERAL

Summary

Steel pipe piling shall consist of unfilled steel pipe piling, steel shells for open ended cast-in-steel-shell concrete piling, and permanent steel casing. Steel pipe piling shall conform to the provisions in Section 49-5, "Steel Piles," of the Standard Specifications and these special provisions.

Steel pipe piling listed in the following table shall be designated as Class N steel pipe piling:

Bridge Name or Number	Type of Pipe Pile	
Retaining Wall No. 10	36" Steel Pipe Piles	
(Br No. 55E0117)		
Retaining Wall No. 533A	36" Cast-In-Steel Sheel Concrete	
(Br No. 55E0120)	Piles	

Steel pipe piling not listed above as Class N steel pipe piling shall be designated as Class R steel pipe piling.

Submittals

Steel pipe piling qualification audits shall be submitted in conformance with the provisions in "Steel Pipe Piling Qualification Audit" of these special provisions.

A Certificate of Compliance demonstrating material traceability shall be furnished in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications, and shall be signed by the facility's authorized Quality Control Representative. The Quality Control Representative shall be on record with the Department's Office of Structural Materials. The Certificate of Compliance shall include:

- 1. A statement that all materials and workmanship incorporated in the work and all required tests and inspections of this work have been performed in conformance with the details shown on the plans and these special provisions.
- 2. An attached certified mill test report (MTR) for each heat number of steel pipe piles being furnished.
- 3. The carbon equivalent (CE) calculated as CE=C + (Mn+Si)/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15. The CE shall be 0.45% maximum and may be shown on the MTR.

The Contractor shall submit a TL-38 Inspection Request form at least:

- 1. 48 hours before performing any field welding of steel pipe piling.
- 2. 10 days before performing any welding of Class N steel pipe piling.

The TL-38 Inspection Request form is available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbforms.htm

Working drawings shall be submitted to the Engineer before attaching handling devices to steel pipe piling. Working drawings shall include locations, handling and fitting device details, and connection details. Attachments shall not be made to steel pipe piling until the working drawings are approved in writing by the Engineer. The Contractor shall allow the Engineer 7 days for review.

MATERIALS

General

The provisions of "Welding Quality Control" of these special provisions shall not apply to longitudinal, skelp end, or spiral seam welds in steel pipe piling.

Circumferential welds shall conform to "Welding Quality Control" of these special provisions and the following:

- 1. Circumferential welds shall be complete joint penetration welds conforming to AWS D1.1.
- 2. Welds shall be located at least 12 inches away from a skelp end weld.

- 3. Backing rings shall conform to the following:
 - 3.1. The minimum thickness shall be 1/4 inch and the backing ring shall be continuous.
 - 3.2. Splices in the backing ring shall be made by complete joint penetration welds. These welds shall be completed and inspected, including any required nondestructive testing, before final insertion into a pipe end.
 - 3.3. The attachment of backing rings to pipe ends shall be done using the minimum size and spacing of tack welds that will securely hold the backing ring in place. Tack welding shall be done in the root area of the weld splice. Cracked tack welds shall be removed and replaced before subsequent weld passes.
 - 3.4. The gap between the backing ring and the steel pipe piling wall shall not be greater than 5/64 inch. One localized portion of the backing ring fit-up, that is equal to or less than a length that is 20 percent of the outside circumference of the pipe, as determined by the Engineer, may be offset by a gap equal to or less than 1/4 inch, provided that this localized portion is first seal welded using shielded metal arc E7016 or E7018 electrodes. This localized portion shall be marked so that it can be referenced during any required NDT.
 - 3.5. Backing rings shall have sufficient width so that the backing ring will not interfere with the interpretation of the NDT.
- 4. For steel pipe with an outside diameter greater than 42 inches and with a wall thickness greater than 1 inch, the root opening tolerances may be increased to a maximum of 3/16 inch.
- 5. For welding limited to fit-up and attaching backing rings and handling devices, the preheat and interpass temperature shall be in conformance with the requirements in AWS D1.1, Clause 3.5, "Minimum Preheat and Interpass Temperature Requirements," and with Table 3.2, Category C.

All steel pipe piling shall be capable of meeting the fit-up requirements of AWS D1.1, Clause 5.22.3.1, "Girth Weld Alignment (Tubular)," when the material is spliced utilizing a girth weld.

For the purposes of welding and prequalification of base metal, steel pipe piling designated as ASTM A 252 shall be treated as ASTM A 572, Grade 50, or ASTM A 709, Grade 50, in conformance with the requirements in AWS D1.1, Table 3.1.

Butt welded seams subsequently formed, including skelp end welds, shall be 100 percent ultrasonically tested in the final formed and welded condition. The acceptance criteria for UT shall conform to API 5L for API-licensed facilities or AWS D1.1 for cyclically loaded nontubular connections for welds subject to tensile stress.

Except for tack welding, gas metal arc welding (GMAW) shall not be used for the welding of steel pipe piling. When GMAW is used for tack welding, the filler metal shall not be deposited by short circuiting transfer.

The dimensional tolerances of steel pipe piling shall conform to the following:

- 1. Outside diameter: $\pm 0.75\%$ of the specified outside diameter
- 2. Wall thickness: -5%, +10% of the specified nominal wall thickness
- 3. Straightness: $\pm 1.0\%$ over the length of the pipe

Except for steel pipe piling marked with the API monogram, each length of steel pipe piling shall be marked as follows:

- 1. Name and location of the piling manufacturer
- 2. State Contract number, for Class N only
- 3. Heat number
- 4. Welding process
- 5. Outer diameter, nominal wall thickness, minimum wall thickness, and length
- 6. Year piling was produced
- 7. Marked as specified below for each class of steel pipe piling. Only Caltrans audited facilities are approved to mark piling for use on this project.

Class N Steel Pipe Piling

Class N steel pipe piling shall conform to one of the following:

- 1. Manufactured, welded, tested, and inspected in conformance with the requirements in API 5L, minimum Grade X52, PSL1, and the following:
 - 1.1. Manufactured by a facility licensed to apply the API monogram.
 - 1.2. Each length of steel pipe piling shall be marked with the API monogram in conformance with API 5L.
- 2. Manufactured in conformance with ASTM A 252, Grade 3, and welded in conformance with AWS D1.1, and the following:
 - 2.1. Groove welds using submerged arc welding from both sides without backgouging will require a procedure qualification record witnessed by the Engineer.
 - 2.2. At the beginning of fabrication, 3 macroetch cross-section test specimens, prepared in conformance with AWS D1.1, Clause 4.8.4, shall be furnished for each thickness of piling. Specimens shall be removed at locations selected by the Engineer and in the presence of the Engineer. Test specimens shall indicate that the weld is free of cracks and has thorough fusion between adjacent layers of weld metal and between weld metal and base metal. Undercut shall not exceed 1/32-inch.
 - 2.3. Material properties shall conform to ASTM A 252, Grade 3 unless otherwise shown in the plans or specified in these special provisions.
 - 2.4. The weighing of individual pipe will not be required as specified in ASTM A 252.
 - 2.5. Each length shall be marked "Caltrans Class N A252."

Class R Steel Pipe Piling

Class R steel pipe piling shall conform to one of the following:

- 1. Manufactured, welded, tested, and inspected in conformance with API 5L, minimum Grade X52, PSL1, and the following:
 - 1.1. Steel pipe piling shall be manufactured by a facility licensed to apply the API monogram.
 - 1.2. Hydrostatic testing, flattening tests, and the API monogram will not be required.
 - 1.3. Each length shall be marked "Caltrans Class R API."
- 2. Manufactured in conformance with ASTM A 252, Grade 3, and the following:
 - 2.1. Arc welding processes shall conform to AWS D1.1.
 - 2.2. Groove welds using submerged arc welding from both sides without backgouging will require a procedure qualification record witnessed by the Engineer.
 - 2.3. Underfill will not be allowed.
 - 2.4. For electric resistance welded pipe, the outer diameter flash shall be removed to a maximum of 1/32 inch.
 - 2.5. The weld reinforcement shall not exceed 1/8 inch.
 - 2.6. The weighing of individual pipe will not be required as specified in ASTM A 252.
 - 2.7. Each length shall be marked "Caltrans Class R A 252."

CONSTRUCTION

General

Steel pipe piling may be re-tapped to prevent pile set-up provided the field welded splice remains at least 3 feet above the work platform until that splice is approved in writing by the Engineer.

Welds used to attach handling devices to steel pipe piling shall be aligned parallel to the axis of the pile and shall conform to the requirements for field welding specified herein. Permanent bolted connections shall be corrosion resistant.

Field Welding

Field welding of steel pipe piling is defined as welding performed after the material has been transported from an audited facility.

Field welding shall conform to the requirements for circumferential welds as specified in "Materials" of this section and the following:

- 1. Welds made in the horizontal position where the longitudinal pipe axis is vertical shall be single-bevel groove welds.
- 2. The minimum preheat and interpass temperature for splice welding and for making repairs shall be 150 °F, regardless of the pipe pile wall thickness or steel grade. In the event welding is disrupted, preheating to 150 °F shall occur before welding is resumed.
- 3. Welds shall not be water quenched. Welds shall be allowed to cool unassisted to ambient temperature.

NONDESTRUCTIVE TESTING OF CLASS N STEEL PIPE PILING

Nondestructive testing (NDT) shall be performed on Class N steel pipe piling in conformance with these special provisions.

Backing ring welds shall be inspected by either RT or UT for a material thickness equal to or greater than 5/16 inch or by RT for a material thickness less than 5/16 inch. The acceptance criteria for RT or UT shall conform to AWS D1.1 for cyclically loaded nontubular connections for welds subject to tensile stress.

Nondestructive Testing of Welds made at a Permanent Fabrication Facility

For welding performed in conformance with API 5L:

- 1. The manufacturer shall submit to the Engineer a DVD or VHS videocassette recording of the actual product testing when radiological testing is utilized or the actual radiographic film when film radiography is utilized. This recording or film submittal shall be provided to the Engineer for review before shipment of the product from the manufacturing facility.
- 2. When film radiography is utilized to inspect pipe ends or repairs, the transmitted film density shall be 2.0 to 4.0 in the area of interest (weld, base metal, and IQI).
- 3. Repaired defects shall be re-inspected utilizing the NDT method that originally detected the defect, except that film radiography may be utilized for inspection of repairs when the defect was originally detected utilizing radiological testing.

For welding performed in conformance with AWS D1.1:

- 1. NDT shall be performed on 25 percent of each longitudinal, circumferential, or spiral weld by either radiographic testing (RT) or ultrasonic testing (UT).
- 2. The acceptance criteria for RT or UT shall conform to AWS D1.1 for cyclically loaded nontubular connections for welds subject to tensile stress.
- 3. If repairs are required in a portion of the tested weld:
 - 1.1. NDT shall be performed on the repaired portion.
 - 1.2. Additional NDT shall be performed on untested areas on each side of the repaired portion. The length of additional NDT on each side of the repaired portion shall equal 10 percent of the length of the pipe's outside circumference.
 - 1.3. After this additional 20 percent of NDT is performed, and if additional repairs are required, the total cumulative repair lengths from all NDT shall be determined and documented. If the cumulative weld repair length is determined to be equal to or more than 10 percent of the length of the pipe's outside circumference, then the entire weld shall receive NDT.

Nondestructive Testing of Field Welds

For field welding, including welds made on a portion of the steel pipe piling that has already been installed:

1. NDT shall be performed on 25 percent of the field weld by either RT or UT. Testing shall be done at locations selected by the Engineer. The Engineer may select several locations on a given splice for NDT. The cover pass shall be ground smooth at the locations to be tested.

2. Personnel performing UT for field welds will be required to verify their qualifications before performing NDT, by both written and practical exams. Information regarding the Department's Ultrasonic Testing (UT) Qualification Program is available at:

http://www.dot.ca.gov/hq/esc/Translab/OSM/smbresources.htm

- 3. The acceptance criteria for RT or UT shall conform to AWS D1.1 for cyclically loaded nontubular connections for welds subject to tensile stress.
- 4. If repairs are required in a portion of the tested weld:
 - 4.1. NDT shall be performed on the repaired portion.
 - 4.2. Additional NDT shall be performed on untested areas on each side of the repaired portion. The length of additional NDT on each side of the repaired portion shall equal 10 percent of the length of the pipe's outside circumference.
 - 4.3. After this additional 20 percent of NDT is performed, and if additional repairs are required, the total cumulative repair lengths from all NDT shall be determined and documented. If the cumulative weld repair length is determined to be equal to or more than 10 percent of the length of the pipe's outside circumference, then the entire weld shall receive NDT.

MEASUREMENT AND PAYMENT (PILING)

Measurement and payment for the various types and classes of piles shall conform to the provisions in Sections 49-6.01, "Measurement," and 49-6.02, "Payment," of the Standard Specifications and these special provisions.

Payment for cast-in-place concrete piling shall conform to the provisions in Section 49-6.02, "Payment," of the Standard Specifications and these special provisions except that when the diameter of cast-in-place concrete piling is shown on the plans as 24 inches or larger, reinforcement in the piling will be paid for by the pound as bar reinforcing steel (retaining wall).

Full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in drilling or coring holes, disposing of the material resulting from drilling or coring holes, furnishing and placing concrete, slurry, depositing concrete under slurry, test batches, inspection pipes, filling inspection holes and pipes with grout, drilling oversized cast-in-drilled-hole concrete piling, filling cave-ins and oversized piles with concrete, and redrilling through concrete shall be considered as included in the contract prices paid per linear foot for cast-in-drilled-hole concrete piling of the types and sizes listed in the Engineer's Estimate, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, as directed by the Engineer, and no additional compensation will be allowed therefor.

The contract price paid per linear foot for permanent steel casing of the sizes listed in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing permanent steel casing, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for furnishing and filling the space outside the permanent steel casing with dry sand or pea gravel to ground surface is included in the contract price paid per linear foot for permanent steel casing of the size listed in the Engineer's Estimate, and no additional compensation will be allowed therefor.

Full compensation for furnishing and backfilling the space around the pile with slurry cement backfill to ground surface is included in the contract price paid per linear foot for furnish piling of the size listed in the Engineer's Estimate, and no additional compensation will be allowed therefor.

Full compensation for cleaning out the open ended steel shells prior to installing reinforcement and filling with concrete, for disposing of materials removed from the inside of the pile, and for placing seal course concrete and dewatering the open ended steel shells, as shown on the plans, as specified in these special provisions, and as directed by the Engineer shall be considered as included in the contract unit price paid for drive pile, and no additional compensation will be allowed therefor.

Full compensation for conforming to the provisions in "Steel Pipe Piling" and "Nondestructive Testing of Class N Steel Pipe Piling" of these special provisions shall be considered as included in the contract prices paid for the various items of work involved, and no additional compensation will be allowed therefor.

Full compensation for driving system submittals shall be considered as included in the contract unit price paid for drive pile, and no additional compensation will be allowed therefor.

Full compensation for furnishing and installing epoxy coated pile anchors (hooks and U shaped reinforcement) is included in the contract price paid per linear foot for furnish piling of the types shown in the Engineer's Estimate, and no additional compensation will be allowed therefor.

10-1.60 PRESTRESSING CONCRETE

Prestressing concrete shall conform to the provisions in Section 50, "Prestressing Concrete," of the Standard Specifications and these special provisions.

The details shown on the plans for cast-in-place prestressed box girder bridges are based on a bonded full length draped tendon prestressing system. For these bridges the Contractor may, in conformance with the provisions in Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications, propose an alternative prestressing system utilizing bonded partial length tendons provided the proposed system and associated details meet the following requirements:

Moments and shears for loads used in the design shown on the plans will be made available to the Contractor upon written request to the Engineer.

10-1.61 CONCRETE STRUCTURES

Portland cement concrete structures shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions.

Attention is directed to "Colored Concrete" of these special provisions

GENERAL

Attention is directed to "Precast Concrete Quality Control" of these special provisions.

Shotcrete shall not be used as an alternative construction method for reinforced concrete members unless otherwise specified.

Neoprene strip shall be furnished and installed at abutment shear keys and abutment backwall joint protection in conformance with the details shown on the plans, the provisions in the Standard Specifications, and these special provisions.

Furnishing and installing neoprene strip shall conform to the requirements for strip waterstops as provided in Section 51-1.145, "Strip Waterstops," of the Standard Specifications, except that the protective board will not be required.

Forms used to support the deck of cast-in-place box girders or to form the voids of precast members for the following structures may remain in place, provided the portions of the forms that obstruct access openings or conflict with utility facilities are removed, the forming system employed leaves no sharp projections into the cells or voids, and forms between hinges and 5 feet beyond access openings adjacent to hinges are removed:

Route 74/5 Separation (Bridge No. 55-1104)

Materials for access opening covers in soffits of new cast-in-place concrete box girder bridges shall conform to the provisions for materials in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

Plastic pipe located at vertical drains used behind retaining walls, including horizontal or sloping drains down slopes and across sidewalk areas, shall be polyvinyl chloride (PVC) plastic pipe, Schedule 80, conforming to the provisions for pipe for edge drains and edge drain outlets in Section 68-3.02, "Materials," of the Standard Specifications. The vertical drain pipe shall be rigidly supported in place during backfilling operations.

FALSEWORK

Falsework shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions.

Temporary crash cushion modules, as shown on the plans and conforming to the provisions in "Temporary Crash Cushion Module" of these special provisions, shall be installed at the approach end of temporary railings which are located less than 15 feet from the edge of a traffic lane. For 2-way traffic openings, temporary crash cushion modules shall be installed at the departing end of temporary railings which are located less than 6 feet from the edge of a traffic lane.

The Contractor's engineer who signs the falsework drawings shall also certify in writing that the falsework is constructed in conformance with the approved drawings and the contract specifications prior to placing concrete. This certification shall include performing any testing necessary to verify the ability of the falsework members to sustain the stresses required by the falsework design. The engineer who signs the drawings may designate a representative to perform this certification. Where falsework contains openings for railroads, vehicular traffic, or pedestrians, the designated representative shall be qualified to perform this work, shall have at least 3 years of combined experience in falsework design or supervising falsework construction, and shall be registered as a Civil Engineer in the State of California. For other falsework, the designated representative shall be qualified to perform this work and shall have at least 3 years of combined experience in falsework design or supervising falsework construction. The Contractor shall certify the experience of the designated representative in writing and provide supporting documentation demonstrating the required experience if requested by the Engineer.

Welding and Nondestructive Testing

Welding of steel members, except for previously welded splices and except for when fillet welds are used where load demands are less than or equal to 1,000 pounds per inch for each 1/8 inch of fillet weld, shall conform to AWS D1.1 or other recognized welding standard. The welding standard to be utilized shall be specified by the Contractor on the working drawings. Previously welded splices for falsework members are defined as splices made prior to the member being shipped to the project site.

Splices made by field welding of steel beams at the project site shall undergo nondestructive testing (NDT). At the option of the Contractor, either ultrasonic testing (UT) or radiographic testing (RT) shall be used as the method of NDT for each field weld and any repair made to a previously welded splice in a steel beam. Testing shall be performed at locations selected by the Contractor. The length of a splice weld where NDT is to be performed, shall be a cumulative weld length equal to 25 percent of the original splice weld length. The cover pass shall be ground smooth at the locations to be tested. The acceptance criteria shall conform to the requirements of AWS D1.1, Clause 6, for cyclically loaded nontubular connections subject to tensile stress. If repairs are required in a portion of the weld, additional NDT shall be performed on the repaired sections. The NDT method chosen shall be used for an entire splice evaluation including any required repairs.

For all field welded splices, the Contractor shall furnish to the Engineer a letter of certification which certifies that all welding and NDT, including visual inspection, are in conformance with the specifications and the welding standard shown on the approved working drawings. This letter of certification shall be signed by an engineer who is registered as a Civil Engineer in the State of California and shall be provided prior to placing any concrete for which the falsework is being erected to support.

For previously welded splices, the Contractor shall determine and perform all necessary testing and inspection required to certify the ability of the falsework members to sustain the stresses required by the falsework design. This welding certification shall (1) itemize the testing and inspection methods used, (2) include the tracking and identifying documents for previously welded members, (3) be signed by an engineer who is registered as a Civil Engineer in the State of California, (4) and shall be provided prior to erecting the members.

COST REDUCTION INCENTIVE PROPOSALS FOR CAST-IN-PLACE PRESTRESSED BOX GIRDER BRIDGES

Except as provided herein, cast-in-place prestressed box girder bridges shall be constructed in conformance with the details shown on the plans and the provisions in Section 50, "Prestressing Concrete," and Section 51, "Concrete Structures," of the Standard Specifications.

If the Contractor submits cost reduction incentive proposals for cast-in-place prestressed box girder bridges, the proposals shall be in conformance with the provisions in Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications and these special provisions.

The Engineer may reject any proposal which, in the Engineer's judgment, may not produce a structure which is at least equivalent to the planned structure.

At the time the cost reduction incentive proposal (CRIP) is submitted to the Engineer, the Contractor shall also submit 4 sets of the proposed revisions to the contract plans, design calculations, and calculations from an independent checker for all changes involved in the proposal, including revisions in camber, predicted deck profile at each construction stage, and falsework requirements to the Offices of Structure Design, Documents Unit, P.O. Box 942874, Sacramento, CA 94274-0001 (1801 30th Street, Sacramento, CA 95816), telephone (916) 227-8230. When notified in writing by the Engineer, the Contractor shall submit 12 sets of the CRIP plan revisions and calculations to the Offices of Structure Design for final approval and use during construction. The calculations shall verify that all requirements are satisfied. The CRIP plans and calculations shall be signed by an engineer who is registered as a Civil Engineer in the State of California.

The CRIP plans shall be either 11" x 17", or 22" x 34" in size. Each CRIP plan sheet and calculation sheet shall include the State assigned designations for the contract number, bridge number, full name of the structure as shown on the contract plans, and District-County-Route-Post Mile. Each CRIP plan sheet shall be numbered in the lower right hand corner and shall contain a blank space in the upper right hand corner for future contract sheet numbers.

Within 3 weeks after final approval of the CRIP plan sheets, one set of the corrected good quality prints on 20-pound (minimum) bond paper, 22" x 34" in size, of all CRIP plan sheets prepared by the Contractor for each CRIP shall be furnished to the Offices of Structure Design, Documents Unit.

Each CRIP shall be submitted prior to completion of 25 percent of the contract working days and sufficiently in advance of the start of the work that is proposed to be revised by the CRIP to allow time for review by the Engineer and correction by the Contractor of the CRIP plans and calculations without delaying the work. The Contractor shall allow a minimum of 12 weeks for the review of a CRIP. In the event that several CRIPs are submitted simultaneously, or an additional CRIP is submitted for review before the review of a previously submitted CRIP has been completed, the Contractor shall designate the sequence in which the CRIPs are to be reviewed. In this event, the time to be provided for the review of any proposal in the sequence shall be not less than the review time specified herein for that proposal, plus 2 weeks for each CRIP of higher priority which is still under review.

Should the review not be complete by the date specified in the Contractor's CRIP, or such other date as the Engineer and Contractor may subsequently have agreed to in writing and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in review of CRIP plans and calculations, an extension of time commensurate with the delay in completion of the work thus caused will be granted as provided in Section 8-1.07, "Liquidated Damages," of the Standard Specifications except that the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications shall not apply.

Permits and approvals required of the State have been obtained for the structures shown on the plans. Proposals which result in a deviation in configuration may require new permits or approvals. The Contractor shall be responsible for obtaining the new permits and approvals before the Engineer will reach a decision on the proposal. Delays in obtaining permits and approvals will not be reason for granting an extension of contract time.

All proposed modifications shall be designed in conformance with the bridge design specifications and procedures currently employed by the Department. The proposal shall include all related, dependent or incidental changes to the structure and other work affected by the proposal. The proposal will be considered only when all aspects of the design changes are included for the entire structure. Changes, such as but not limited to, additional reinforcement and changes in location of reinforcement, necessary to implement the CRIP after approval by the Engineer, shall be made at the Contractor's expense.

Modifications may be proposed in (1) the thickness of girder stems and deck slabs, (2) the number of girders, (3) the deck overhang dimensions as specified herein, (4) the amount and location of reinforcing steel, (5) the amount and location of prestressing force in the superstructure, and (6) the number of hinges, except that the number of hinges shall not be increased. The strength of the concrete used may be increased but the strength employed for design or analysis shall not exceed 6,000 psi.

Modifications proposed to the minimum amount of prestressing force which must be provided by full length draped tendons are subject to the provisions in "Prestressing Concrete" of these special provisions.

No modifications will be permitted in (1) the foundation type, (2) the span lengths or (3) the exterior dimensions of columns or bridge superstructure, except that the overhang dimension from face of exterior girder to the outside edge of roadway deck may be uniformly increased or decreased by 25 percent on each side of the box girder section. Fixed connections at the tops and bottoms of columns shown on the plans shall not be eliminated.

The Contractor shall be responsible for determining construction camber and obtaining the final profile grade as shown on the plans.

The Contractor shall reimburse the State for the actual cost of investigating CRIPs for cast-in-place prestressed box girder bridges submitted by the Contractor. The Department will deduct this cost from any moneys due, or that may become due the Contractor under the contract, regardless of whether or not the proposal is approved or rejected.

10-1.62 BRIDGE DECK SURFACE TEXTURE

GENERAL

This work includes the longitudinal texturing of new bridge decks including approach slabs.

CONSTRUCTION

General

Texture the deck surfaces longitudinally using grinding and grooving as specified below.

After receiving surface texture, portions of surfaces that do not meet the friction requirements of Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications shall be ground or grooved parallel to the centerline in conformance with the provisions of Section 42, "Groove and Grind Pavement," of the Standard Specifications until the friction criteria are met.

Grinding and Grooving

Place an additional 1/4 inch of sacrificial concrete cover on the bridge deck above the finished grade shown on the plans. Place embedments in the concrete based on the final profile grade elevations shown on the plans. Construct joint seals after completing grinding and grooving operations.

Grind and groove surfaces in the following sequence:

- 1. Comply with the smoothness and deck crack treatment requirements of Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications.
- 2. Grind the entire surface between the face of concrete barriers to within 18 inches of the toe of barrier under Section 42-2, "Grinding," of the Standard Specifications. Grinding must not reduce the concrete cover on reinforcing steel to less than 1 3/4 inches.
- 3. Groove the ground surfaces longitudinally, parallel to the centerline, under Section 42-1, "Grooving," of the Standard Specifications.

Full compensation for conforming to the above requirements shall be considered as included in the contract price paid per cubic yard for the structural concrete item requiring the texturing, and no additional compensation will be allowed therefor.

DECK CLOSURE POURS

Where a deck closure pour is shown on the plans, reinforcement protruding into the closure space and forms for the closure pour shall conform to the following:

- A. During the time of placement of concrete in the deck, other than for the closure pour itself, reinforcing steel which protrudes into the closure space shall be completely free from any connection to the reinforcing steel, concrete, or other attachments of the adjacent structure, including forms. The reinforcing steel shall remain free of any connection for a period of not less than 24 hours following completion of the pour.
- B. Forms for the closure pour shall be supported from the superstructure on both sides of the closure space.

SLIDING BEARINGS

Sliding bearings consisting of elastomeric bearing pads lubricated with grease and covered with sheet metal shall conform to the following requirements:

- A. Grease shall conform to the requirements of Society of Automotive Engineers AS 8660. A uniform film of grease shall be applied to the upper surface of the pads prior to placing the sheet metal.
- B. Sheet metal shall be commercial quality galvanized sheet steel. The sheet metal shall be smooth and free of kinks, bends, or burrs.
- C. Construction methods and procedures shall prevent grout or concrete seepage into the sliding bearing assembly.

ELASTOMERIC BEARING PADS

Elastomeric bearing pads shall conform to the provisions in Section 51-1.12H, "Elastomeric Bearing Pads," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Measurement and payment for concrete in structures shall conform to the provisions in Section 51-1.22, "Measurement," and Section 51-1.23, "Payment," of the Standard Specifications and these special provisions.

The contract price paid per cubic yard for structural concrete, barrier slab shall include full compensation for furnishing all labor, materials including bar reinforcing steel, tools, equipment, and incidentals, and for doing all the work involved in constructing the barrier slab, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for furnishing and installing access opening covers in soffits of new cast-in-place box girder bridges shall be considered as included in the contract price paid per cubic yard for structural concrete, bridge and no separate payment will be made therefor.

Full compensation for furnishing and installing plastic pipe located at vertical drains used behind retaining walls and bridge abutments, including horizontal or sloping drains including excavation and backfill involved in placing the plastic pipe, shall be considered as included in the contract price paid per cubic yard for the various items of concrete work involved and no separate payment will be made therefor.

Full compensation for public notification and airborne monitoring for deck crack treatment shall be considered as included in the contract price paid per cubic yard for structural concrete, bridge, and no additional compensation will be allowed therefor.

10-1.63 STRUCTURE APPROACH SLABS (TYPE EQ)

GENERAL

Summary

This work includes constructing reinforced concrete approach slabs and structure approach drainage systems. Reinforced concrete approach slabs must comply with Section 51, "Concrete Structures," of the Standard Specifications.

Submittals

Furnish a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for the geocomposite drain certifying that the drain complies with these special provisions. The Certificate of Compliance must be accompanied by a flow capability graph for the geocomposite drain showing flow rates and the externally applied pressures and hydraulic gradients. The flow capability graph must be stamped with the verification of an independent testing laboratory.

MATERIALS

Concrete

Concrete for structure approach slabs must contain not less than 675 pounds of cementitious material per cubic yard and must either:

- 1. Cure for not less than 5 days before opening to public traffic, or
- 2. Comply with "Rapid Strength Concrete for Structures" of these special provisions.

Drainage Pads

Concrete for use in drainage pads must be minor concrete.

Geocomposite Drain

Geocomposite drain must consist of a manufactured core not less than 0.25 inch thick nor more than 2 inches thick with one or both sides covered with a layer of filter fabric that will provide a drainage void. The drain must produce a flow rate through the drainage void of at least 2 gallons per minute per foot of width at a hydraulic gradient of 1.0 and a minimum externally applied pressure of 3,500 psf.

The manufactured core must be one of the following:

- 1. Preformed grid of embossed plastic
- 2. Mat of random shapes of plastic fibers
- 3. Drainage net consisting of a uniform pattern of polymeric strands forming 2 sets of continuous flow channels
- 4. System of plastic pillars and interconnections forming a semirigid mat

The core material and filter fabric must be capable of maintaining the drainage void for the entire height of geocomposite drain. Filter fabric must be integrally bonded to the side of the core material with the drainage void.

Filter Fabric

Filter fabric must comply with the specifications for Class A filter fabric in Section 88-1.02, "Filtration," of the Standard Specifications.

Plastic Pipe

Plastic pipe shall conform to the provisions for pipe for edge drains and edge drain outlets in Section 68-3, "Edge Drains," of the Standard Specifications.

Treated Permeable Base

Treated permeable base under structure approach slabs must be an asphalt treated permeable base or a cement treated permeable base as specified in Section 29, "Treated Permeable Bases," of the Standard Specifications.

Miscellaneous Materials

Steel angles, plates, and bars at the concrete barrier joints must comply with Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

Hardboard and expanded polystyrene must comply with Section 51-1.12D, "Sheet Packing, Preformed Pads, and Board Fillers," of the Standard Specifications.

CONSTRUCTION

Geocomposite Drain

Install the geocomposite drain with the drainage void and the filter fabric facing the embankment. The fabric facing the embankment side must overlap a minimum of 3 inches at all joints and wrap around the exterior edges a minimum of 3 inches beyond the exterior edge. If additional fabric is needed to provide overlap at joints and wraparound at edges, the added fabric must overlap at least 6 inches and be attached to the fabric on the geocomposite drain.

Place core material manufactured from impermeable plastic sheeting having non-connecting corrugations with the corrugations approximately perpendicular to the drainage collection system.

If the fabric on the geocomposite drain is torn or punctured, replace the damaged section completely or repair it by placing a piece of fabric that is large enough to cover the damaged area and provide a 6-inch overlap.

If asphalt treated permeable base is placed around the slotted plastic pipe at the bottom of the geocomposite drain, it must be placed at a temperature of not less than 180 °F nor more than 230 °F.

Filter Fabric

Place filter fabric immediately after grading and compacting the subgrade to receive the filter fabric.

Align, handle, and place filter fabric in a wrinkle-free manner under the manufacturer's recommendations.

Adjacent borders of the filter fabric must be overlapped from 12 inches to 18 inches or stitched. The preceding roll must overlap the following roll in the direction the material is being spread or must be stitched. When the fabric is joined by stitching, it must be stitched with yarn of a contrasting color. The size and composition of the yarn must be as recommended by the fabric manufacturer. The number of stitches per 1 inch of seam must be 5 to 7.

Equipment or vehicles must not be operated or driven directly on the filter fabric.

Treated Permeable Base

Construct treated permeable base under Section 29, "Treated Permeable Bases," of the Standard Specifications and these special provisions.

Place asphalt treated permeable base at a temperature of not less than 200 °F nor more than 250 °F. Do not use material stored in excess of 2 hours in the work.

Asphalt treated permeable base may be spread in 1 layer. Compact the base with a vibrating shoe type compactor or a roller weighing at least 1.5 tons but not more than 5 tons. Begin compacting the base as soon as the mixture has cooled sufficiently to support the weight of the equipment without undue displacement.

Cement treated permeable base may be spread in 1 layer. Compact the base with a vibrating shoe type compactor or with a steel-drum roller weighing at least 1.5 tons but not more than 5 tons. Compaction must begin within one-half hour of spreading and must consist of 2 complete coverages of the cement treated permeable base.

Finishing Approach Slabs

Finish and treat the top surface of approach slabs under Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications. Edges of slabs must be edger finished.

Cure approach slabs with pigmented curing compound (1) under the specifications for curing structures in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications.

Sealing Joints

Type AL joint seals must comply with Section 51-1.12F, "Sealed Joints," of the Standard Specifications. The sealant may be mixed by hand-held power-driven agitators and placed by hand methods.

The sealant may be mixed by hand-held power-driven agitators and placed by hand methods. Immediately before placing the seal, thoroughly clean the joint, including abrasive blast cleaning of the concrete surfaces, so that all foreign material and concrete spillage are removed from all joint surfaces. Joint surfaces must be dry at the time the seal is placed.

MEASUREMENT AND PAYMENT

Structural concrete, approach slab (Type EQ) will be measured and paid for in conformance with the provisions in Section 51-1.22, "Measurement," and Section 51-1.23, "Payment," of the Standard Specifications and these special provisions.

Full compensation for the structure approach drainage system including geocomposite drain, plastic pipe, and drainage pads, treated permeable base, filter fabric, waterstops, and sliding joints shall be considered as included in the contract price paid per cubic yard for structural concrete, approach slab of the type shown in the Engineer's Estimate, and no additional compensation will be allowed therefor.

10-1.64 SEALING JOINTS

Joints in concrete bridge decks and joints between concrete structures and concrete approach slabs must be sealed in conformance with the details shown on the plans, the provisions in Section 51, "Concrete Structures," of the Standard Specifications, and these special provisions.

When ordered by the Engineer, a joint seal larger than called for by the Movement Rating shown on the plans must be furnished and installed. Payment to the Contractor for furnishing the larger seal and for saw cutting the increment of additional depth of groove required will be determined as provided in Section 4-1.03, "Changes," of the Standard Specifications.

10-1.65 REFINISHING BRIDGE DECKS

Surfaces of bridge decks that are exposed when existing sidewalks are removed shall be prepared and refinished flush with the adjoining deck surface in conformance with these special provisions.

The Contractor may refinish the deck surface using Portland cement concrete or rapid setting concrete.

The exact area to be refinished will be designated by the Engineer.

When work is being performed within 10 feet of a traffic lane or performed over traffic, dust and residue from deck preparation and cleaning shall be removed or controlled by vacuum, water spray, or shield methods approved by the Engineer.

Concrete shall be removed without damage to concrete that is to remain in place. Damage to concrete that is to remain in place shall be repaired to a condition satisfactory to the Engineer.

The concrete in deck areas to be refinished shall be removed to a depth of approximately 3/4 inch below the adjoining deck surface. A 3/4 inch deep saw cut shall be made along the perimeter of deck areas to be refinished before removing the concrete.

Existing areas of the deck more than 3/4 inch below the adjoining deck surface shall be prepared by removing not less than 1/4 inch of surface material to expose sound aggregate.

Concrete removal may be done by abrasive blast cutting, abrasive sawing, impact tool cutting, machine rotary abrading, or by other methods, all to be approved by the Engineer. Cut areas shall be cleaned free of dust and all other loose and deleterious materials by brooming, abrasive blast cleaning, and high pressure air jets. Equipment shall be fitted with suitable traps, filters, drip pans, or other devices to prevent oil or other deleterious matter from being deposited on the deck.

Existing reinforcement, exposed during the removal of concrete, that is to remain in place shall be protected from damage.

Steel dowels shall be cut off 1 inch below the existing concrete deck surface or at the bottom of concrete removal, whichever is lower.

Where refinishing is not required, steel dowels shall be cut off 1 inch below the finished surface and the holes shall be patched with rapid setting concrete.

Refinishing isolated high areas in the existing deck may be accomplished by cutting the concrete down to be flush with the plane of the adjoining deck surface by abrasive sawing, grinding, impact tool cutting, or by other methods approved by the Engineer. When grinding is performed to bring the deck concrete flush with the adjoining deck surface, the resulting surface shall have a coefficient of friction of not less than 0.35 as determined by California Test 342.

PORTLAND CEMENT CONCRETE

An epoxy adhesive shall be applied to the surfaces to be refinished before placing the portland cement concrete. Immediately before applying the adhesive, the area to receive the adhesive shall be cleaned by abrasive blasting and blown clean by compressed air to remove dust and any other loose material. The area to be covered shall be surface dry and the substrate temperature shall be 40° F or above when the adhesive is applied.

The epoxy adhesive shall be furnished and applied in conformance with the provisions in Section 95-1, "General," and Section 95-2.03, "Epoxy Resin Adhesive for Bonding New Concrete to Old Concrete," of the Standard Specifications. The exact rate of applying epoxy adhesive will be determined by the Engineer. The adhesive shall be worked onto the surface with stiff brushes or equal.

Portland cement concrete used to fill the prepared areas shall conform to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications and the following:

- A. The concrete shall contain a minimum of 675 pounds of cementitious material per cubic yard.
- B. The amount of free water used in concrete shall not exceed 280 pounds per cubic yard.
- C. The aggregate shall contain between 50 and 55 percent fine aggregate and the remainder shall be pea gravel. The grading of pea gravel shall be such that 100 percent passes the 1/2 inch sieve and not more than 5 percent passes the No. 16 sieve, unless a larger size is ordered by the Engineer.
- D. Admixtures shall be furnished and used if directed by the Engineer.
- E. Immediately after depositing on the newly placed adhesive, the portland cement concrete shall be thoroughly consolidated until all voids are filled and free mortar appears on the surface and then struck off to the required grade.
- F. Concrete shall be cured as provided in Section 90-7.03, "Curing Structures," of the Standard Specifications.
- G. No loads of any kind shall be applied to the portland cement concrete for at least 7 days after placing.

RAPID SETTING CONCRETE

Rapid setting concrete used to fill the prepared areas shall be a high-strength material consisting of magnesium phosphate concrete, modified high alumina based concrete, or portland cement based concrete. Magnesium phosphate concrete shall conform to the requirements for magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications. Modified high alumina based concrete and portland cement based concrete shall be water activated and shall conform to the requirements for single component (water activated) magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications.

A clean uniform rounded aggregate filler may be used to extend the rapid setting concrete. The moisture content of the aggregate shall not exceed 0.5 percent. Grading of the aggregate shall conform to the following:

Sieve Size	Percentage Passing
1/2"	100
No. 16	0-5

The amount of aggregate filler shall conform to the manufacturer's recommendation, but in no case shall the concrete strengths be less than that specified for magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications.

Mixing of components of dual component (with a prepackaged liquid activator) magnesium phosphate shall be by complete units, supplied by the manufacturer. Portions of units shall not be used. Water shall not be added to dual component magnesium phosphate.

Immediately before applying the rapid setting concrete, the surface shall be dry and blown clean by compressed air to remove accumulated dust and any other loose material. If the surface becomes contaminated at any time before placing the concrete, the surface shall be cleaned by abrasive blasting. The surface temperature of the areas to be covered shall be 39 F or above when the concrete is applied. Methods proposed to heat said surfaces are subject to approval by the Engineer. The surface for the magnesium phosphate concrete shall be dry. The surfaces for modified high alumina based concrete or portland cement based concrete may be damp but not saturated.

Magnesium phosphate concrete shall not be mixed in containers or worked with tools containing zinc, cadmium, aluminum, or copper. Modified high alumina based concrete shall not be mixed in containers or worked with tools containing aluminum.

Concrete shall not be retempered. Finishing tools that are cleaned with water shall be thoroughly dried before working the concrete.

When placing concrete on slopes exceeding 5 percent, the Engineer may require the Contractor to provide a flow controlled modified material.

Modified high alumina based concrete and portland cement based concrete shall be cured in conformance with the provisions in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications. Magnesium phosphate concrete shall not be cured.

Unless otherwise permitted in writing by the Engineer, public traffic shall not be permitted on the new concrete until at least 24 hours after final set.

FINISHING REQUIREMENTS

In advance of the curing operations, the surface of the concrete shall be textured by brooming with a stiff bristled broom or by other suitable devices that will result in uniform scoring. Brooming shall be performed transversely. The operation shall be performed at a time and in a manner that produces a hardened surface having a uniform texture and a coefficient of friction of not less than 0.35 as determined by California Test 342.

Refinished surfaces that are found to have a coefficient of friction less than 0.35 shall be ground or grooved by the Contractor at his expense in conformance with the applicable provisions in Section 42, "Groove and Grind Pavement," of the Standard Specifications.

In the longitudinal direction, refinished surfaces shall not vary more than 0.02 foot from the lower edge of a 12-foot straightedge. The refinished surface shall be flush with the existing adjoining surface.

MEASUREMENT AND PAYMENT

No adjustment of compensation will be made for any increase or decrease in the quantity of refinish bridge deck, regardless of the reason for the increase or decrease. The provisions in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications shall not apply to the contract item of refinish bridge deck.

The quantity in square feet of refinish bridge deck to be paid for will be determined from the lengths and widths of the refinished areas, measured horizontally, plus 0.2 square foot for patching around each dowel.

The contract price paid per square foot for refinish bridge deck shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in refinishing areas of the existing bridge deck, including cutting steel dowels, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.66 ARCHITECTURAL TEXTURE (TEXTURED CONCRETE)

GENERAL

Summary

This work includes constructing architectural textures for concrete surfaces.

Architectural textures must comply with Section 51, "Concrete Structures," of the Standard Specifications.

Architectural textures listed below are required at concrete surfaces shown on the plans:

- 1. Fractured rib texture
- 2. Rock strata texture

The fractured rib texture must be an architectural texture simulating the appearance of straight ribs of concrete with a fractured concrete texture imparted to the raised surface between the ribs. Grooves between ribs must be continuous with no apparent curves or discontinuities. Variation of the groove from straightness must not exceed 1/4 inch for each 10 feet of groove. The architectural texture must have random shadow patterns. Broken concrete at adjoining ribs and groups of ribs must have a random pattern. The architectural texture must not have secondary patterns imparted by shadows or repetitive fractured surfaces.

Quality Control and Assurance

Test Panel

Attention is directed to "Prepare and Stain Concrete" of these special provisions. Provide a test panel for each type of Architectural Texture.

MATERIALS

Not Used

CONSTRUCTION

Form Liners

Form liners must be used for textured concrete surfaces and must be installed in conformance with the manufacturer's recommendations, unless other methods of forming textured concrete surfaces are approved by the Engineer. Form liners must be manufactured from an elastomeric material by a manufacturer of commercially available concrete form liners. Form liners must leave crisp, sharp definition of the architectural surface. Recurring textural configurations exhibited by repeating, recognizable shadow patterns must be prevented by proper casting of form liner patterns. Textured concrete surfaces with such recurring textural configurations must be reworked to remove such patterns as approved by the Engineer or the concrete must be replaced.

Form liners must have the following properties:

Property	Test	Requirement
Shore A hardness	ASTM D 2240	50-90
Tensile strength	ASTM D 412	1,000 psi min

Cuts and tears in form liners must be sealed and repaired in conformance with the manufacturer's recommendations. Form liners that are delaminated from the form must not be used. Form liners with deformations to the manufactured surface caused by improper storage practices or any other reason must not be used.

Form liners must extend the full length of texturing with transverse joints at 8 foot minimum spacing. Small pieces of form liners must not be used. Grooves must be aligned straight and true. Grooves must match at joints between form liners. Joints in the direction of grooves in grooved patterns must be located only in the depressed portion of the textured concrete. Adjoining liners must be butted together without distortion, open cracks, or offsets at the joints. Joints between liners must be cleaned before each use to remove any mortar in the joint.

Adhesives must be compatible with the form liner material and with concrete. Adhesives must be approved by the liner manufacturer. Adhesives must not cause swelling of the liner material.

Releasing Form Liners

Products and application procedures for form release agents must be approved by the form liner manufacturer. Release agents must not cause swelling of the liner material or delamination from the forms. Release agents must not stain the concrete or react with the liner material. For reliefs simulating fractured concrete or wood grain surfaces the application method must include the scrubbing method using a natural bristle scrub brush in the direction of grooves or grain. The release agent must coat the liner with a thin film. Following application of form release agent, the liner surfaces must be cleaned of excess amounts of agent using compressed air. Buildup of form release agent caused by the reuse of a liner must be removed at least every 5 uses.

Form liners must release without leaving particles or pieces of liner material on the concrete and without pulling or breaking concrete from the textured surface. The concrete surfaces exposed by removing forms must be protected from damage.

Curing

Concrete surfaces with architectural texture must be cured only by the forms-in-place or water methods. Seals and curing compounds must not be used.

MEASUREMENT AND PAYMENT

Architectural texture will be measured and paid for by the square foot.

The contract price paid per square foot for architectural texture of the types listed in the Bid Item List includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in architectural texture, complete in place, including test panels, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.67 PORTLAND CEMENT PLASTER

This work shall consist of applying portland cement plaster in conformance with the details shown on the plans and these special provisions.

Plaster shall be 2 coat work. The total thickness of plaster shall be 1/2 inch unless otherwise shown on the plans.

The finish coat shall match the texture, color, and pattern of the existing retaining wall or as directed by the engineer.

MATERIALS

Base Coat

Sand shall be lean commercial quality plaster sand.

Cement shall be portland cement, blended hydraulic cement, or portland cement with a maximum of 15 percent mineral admixture. Portland cement shall be Type II, conforming to ASTM Designation: C 150. Blended hydraulic cement shall be Type IP, conforming to ASTM Designation: C 595. Mineral admixture shall be Class N, Class F or Class C, conforming to ASTM Designation: C 618, except loss on ignition shall not exceed 4 percent.

Lime shall conform to ASTM Designation: C 206, Type S.

Finish Coat

Finish coat shall be an acrylic-based finish coating. The acrylic-based finish coating shall be a factory-mixed acrylic-emulsion coating system, formulated with colorfast mineral pigments and fine aggregates; for use over portland cement plaster base coats. Include manufacturer's recommended primers and sealing topcoats for acrylic-based finishes.

Beads, screeds, control joints and accessories

Beads, screeds, control joints and accessories shall be galvanized steel, not less than 0.022 inch thick.

Water

Water shall be potable.

PLASTER PROPORTIONING AND MIXING

Base Coat

Materials shall be accurately proportioned and measured for each batch. All batches for a given coat shall be proportioned the same. Plaster shall be proportioned one part cement to between 3 and 5 parts sand by volume, only sufficient water to obtain a workable mix, and a lime plasticizing agent. Not more than 20 pounds of dry hydrated lime or lime putty per sack of cement shall be used in the base coat.

Frozen materials shall not be used in the mix.

All plaster mixing ingredients shall be mixed in a mechanical mixer. After all ingredients are in the mixer, the plaster shall be mixed for a minimum of 2 minutes. The mixture shall be uniform in color after mixing. Hand mixing of plaster will be allowed only with the written approval of the Engineer.

Finish Coat

Finish coat proportioning shall conform to the manufacturer's written instructions.

PLASTER APPLICATION

Plaster shall not be applied if the ambient temperature is 40°F or less. Plaster shall not be applied to frost covered or frozen surfaces. Surfaces to receive plaster shall be clean.

The base coat shall be applied continuously in one general direction without allowing mortar to dry at the edges.

The base coat shall be brought out to grounds, straightened to a true, even surface, roughened to assure a bond with the finish coat, and made free of imperfections which would reflect in the finish coat. The base coat shall be moisture cured, without soaking, for not less than 48 hours after application.

The finish coat shall not be placed until at least 7 days after the base coat of plaster has been placed. Troweling of the finish coat shall leave the surface smooth and free from rough areas, trowel marks, checks, or other blemishes. The finished surface shall be true and even and shall not vary more than 1/8 inch in 5 feet from the required plane. Plaster with cracks, blisters, pits, stains, efflorescence, shadowing, dryouts, or checks will not be accepted. Surfaces shall be clean and sound.

After all other related work has been completed, pointing around trim and set work and repairing of damaged portions of plaster shall be done. Repairs and patching shall match surrounding work in texture and appearance.

Plaster coats shall be protected against freezing for a period of 24 hours after application.

Prepare and apply Portland Cement Plaster will be measured by the square foot.

The contract price paid per square foot for prepare and apply portland cement plaster shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing of and applying plaster to concrete surfaces, complete in place, including construction of test panels, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.68 COLORED CONCRETE

Colored concrete shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions.

The visible elements (superstructure, concrete barrier, columns, abutment walls, and wing walls) of Route 74/5 Separation (Bridge No. 55-1104) shall be integrally pigmented concrete. The color shall closely conform to Federal Standard 595B No. 33446.

Color pigments shall be of high quality iron oxides conforming to ASTM C 979. The dosage shall not exceed 10 percent by weight of cementitious material in the concrete mix design.

The Contractor shall submit technical data and manufacturer's specifications for colored concrete components and a proposed plan for mixing, delivery, placement, finishing, and curing of the colored concrete. This plan shall be submitted to the Engineer for approval at least 20 days prior to constructing the test panel.

A test panel of at least 4' x 4' with a minimum depth of 5 inches shall be successfully completed at a location approved by the Engineer at least 20 days before placing colored concrete. The test panel shall be constructed, finished, and cured with the same materials, tools, equipment, and methods that will be used in placing the colored concrete. At the completion of the curing period, the test panel shall exhibit a color that closely matches the specified color. If ordered by the Engineer, additional test panels shall be constructed, finished, and cured until the specified color is obtained.

The approved test panel shall be the standard of comparison in determining the acceptability of colored concrete. Upon successful completion of all colored concrete, all test panels shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Cementitious materials and aggregates from the same sources used in the approved test panel shall be used for the colored concrete in the finished work.

The Contractor shall monitor the water content, weight of cementitious materials, and size, weight, and color of aggregate to maintain consistency and accuracy of the mixed colored concrete. The Contractor shall schedule delivery of concrete to provide consistent mix times from batching until discharge. No water shall be added after a portion of the batch has been discharged.

When more than one concrete pump is used to place concrete, the Contractor shall designate the pumps to receive colored concrete. The designated pumps shall receive only colored concrete throughout the concrete placement operation.

Consistent finishing practices shall be used to ensure uniformity of texture and color.

Unless otherwise specified, curing of colored concrete shall be by the forms-in-place method or the curing compound method only and shall conform to Section 90-7.03, "Curing Structures," of the Standard Specifications and these special provisions. The curing compound used for curing colored concrete surfaces shall be clear or match the color of the colored concrete and shall be manufactured specifically for colored concrete. Curing compounds containing calcium chloride shall not be used. The time between completing surface finishing and applying curing compound shall be the same for each colored concrete component.

Surrounding exposed surfaces shall be protected during placement, finishing, and curing operations of colored concrete.

Full compensation for colored concrete shall be considered as included in the contract price paid per cubic yard for structural concrete of the types shown in the Engineer's Estimate, and no separate payment will be made therefor.

10-1.69 REINFORCEMENT

Reinforcement shall conform to the provisions in Section 52, "Reinforcement," of the Standard Specifications and these special provisions.

The provisions in "Welding Quality Control" of these special provisions do not apply to resistance butt welding. Reinforcement shown on the plans to be galvanized shall be galvanized in conformance with the requirements in ASTM Designation: A 767/A 767M, Class 1, except that chromating will not be required.

Within areas where galvanized reinforcement is required, tie wire and bar chairs or other metallic devices used to secure or support the reinforcement shall be galvanized, plastic coated, or epoxy coated to prevent corrosion of the devices or damage to the galvanized reinforcement.

Galvanized surfaces that are abraded or damaged caused by shipping, handling, or installation shall be repaired as specified in Section 75-1.05, "Galvanizing," of the Standard Specifications.

MEASUREMENT AND PAYMENT

Measurement and payment for reinforcement in structures shall conform to the provisions in Section 52-1.10, "Measurement," and Section 52-1.11, "Payment," of the Standard Specifications and these special provisions.

Full compensation for galvanizing steel reinforcement shall be considered as included in the prices paid for the various items of work involved and no additional compensation will be allowed therefor.

10-1.70 STEEL STRUCTURES

Construction of steel structures shall conform to the provisions in Section 55, "Steel Structures," of the Standard Specifications and these special provisions.

Attention is directed to "Welding" in Section 8, "Materials," of these special provisions.

MATERIALS

High-strength fastener assemblies and other bolts attached to structural steel with nuts and washers shall be zinc coated. When direct tension indicators are used in these assemblies, the direct tension indicator and all components of the fastener assembly shall be zinc coated by the mechanical deposition process.

ROTATIONAL CAPACITY TESTING PRIOR TO SHIPMENT TO JOB SITE

Rotational capacity tests shall be performed on all lots of high-strength fastener assemblies prior to shipment of these lots to the project site. Zinc-coated assemblies shall be tested after all fabrication, coating, and lubrication of components has been completed. One hardened washer shall be used under each nut for the tests.

The requirements of this section do not apply to high-strength cap screws or high-strength bolts used for slip base plates.

Each combination of bolt production lot, nut lot, and washer lot shall be tested as an assembly.

A rotational capacity lot number shall be assigned to each combination of lots tested. Each shipping unit of fastener assemblies shall be plainly marked with the rotational capacity lot number.

Two fastener assemblies from each rotational capacity lot shall be tested.

The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of ASTM A 325 long bolts. Fasteners are considered to be long bolts when full nut thread engagement can be achieved when installed in a bolt tension measuring device:

A. Long Bolt Test Equipment:

- 1. Calibrated bolt tension measuring device with adequate tension capacity for the bolts being tested.
- 2. Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7 and 8 of the Long Bolt Test Procedure. A torque multiplier may be required for large diameter bolts.
- 3. Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the requirements in ASTM Designation: F 436.
- 4. Steel beam or member, such as a girder flange or cross frame, to which the bolt tension measuring device will be attached. The device shall be accessible from the ground.

B Long Bolt Test Procedure:

- 1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head.
- 2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank.
- 3. Insert the bolt into the bolt tension measuring device and install the required number of washers, and additional spacers as needed, directly beneath the nut to produce the thread stickout measured in Step 2 of this procedure.
- 4. Tighten the nut using a hand wrench to a snug-tight condition. The snug tension shall not be less than the Table A value but may exceed the Table A value by a maximum of 2 kips.

Table A

High-Strength Fastener Assembly Tension Values to Approximate Snug-Tight Condition		
Bolt Diameter	Snug Tension	
(inches)	(kips)	
1/2	1	
5/8	2	
3/4	3	
7/8	4	
1	5	
1-1/8	6	
1-1/4	7	
1-3/8	9	
1-1/2	10	

5. Match-mark the assembly by placing a heavy reference start line on the face plate of the bolt tension measuring device which aligns with (1) a mark placed on one corner of the nut and (2) a radial line placed across the flat on the end of the bolt or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make an additional mark on the face plate, either 2/3 of a turn, one turn, or 1-1/3 turn clockwise from the heavy reference start line, depending on the bolt length being tested as shown in Table B.

Table B

Required Nut Rotation for Rotational Capacity Tests ^{(a) (b)}	
Bolt Length (measured in Step 1) Required Rotation (tu	
4 bolt diameters or less	2/3
Greater than 4 bolt diameters but no more than 8 bolt diameters	1
Greater than 8 bolt diameters, but no more than 12 bolt diameters ^(c)	1-1/3

- (a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees; for bolts installed by 2/3 turn and more, the tolerance shall be plus or minus 45 degrees.
- (b) Applicable only to connections in which all material within grip of the bolt is steel.
- (c) When bolt length exceeds 12 diameters, the required rotation shall be determined by actual tests in a suitable tension device simulating the actual conditions.
- 6. Turn the nut to achieve the applicable minimum bolt tension value listed in Table C. After reaching this tension, record the moving torque, in foot-pounds, required to turn the nut, and also record the corresponding bolt tension value in pounds. Torque shall be measured with the nut in motion. Calculate the value, T, where $T = [(\text{the measured tension in pounds}) \times (\text{the bolt diameter in inches}) / 48].$

Table C

Minimum Tension Values for High-Strength Fastener Assemblies		
Bolt Diameter	Minimum Tension	
(inches)	(kips)	
1/2	12	
5/8	19	
3/4	28	
7/8	39	
1	51	
1-1/8	56	
1-1/4	71	
1-3/8	85	
1-1/2	103	

- 7. Turn the nut further to increase bolt tension until the rotation listed in Table B is reached. The rotation is measured from the heavy reference line made on the face plate after the bolt was snug-tight. Record this bolt tension.
- 8. Loosen and remove the nut and examine the threads on both the nut and bolt.

C. Long Bolt Acceptance Criteria:

1. An assembly shall pass the following requirements to be acceptable: (1) the measured moving torque (Step 6) shall be less than or equal to the calculated value, T (Step 6), (2) the bolt tension measured in Step 7 shall be greater than or equal to the applicable turn test tension value listed in Table D, (3) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, (4) the bolt does not shear from torsion or fail during the test, and (5) the assembly does not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head is expected and will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable.

Table D

Turn Test Tension Values		
Bolt Diameter	Turn Test Tension	
(inches)	(kips)	
1/2	14	
5/8	22	
3/4	32	
7/8	45	
1	59	
1-1/8	64	
1-1/4	82	
1-3/8	98	
1-1/2	118	

The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of ASTM A 325 short bolts. Fasteners are considered to be short bolts when full nut thread engagement cannot be achieved when installed in a bolt tension measuring device:

A. Short Bolt Test Equipment:

- Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7
 and 8 of the Short Bolt Test Procedure. A torque multiplier may be required for large diameter
 bolts.
- 2. Spud wrench or equivalent.

- 3. Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the requirements in ASTM Designation: F 436.
- 4. Steel plate or girder with a hole to install bolt. The hole size shall be 1/16 inch greater than the nominal diameter of the bolt to be tested. The grip length, including any plates, washers, and additional spacers as needed, shall provide the proper number of threads within the grip, as required in Step 2 of the Short Bolt Test Procedure.

B. Short Bolt Test Procedure:

- 1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head.
- 2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank.
- 3. Install the bolt into a hole on the plate or girder and install the required number of washers and additional spacers as needed between the bearing face of the nut and the underside of the bolt head to produce the thread stickout measured in Step 2 of this procedure.
- 4. Tighten the nut using a hand wrench to a snug-tight condition. The snug condition shall be the full manual effort applied to the end of a 12-inch long wrench. This applied torque shall not exceed 20 percent of the maximum allowable torque in Table E.

Table E

Maximum Allowable Torque for High-Strength Fastener Assemblies		
Bolt Diameter	Torque	
(inches)	(ft-lb)	
1/2	145	
5/8	285	
3/4	500	
7/8	820	
1	1220	
1-1/8	1500	
1-1/4	2130	
1-3/8	2800	
1-1/2	3700	

- 5. Match-mark the assembly by placing a heavy reference start line on the steel plate or girder which aligns with (1) a mark placed on one corner of the nut and (2) a radial line placed across the flat on the end of the bolt or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make 2 additional small marks on the steel plate or girder, one 1/3 of a turn and one 2/3 of a turn clockwise from the heavy reference start line on the steel plate or girder.
- 6. Using the torque wrench, tighten the nut to the rotation value listed in Table F. The rotation is measured from the heavy reference line described in Step 5 made after the bolt was snug-tight. A second wrench shall be used to prevent rotation of the bolt head during tightening. Measure and record the moving torque after this rotation has been reached. The torque shall be measured with the nut in motion.

Table F

Nut Rotation Required for Turn-of-Nut Installation (a) (,b)	
Bolt Length (measured in Step 1)	Required Rotation (turn)
4 bolt diameters or less	1/3

- (a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees.
- (b) Applicable only to connections in which all material within grip of the bolt is steel.
- 7. Tighten the nut further to the 2/3-turn mark as indicated in Table G. The rotation is measured from the heavy reference start line made on the plate or girder when the bolt was snug-tight. Verify that the radial line on the bolt end or on the exposed portions of the threads of tension control bolts is still in alignment with the start line.

Table G

Required Nut Rotation for Rotational Capacity Test	
Bolt Length (measured in Step 1) Required Rotation (turn)	
4 bolt diameters or less 2/3	

8. Loosen and remove the nut and examine the threads on both the nut and bolt.

C. Short Bolt Acceptance Criteria:

1. An assembly shall pass the following requirements to be acceptable: (1) the measured moving torque from Step 6 shall be less than or equal to the maximum allowable torque from Table E, (2) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, (3) the bolt does not shear from torsion or fail during the test, and (4) the assembly shall not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable.

INSTALLATION TENSION TESTING AND ROTATIONAL CAPACITY TESTING AFTER ARRIVAL ON THE JOB SITE

Installation tension tests and rotational capacity tests on high-strength fastener assemblies shall be performed by the Contractor prior to acceptance or installation and after arrival of the fastener assemblies on the project site. Installation tension tests and rotational capacity tests shall be performed at the job site, in the presence of the Engineer, on each rotational capacity lot of fastener assemblies.

The requirements of this section do not apply to high-strength cap screws or high-strength bolts used for slip base plates.

Installation tension tests shall be performed on 3 representative fastener assemblies in conformance with the provisions in Section 8, "Installation," of the RCSC Specification. For short bolts, Section 8.2, "Pretensioned Joints," of the RCSC Specification shall be replaced by the "Pre-Installation Testing Procedures," of the "Structural Bolting Handbook," published by the Steel Structures Technology Center, Incorporated.

The rotational capacity tests shall be performed in conformance with the requirements for rotational capacity tests in "Rotational Capacity Testing Prior to Shipment to Job Site" of these special provisions.

At the Contractor's expense, additional installation tension tests, tests required to determine job inspecting torque, and rotational capacity tests shall be performed by the Contractor on each rotational capacity lot, in the presence of the Engineer, if:

- 1. Any fastener is not used within 3 months after arrival on the job site,
- 2. Fasteners are improperly handled, stored, or subjected to inclement weather prior to final tightening,
- 3. Significant changes are noted in original surface condition of threads, washers, or nut lubricant, or
- 4. The Contractor's required inspection is not performed within 48 hours after all fasteners in a joint have been tensioned.

Failure of a job-site installation tension test or a rotational capacity test will be cause for rejection of unused fasteners that are part of the rotational capacity lot.

When direct tension indicators are used, installation verification tests shall be performed in conformance with Appendix Section X1.4 of ASTM Designation: F 959, except that bolts shall be initially tensioned to a value 5 percent greater than the minimum required bolt tension.

SEALING

When zinc-coated tension control bolts are used, the sheared end of each fastener shall be completely sealed with non-silicone type sealing compound conforming to the requirements in ASTM Designation: C 920. The sealant shall be gray in color and shall have a minimum thickness of 50 mils. The sealant shall be applied to a clean sheared surface on the same day that the splined end is sheared off.

WELDING

Table 2.2 of AWS D1.5 is superseded by the following table:

Base Metal Thickness of the Thicker Part Joined, inches	Minimum Effective Partial Joint Penetration Groove Weld Size*, inches
Over 1/4 to 1/2 inclusive	3/16
Over 1/2 to 3/4 inclusive	1/4
Over 3/4 to 1-1/2 inclusive	5/16
Over 1-1/2 to 2-1/4 inclusive	3/8
Over 2-1/4 to 6 inclusive	1/2
Over 6	5/8

^{*} Except the weld size need not exceed the thickness of the thinner part

Dimensional details and workmanship for welded joints in tubular and pipe connections shall conform to the provisions in Part A, "Common Requirements of Nontubular and Tubular Connections," and Part D, "Specific Requirements for Tubular Connections," in Section 2 of AWS D1.1.

The requirement of conformance with AWS D1.5 shall not apply to work conforming to Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications.

10-1.71 SIGN STRUCTURES

Sign structures and foundations for overhead signs shall conform to the provisions in Section 56-1, "Overhead Sign Structures," of the Standard Specifications, "Steel Structures" of these special provisions, and the following requirements.

Before commencing fabrication of sign structures, the Contractor shall submit 2 sets of working drawings to the Engineer in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The working drawings shall include sign panel dimensions, span lengths, post heights, anchorage layouts, proposed splice locations, a snugging and tensioning pattern for anchor bolts and high-strength bolted connections, and details for permanent steel anchor bolt templates. The working drawings shall be supplemented with a written quality control program that includes methods, equipment, and personnel necessary to satisfy the requirements specified herein.

Working drawings shall be 22" x 34" or 11" x 17" in size and each drawing and calculation sheet shall include the State assigned designations for the sign structure type and reference as shown on the contract plans, District-County-Route-Post Mile, and contract number.

The Engineer shall have 30 days to review the sign structure working drawings after a complete submittal has been received. No fabrication or installation of sign structures shall be performed until the working drawings are approved in writing by the Engineer.

Steel bolts not designated on the plans as high strength (HS) or stainless steel shall be for general applications and shall conform to the requirements in ASTM Designation: A 307.

A permanent steel template shall be used to maintain the proper anchor bolt spacing.

One top nut, one leveling nut, and 2 washers shall be provided for the upper threaded portion of each anchor bolt.

Flatness of surfaces for the following shall conform to the requirements in ASTM Designation: A 6/A 6M:

- 1. Base plates that are to come in contact with concrete, grout, or washers and leveling nuts
- 2. Plates in high-strength bolted connections

No holes shall be made in members unless the holes are shown on the plans or are approved in writing by the Engineer.

Partial joint penetration longitudinal seam welds for tapered tubular members shall have at least the minimum penetration shown but not less than 60 percent penetration, except that within 6 inches of circumferential welds, longitudinal seam welds shall be complete joint penetration groove welds. Longitudinal seam welds on structures having telescopic pole segment splices shall be complete joint penetration groove welds on the female end for a length on each end equal to the designated slip-fit splice length plus 6 inches.

Except for welds at posts shown as partial joint penetration welds, longitudinal seam welds of fabricated pipe posts shall be complete joint penetration groove welds.

The length of telescopic slip-fit splices shall be at least 1.5 times the inside diameter of the exposed end of the female section.

Steel members used for overhead sign structures shall receive nondestructive testing (NDT) in conformance with AWS D1.1 and the following:

1	
1	٠

Weld Location	Weld Type	Minimum Required NDT
Splice welds around the perimeter of	CJP groove weld with	100% UT ^a or RT ^b
tubular sections, poles, and arms.	backing ring	
Longitudinal seam welds	CJP or PJP ^c groove	Random 25% MT ^d
	weld	
Longitudinal seam welds within 6 inches	CJP groove weld	100% UT or RT
of a circumferential splice.		
Welds attaching base plates, flange plates,	CJP groove weld with	t≥ 5/16 inch: 100%UT and MT
or pole or mast arm plates, to poles or arm	backing ring and	t< 5/16 inch: 100% MT after
tubes.	reinforcing fillet	root weld pass and final weld pass
		t = pole or arm thickness
	External (top) fillet	100% MT
	weld for socket-type	
	connections	

- a ultrasonic testing
- b radiographic testing
- c partial joint penetration
- d magnetic particle testing
- 2. The acceptance and repair criteria for UT of welded joints where any of the members are less than 5/16 inch thick or where tubular sections are less than 13 inches in diameter shall conform to the requirements in AWS D1.1, Clause 6.13.3.1. A written procedure approved by the Engineer shall be used when performing this UT. These written procedures shall conform to the requirements in AWS D1.1, Annex K. The acceptance and repair criteria for other welded joints receiving UT shall conform to the requirements in AWS D1.1, Clause, Table 6.3 for cyclically loaded nontubular connections.
- 3. The acceptance and repair criteria for radiographic or real time image testing shall conform to the requirements of AWS D1.1 for tensile stress welds.
- 4. For longitudinal seam welds, the random locations for NDT will be selected by the Engineer. The cover pass shall be ground smooth at the locations to be tested. If repairs are required in a portion of a tested weld, the repaired portion shall receive NDT, and additional NDT shall be performed on untested portions of the weld. The additional NDT shall be performed on 25 percent of that longitudinal seam weld. After this additional NDT is performed and if more repairs are required, then that entire longitudinal seam weld shall receive NDT.

Circumferential welds and base plate to post welds may be repaired only one time without written permission from the Engineer.

Full compensation for furnishing anchor bolt templates and for testing of welds shall be considered as included in the contract price paid per pound for furnish sign structure, and no additional compensation will be allowed therefor.

10-1.72 ROADSIDE SIGNS

Roadside signs shall be furnished and installed at the locations shown on the plans or where designated by the Engineer and in conformance with the provisions in Section 56-2, "Roadside Signs," of the Standard Specifications and these special provisions.

The Contractor shall furnish roadside sign panels in conformance with the provisions in "Furnish Sign" of these special provisions.

Wood posts shall be pressure treated after fabrication in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," of the Standard Specifications and AWPA Use Category System: UC4A, Commodity Specification A or B.

10-1.73 INSTALL ROADSIDE SIGN PANEL ON EXISTING POST

Roadside sign panels shall be installed on existing posts at the locations shown on the plans or where designated by the Engineer and in conformance with the provisions in Section 56-2.04, "Sign Panel Installation," of the Standard Specifications and these special provisions.

The Contractor shall furnish roadside sign panels in conformance with the provisions in "Furnish Sign" of these special provisions.

Cutting the ends of wood posts in the field and field application of wood preservatives shall conform to the provisions in Section 56-2.02B, "Wood Posts," of the Standard Specifications.

Two holes shall be drilled in each existing post as required to provide a breakaway feature as shown on the plans.

Existing sign panels, as shown on the plans, shall be salvaged or removed and disposed of as provided in Section 15, "Existing Highway Facilities," of the Standard Specifications.

Installing roadside sign panels on existing posts will be paid for by the unit as determined from actual count in place.

The contract unit price paid for install roadside sign panel on existing post shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing roadside sign panels on existing posts (including drilling holes in existing posts, removing, and disposing of existing sign panels), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.74 FURNISH SIGN

Signs shall be fabricated and furnished in accordance with details shown on the plans, the Traffic Sign Specifications, and these special provisions.

Traffic Sign Specifications for California sign codes are available for review at:

http://www.dot.ca.gov/hq/traffops/signtech/signdel/specs.htm

Traffic Sign Specifications for signs referenced with Federal MUTCD sign codes can be found in Standard Highway Signs Book, administered by the Federal Highway Administration, which is available for review at:

http://mutcd.fhwa.dot.gov/ser-shs_millennium.htm

Information on cross-referencing California sign codes with the Federal MUTCD sign codes is available at:

http://www.dot.ca.gov/hq/traffops/signtech/signdel/specs.htm

Temporary or permanent signs shall be free from blemishes that may affect the serviceability and detract from the general sign color and appearance when viewing during daytime and nighttime from a distance of 25 feet. The face of each finished sign shall be uniform, flat, smooth, and free of defects, scratches, wrinkles, gel, hard spots, streaks, extrusion marks, and air bubbles. The front, back, and edges of the sign panels shall be free of router chatter marks, burns, sharp edges, loose rivets, delaminated skins, excessive adhesive over spray and aluminum marks.

QUALITY CONTROL FOR SIGNS

The requirements of "Quality Control for Signs" in this section shall not apply to construction area signs.

No later than 14 days before sign fabrication, the Contractor shall submit a written copy of the quality control plan for signs to the Engineer for review. The Engineer will have 10 days to review the quality control plan. Sign fabrication shall not begin until the Engineer approves the Contractor's quality control plan in writing. The Contractor shall submit to the Engineer at least 3 copies of the approved quality control plan. The quality control plan shall include, but not be limited to the following requirements:

- A. Identification of the party responsible for quality control of signs,
- B. Basis of acceptance for incoming raw materials at the fabrication facility,
- C. Type, method and frequency of quality control testing at the fabrication facility,
- D. List (by manufacturer and product name) of process colors, protective overlay film, retroreflective sheeting and black non-reflective film,
- E. Recommended cleaning procedure for each product, and
- F. Method of packaging, transport and storage for signs.

No legend shall be installed at the project site. Legend shall include letters, numerals, tildes, bars, arrows, route shields, symbols, logos, borders, artwork, and miscellaneous characters. The style, font, size, and spacing of the legend shall conform to the Standard Alphabets published in the FHWA Standard Highway Signs Book. The legend shall be oriented in the same direction in accordance with the manufacturer's orientation marks found on the retroreflective sheeting.

On multiple panel signs, legend shall be placed across joints without affecting the size, shape, spacing, and appearance of the legend. Background and legend shall be wrapped around interior edges of formed panel signs as shown on plans to prevent delamination.

The following notation shall be placed on the lower right side of the back of each sign where the notation will not be blocked by the sign post or frame:

- A. PROPERTY OF STATE OF CALIFORNIA,
- B. Name of the sign manufacturer,
- C. Month and year of fabrication,
- D. Type of retroreflective sheeting, and
- E. Manufacturer's identification and lot number of retroreflective sheeting.

The above notation shall be applied directly to the aluminum sign panels in 1/4-inch upper case letters and numerals by die-stamp and applied by similar method to the fiberglass reinforced plastic signs. Painting, screening, or engraving the notation will not be allowed. The notation shall be applied without damaging the finish of the sign.

Signs with a protective overlay film shall be marked with a dot of 3/8 inch in diameter. The dot placed on white border shall be black, while the dot placed on black border shall be white. The dot shall be placed on the lower border of the sign before application of the protective overlay film and shall not be placed over the legend and bolt holes. The application method and exact location of the dot shall be determined by the manufacturer of the signs.

For sign panels that have a minor dimension of 48 inches or less, no splice will be allowed in the retroreflective sheet except for the splice produced during the manufacturing of the retroreflective sheeting. For sign panels that have a minor dimension greater than 48 inches, only one horizontal splice will be allowed in the retroreflective sheeting.

Unless specified by the manufacturer of the retroreflective sheeting, splices in retroreflective sheeting shall overlap by a minimum of one inch. Splices shall not be placed within 2 inches from edges of the panels. Except at the horizontal borders, the splices shall overlap in the direction from top to bottom of the sign to prevent moisture penetration. The retroreflective sheeting at the overlap shall not exhibit a color difference under the incident and reflected light.

Signs exhibiting a significant color difference between daytime and nighttime shall be replaced immediately. Repairing sign panels will not be allowed except when approved by the Engineer.

The Department will inspect signs at the Contractor's facility and delivery location, and in accordance with Section 6, "Control of Materials," of the Standard Specifications. The Engineer will inspect signs for damage and defects before and after installation.

Regardless of kind, size, type, or whether delivered by the Contractor or by a common carrier, signs shall be protected by thorough wrapping, tarping, or other methods to ensure that signs are not damaged by weather conditions and during transit. Signs shall be dry during transit and shipped on palettes, in crates, or tier racks. Padding and protective materials shall be placed between signs as appropriate. Finished sign panels shall be transported and stored by method that protects the face of signs from damage. The Contractor shall replace wet, damaged, and defective signs.

Signs shall be stored in dry environment at all times. Signs shall not rest directly on the ground or become wet during storage. Signs, whether stored indoor or outdoor, shall be free standing. In areas of high heat and humidity signs shall be stored in enclosed climate-controlled trailers or containers. Signs shall be stored indoor if duration of the storage will exceed 30 days.

Screen processed signs shall be protected, transported and stored as recommended by the manufacturer of the retroreflective sheeting.

When requested, the Contractor shall provide the Engineer test samples of signs and materials used at various stages of production. Sign samples shall be 12" x 12" in size with applied background, letter or numeral, and border strip.

The Contractor shall assume the costs and responsibilities resulting from the use of patented materials, equipment, devices, and processes for the Contractor's work.

SHEET ALUMINUM

Alloy and temper designations for sheet aluminum shall be in accordance with ASTM Designation: B 209.

The Contractor shall furnish the Engineer a Certificate of Compliance in conformance with Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for the sheet aluminum.

Sheet aluminum shall be pretreated in accordance to ASTM Designation: B 449. Surface of the sheet aluminum shall be cleaned, deoxidized, and coated with a light and tightly adherent chromate conversion coating free of powdery residue. The conversion coating shall be Class 2 with a weight between 10 milligrams per square foot and 35 milligrams per square foot, and an average weight of 25 milligrams per square foot. Following the cleaning and coating process, the sheet aluminum shall be protected from exposure to grease, oils, dust, and contaminants.

Sheet aluminum shall be free of buckles, warps, dents, cockles, burrs, and defects resulting from fabrication. Base plate for standard route marker shall be die cut.

RETROREFLECTIVE SHEETING

The Contractor shall furnish retroreflective sheeting for sign background and legend in conformance with ASTM Designation: D 4956 and "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

Retroreflective sheeting shall be applied to sign panels as recommended by the retroreflective sheeting manufacturer without stretching, tearing, and damage.

Class 1, 3, or 4 adhesive backing shall be used for Type II, III, IV, VII, VIII, and IX retroreflective sheeting. Class 2 adhesive backing may also be used for Type II retroreflective sheeting. The adhesive backing shall be pressure sensitive and fungus resistant.

When the color of the retroreflective sheeting determined from instrumental testing is in dispute, the Engineer's visual test will govern.

PROCESS COLOR AND FILM

The Contractor shall furnish and apply screened process color, non-reflective opaque black film, and protective overlay film of the type, kind, and product that are approved by the manufacturer of the retroreflective sheeting.

The Contractor shall furnish the Engineer a Certificate of Compliance in accordance to Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for the screened process color, non-reflective opaque black film, and protective overlay film.

The surface of the screened process color shall be flat and smooth. When the screened process colors determined from the instrumental testing in accordance to ASTM Designation: D 4956 are in dispute, the Engineer's visual test will govern.

The Contractor shall provide patterns, layouts, and set-ups necessary for the screened process.

The Contractor may use green, red, blue, and brown reverse-screened process colors for background and non-reflective opaque black film or black screened process color for legend. The coefficient of retroreflection for reverse-screened process colors on white retroreflective sheeting shall not be less than 70 percent of the coefficient of retroreflection specified in ASTM Designation: D 4956.

The screened process colors and non-reflective opaque black film shall have the same outdoor weatherability as that of the retroreflective sheeting.

After curing, screened process colors shall withstand removal when tested by applying 3M Company Scotch Brand Cellophane Tape No. 600 or equivalent tape over the color and removing with one quick motion at 90° angle.

SINGLE SHEET ALUMINUM SIGN

Single sheet aluminum signs shall be fabricated and furnished with or without frame. The Contractor shall furnish the sheet aluminum in accordance to "Sheet Aluminum" of these special provisions. Single sheet aluminum signs shall be fabricated from sheet aluminum alloy 6061-T6 or 5052-H38.

Single Sheet aluminum signs shall not have a vertical splice in the sheet aluminum. For signs with depth greater than 48 inches, one horizontal splice will be allowed in the sheet aluminum.

Framing for single sheet aluminum signs shall consist of aluminum channel or rectangular aluminum tubing. The framing shall have a length tolerance of $\pm 1/8$ inch. The face sheet shall be affixed to the frame with rivets of 3/16-inch diameter. Rivets shall be placed within the web of channels and shall not be placed less than 1/2 inch from edges of the sign panels. Rivets shall be made of aluminum alloy 5052 and shall be anodized or treated with conversion coating to prevent corrosion. The exposed portion of rivets on the face of signs shall be the same color as the background or legend where the rivets are placed.

Finished signs shall be flat within a tolerance of $\pm 1/32$ inch per linear foot when measured across the plane of the sign in all directions. The finished signs shall have an overall tolerance within $\pm 1/8$ inch of the detailed dimensions.

Aluminum channels or rectangular aluminum tubings shall be welded together with the inert gas shielded-arc welding process using E4043 aluminum electrode filler wires as shown on the plans. Width of the filler shall be equal to wall thickness of smallest welded channel or tubing.

LAMINATED PANEL SIGN

Laminated panel signs shall consist of two sheet aluminum laminated to a honeycomb core and extruded aluminum frame to produce flat and rigid panels of one-inch or 2-1/2-inch nominal thickness.

The face of laminated panel signs shall be fabricated from sheet aluminum alloy 6061-T6 or 5052-H32 of 0.063-inch thickness. The back of laminated panel signs shall be fabricated from sheet aluminum alloy 3003-H14 of 0.040-inch thickness. The Contractor shall furnish sheet aluminum as provided in "Sheet Aluminum" of these special provisions.

The core material shall be phenolic impregnated kraft paper honeycomb and fungus resistant in accordance to Military Specification MIL-D-5272. The honeycomb cell size shall be 1/2 inch. Weight of the kraft paper shall be 80 pounds and impregnated minimum 18 percent by weight.

A laminating adhesive that can produce a resilient oil and water-resistant bond shall be used to adhere the extruded aluminum frame and the honeycomb core to the sheet aluminum. Edge and interior delamination occur when a 0.010-inch thick feeler gauge of 1/2 inch in length can be inserted into a depth of more than 1/2 inch between the extruded aluminum frame and the sheet aluminum. Laminated panel sign with delamination will be rejected.

Laminated panels shall be able to resist a wind load of 33 pounds per square foot for the following simple span lengths with a bending safety factor of 1.25:

Panel Type	Nominal Panel Thickness	Simple Span Length
A	one inch	9 feet 0 inch
В	one inch	9 feet 0 inch
	2-1/2 inch	14 feet 6 inches
Н	2-1/2 inch	14 feet 6 inches

The tensile strength of laminated panels shall be at least 20 pounds per square inch when tested in accordance with the following modification and with ASTM Designations: C 297 and C 481, Cycle B after aging. Instead of spraying with hot water, the specimen shall be totally immersed in 158° F hot water. When requested by the Engineer or the Transportation Laboratory, at least one test sample of 12" x 12" in size shall be taken for every 2,000 square feet of the panel production cycle or of the total factory production order, whichever occurs first.

Rivets used to secure the sheet aluminum to the perimeter frame shall be fabricated from aluminum alloy 5052 and anodized or treated with a conversion coating to prevent corrosion. Size of the aluminum rivets shall be 3/16 inch in diameter and placed at the corners of the laminated panels. Color of the exposed portion of the rivets shall be the same color as the sign background or legend on which the rivets are placed. Rivets or stainless steel screws shall be placed in holes drilled during fabrication in the perimeter frame.

On laminated multiple panel signs, a closure H-Section shall be placed in the top channel of the bottom panel. Perimeter frame of adjoining panel shall accommodate the closure H-Section in the closed position.

For signs with a depth of 5 feet 0 inch or less, the laminated panels shall be fabricated with no horizontal joints, splices or seams. For signs with a depth of greater than 5 feet 0 inch, the laminated panels may be fabricated in two panels.

The face of laminated panels shall be flat with a tolerance of $\pm 3/32$ inch per linear foot when measured across the plane of each panel in all directions. Where laminated panels adjoin, the gap between adjoining edges from one corner to the other corner shall not deviate by more than 1/32 inch. Non-adjoining edges from one corner to the other corner shall not deviate by more than 1/8 inch from a straight plane. The front and back sheet aluminum shall be flush with the perimeter frame. The panel edges shall be smooth.

Laminated panel signs shall be within +1/8 inch or -1/2 inch of the detailed dimensions. The difference in length between adjoining panels of multiple panel signs shall not be greater than 1/2 inch.

Overhead laminated panel signs shall be Type A and have a nominal thickness of one inch.

For overhead laminated signs with a length of 24 feet or less, the laminated panels shall be fabricated with no vertical joints, splices or seams. For signs with a length of greater than 24 feet, the length of each adjoining panel shall be as determined by the Engineer or as shown on the plans.

The perimeter frame of Type A overhead laminated panels shall be connected by self-tapping hex head stainless steel screws. Sealant shall be placed at the corners of the perimeter frame to prevent moisture penetration. The perimeter frame of Type A panels shall consist of extruded channel edges on the vertical sides and consist of modified "H" section extrusion on the horizontal sides. The modified "H" section extrusion acts as an integral retainer track for affixing the bolts to provide blind fastening of panels to the structure support.

The Contractor shall furnish mounting hardware for overhead laminated panel signs, such as closure H-sections, clamps, bolts, nuts, and washers. The clamps shall be cast aluminum alloy with a minimum tensile strength of 25 kips per square inch. Bolt torque used for installing clamps shall not exceed 100 inch-pounds.

MEASUREMENT AND PAYMENT

Furnishing signs (except for construction area signs) will be measured by the square foot and the quantity to be paid for will be the total area, in square feet, of the sign panel types installed in place.

The contract price paid per square foot for furnish sign of the types specified in the Engineer's estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in fabricating and furnishing the signs, including fastening hardware, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for furnishing and installing protective overlay on signs shall be considered as included in the contract price paid per square foot for furnish sign of the various types and no separate payment will be made therefor.

10-1.75 PREPARE AND STAIN CONCRETE

This work shall consist of preparing and staining concrete surfaces including textured concrete where shown on the plans in conformance with the provisions in Section 59-6, "Painting Concrete," of the Standard Specifications and these special provisions.

MATERALS

The stain shall consist of a base and accent stain material. The base stain shall be an organic based non-toxic iron oxide derivative. The accent stain shall be a water-based solution of metallic salts that penetrate and react with the concrete surface to produce insoluble, abrasion-resistant color deposits in the pores of the concrete. The stain shall contain dilute acid to etch the surfaces so that the staining ingredients can penetrate the concrete.

Stain color for smooth bands at top and ends of retaining walls and Retaining structure & stain color for concrete barrier

Concrete stain shall be formulated and applied so that the final color of the stained concrete matches color no. 33446 of FED-STD-595.

Stain color for textured concrete

Concrete stain shall be formulated and applied so that the final coloring of the stained concrete is in the range of brown and gray earthtones.

TEST PANEL

A test panel at least 6-feet x 10-feet shall be completed and approved for each architectural textures listed on "Architectural Texture (Textured Concrete)" of these special provisions at a location approved by the Engineer before beginning work on architectural texture or staining concrete. The test panel shall be constructed, finished, and stained with the materials, tools, equipment, personnel, and methods to be used in constructing, finishing, and staining the concrete surfaces. At the discretion of the contractor a test panel 6-feet x 10-feet in size may be completed on the temporary concrete face prior to applying the permanent face concrete. Additional test panels may be ordered by the Engineer until the specified finish, texture, and color are obtained.

The test panel approved by the Engineer shall be used as the standard of comparison in determining acceptability of architectural texture and staining for concrete surfaces.

The Contractor shall submit a copy of the stain manufacturer's recommendations and written application instructions to the Engineer not less than 7 days before applying concrete stain to test panels.

DEBRIS CONTAINMENT AND COLLECTION PROGRAM

Prior to commencement of concrete staining operations, the Contractor shall submit to the Engineer a containment and collection program for liquid and effluent runoff and residue resulting from preparing, staining, and rinsing concrete surfaces. The Engineer will notify the Contractor of the approval or rejection of the containment and collection program within 2 weeks of the Contractor's complete submittal. No staining work shall be performed until the Engineer has reviewed and approved the debris containment and collection program.

The State will not be liable to the Contractor for failure to approve all or any portion of an originally submitted or revised containment and collection program, nor for any delays to the work due to the Contractor's failure to submit acceptable programs.

Disposal of water and debris collected by the containment system shall be performed in conformance with all applicable Federal, State, and Local hazardous waste laws. Laws that govern this work may include:

- A. Health and Safety Code, Division 20, Chapter 6.5 (California Hazardous Waste Control Act).
- B. Title 22, California Code of Regulations, Division 4.5, (Environmental Health Standards for the Management of Hazardous Waste).
- C. Title 8, California Code of Regulations.

The Contractor shall seal joints between concrete surfaces (concrete band at top and ends of all the retaining walls and Retaining structure) to be stained and metal surfaces that are galvanized or painted with a polysulfide or polyurethane sealing compound conforming to the requirements in ASTM Designation: C 920, Type S, Grade NS, Class 25, Use M. The color of the sealant shall match color no. 33446 of FED-STD-595.

SURFACE PREPARATION

New concrete surfaces to be stained shall only be cured in conformance with the provisions of Section 90-7.03, "Curing Structures" of the Standard Specifications and these special provisions.

Concrete surfaces to be stained shall be prepared in conformance with the requirements of SSPC-SP 13, "Surface Preparation of Concrete," of the Society for Protective Coatings. Immediately prior to staining operation, the Contractor shall clean all concrete surfaces to be stained by water rinsing as defined in Section 59-1.03, "Application," of the Standard Specifications.

Immediately before commencing work, the Contractor shall test concrete surfaces to be stained for acceptance of stain in conformance with the manufacturer's recommendations. Areas that resist accepting stain shall be cleaned as approved by the Engineer.

STAIN APPLICATION FOR CONCRETE SMOOTH BANDS ON RETAINING WALLS AND RETAINING STRUCTURE & CONCRETE BARRIER

The Contractor shall apply the concrete stain in conformance with the manufacturer's recommendations and these special provisions. The stain shall be applied uniformly, working to avoid excessive rundown. The stain shall be worked into the concrete surface in circular motions with a nylon-bristled brush. Drips, puddles, or other irregularities shall be worked into the concrete.

After the last coat of stain has dried, the Contractor shall rinse stained surfaces with water and wet scrub surfaces with a stiff bristled nylon brush until the rinse water runs clear.

The Contractor shall protect adjacent surfaces during concrete staining operations.

STAIN APPLICATION FOR TEXTURED CONCRETE

Stain shall be applied to a minimum of 6 ft x 6 ft test locations for textured concrete surfaces as designated by the Engineer. The Contractor shall notify the Engineer not less than 5 days prior to applying the stain material to the test areas. The Engineer shall approve the appearance at the test locations prior to commencement of staining operations on the remaining textured concrete. If ordered by the Engineer, additional staining test shall be performed until the specified finish and color are obtained, as determined by the Engineer.

The stain shall be applied in conformance with the provisions for paint application in Section 59-1.02,"Weather Conditions," of the Standard Specifications, except that application of stain will not be permitted when the atmospheric or textured surface temperature is at or below 50°F, or above 95°F.

The stain shall be applied in conformance with the manufacturer's recommendations in a minimum of 3 separate applications of at least 2 multiple stain colors as follows:

- 1. The first application shall consist of applying a 60 percent strength mixture of base stain.
- 2. The second application shall consist of applying a 100 percent strength mixture of the same base stain.
- 3. The third application shall consist of applying accent stain.

The stain shall be applied uniformly, working to avoid excessive rundown. The stain shall be worked into the concrete surface in circular motions with a nylon-bristled brush. Drips, puddles or other irregularities shall be worked in with a brush.

After the last coat of stain has dried, all stained surfaces shall be rinsed with clean water until the rinse water runs clear. Any damage to adjacent surfaces resulting from concrete staining operations shall be repaired at the Contractor's expense.

MEASUREMENT AND PAYMENT

Prepare and stain concrete will be measured by the square foot.

The contract price paid per square foot for prepare and stain concrete shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing of and applying stain to concrete surfaces and textured concrete surfaces, complete in place, including construction of test panels, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Full compensation for the debris containment and collection program, including disposal of water and debris, shall be considered as included in the contract price paid per square foot for prepare and stain concrete, and no separate payment will be made therefore.

Full compensation for prepare and stain concrete for concrete barrier, as shown on the plans, including debris containment and collection program, disposal of water and debris shall be considered as included in the contract price paid per linear foot for concrete barrier of the types listed on Engineer's Estimate, and no separate payment will be made therefor.

10-1.76 REINFORCED CONCRETE PIPE

Reinforced concrete pipe shall conform to the provisions in Section 65, "Reinforced Concrete Pipe," of the Standard Specifications and these special provisions.

GENERAL

Where embankment will not be placed over the top of the pipe, a relative compaction of not less than 85 percent shall be required below the pipe spring line for pipe installed using Method 1 backfill in trench, as shown on Standard Plan A62D. Where the pipe is to be placed under the traveled way, a relative compaction of not less than 90 percent shall be required unless the minimum distance between the top of the pipe and the pavement surface is the greater of 4 feet or one half of the outside diameter of the pipe.

Except as otherwise designated by classification on the plans or in the specifications, joints for culvert and drainage pipes shall conform to the plans or specifications for standard joints.

If reinforced concrete pipe is installed in conformance with the details shown on Standard Plan A62DA, the fifth paragraph of Section 19-3.04, "Water Control and Foundation Treatment," of the Standard Specifications shall not apply.

Where solid rock or other unyielding material is encountered at the planned elevation of the bottom of the bedding, shown on Standard Plan A62DA, the material below the bottom of the bedding shall be removed to a depth of 1/50 of the height of the embankment over the top of the culvert, but not less than 6 inches nor more than 12 inches. The resulting trench below the bottom of the bedding shall be backfilled with structure backfill material in conformance with the provisions in Section 19-3.06, "Structure Backfill," of the Standard Specifications. The Outer Bedding shall not be compacted prior to placement of the pipe.

MATERIALS

The concrete for reinforced concrete pipe shall contain not less than 470 pounds of cementitious material per cubic yard and have a water–cementitious material ratio that does not exceed 0.40 by weight. Supplementary cementitious material is optional. Reinforcement shall have a minimum cover of 1 inch except that for pipe with a nominal diameter of 18 inches or less the minimum cover shall be 3/4 inch.

Special reinforced concrete pipe, having concrete cover over the steel reinforcement greater than the cover specified in AASHTO Designation: M 170, shall conform to the provisions in Section 65-1.02, "Materials," and Section 65-1.02A, "Circular Reinforced Concrete Pipe," of the Standard Specifications, except the width of crack produced by the D-load test specified in AASHTO Designation: M 170 shall be the width determined by the following formula:

$$b = \frac{t - 3/8d}{t - 3/8d - C} \times 0.01 \text{ inch}$$

Where:

b = Width of crack to be produced in lieu of the 0.01-inch crack specified in AASHTO Designation: M 170

t = Wall thickness of pipe, inches

d = Effective depth of the section to be tested, feet

C = Concrete cover over steel reinforcement in excess of cover specified in AASHTO Designation: M 170

Reinforced concrete pipe that is to be hydrostatically tested shall be strength tested by the 3-edge bearing method to a maximum D-load of 10 percent greater than the 0.01-inch cracking D-load specified in AASHTO Designation: M 170 or to the actual D-load required to produce a 0.01-inch crack, whichever is the lesser.

Special oval shaped reinforced concrete pipe, having concrete cover over the steel reinforcement greater than the cover specified in AASHTO Designation: M 207, shall conform to the provisions in Section 65-1.02, "Materials," and Section 65-1.02B, "Oval Shaped Reinforced Concrete Pipe," of the Standard Specifications, except the width of crack produced by the D-load test specified in AASHTO Designation: M 207 shall be the width determined by the following formula:

$$b = \frac{t - 3/8d}{t - 3/8d - C} \times 0.01 \text{ inch}$$

Where:

b = Width of crack to be produced in lieu of the 0.01-inch crack specified in AASHTO Designation: M 207

t = Wall thickness of pipe, inches

d = Effective depth of the section to be tested, feet

C = Concrete cover over steel reinforcement in excess of cover specified in AASHTO Designation: M 207

Oval shaped reinforced concrete pipe that is to be hydrostatically tested shall be strength tested by the 3-edge bearing method to a maximum D-load of 10 percent greater than the 0.01-inch cracking D-load specified in AASHTO Designation: M 207 or to the actual D-load required to produce a 0.01-inch crack, whichever is the lesser.

MEASUREMENT AND PAYMENT

The excavation and backfill below the planned elevation of the bottom of the bedding shown on Standard Plan A62DA will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

The Department does not pay any additional cost for use of optional supplementary cementitious material.

The Department does not pay any additional cost for excess concrete cover over steel reinforcement.

10-1.77 PREFABRICATED VERTICAL DRAIN

Prefabricated vertical drains shall be furnished and installed as shown on the plans, as specified in these special provisions, and where designated by the Engineer.

Prefabricated vertical drains shall consist of fabricated vertical drain materials conforming to the following requirements:

- A. Saturated test samples of the fabricated prefabricated vertical drain 2 feet long, or 2 feet plus the length of splice if splices are being tested, when suspended vertically shall support a 50-pound weight for a period of 5 minutes without distress or separation.
- B. Fabricated prefabricated vertical drains shall have the following flow capacity characteristics when test samples are tested in conformance with the test procedure and sequence set forth in these special provisions.
 - 1. The pressure required to produce and maintain a flow of one gallon per minute for a period of 10 minutes, through the sidewalls and out the unsealed end of test samples, shall not exceed 1.2 pounds per square inch when the samples are immersed in water only.
 - 2. The pressure required to produce and maintain a flow of one gallon per minute for a period of 10 minutes, through the sidewalls and out the unsealed end of test samples, shall not exceed 15 pounds per square inch when the samples are embedded in a glassbead-aggregate soil matrix.

The test procedure to be used in determining flow capacity characteristics of fabricated prefabricated vertical drains shall consist of placing a 14-inch long test sample of the prefabricated vertical drain that has been sealed at one end in a test chamber, centered along its longitudinal axis, such that 12 inches of the sample is exposed to the flow within the chamber and such that the unsealed end of the sample extends out of the top of the chamber. Samples of spliced prefabricated vertical drain shall be placed in the test chamber with 12 inches of the splice exposed to flow within the chamber or, if the splice is less than 12 inches long, the spliced portion of the sample shall be placed in the top portion of the chamber. The inside diameter of the test chamber shall be at least 3/4 inch greater than the width of the test sample. Water shall be introduced into the test chamber through an inlet centered in the bottom of the chamber. Pressure shall be measured with a strain gage pressure tap installed in the test chamber at approximately mid-depth. Water used in determining flow capacity characteristics shall be potable tap water. Each test sample of spliced and unspliced prefabricated vertical drain shall first be tested for flow capacity when immersed in water only and then for flow capacity when embedded in a glassbead-aggregate soil matrix. The glassbead-aggregate soil matrix shall consist of inert glass beads and soil and shall conform to the following requirements:

A. Gradation:

Sieve Sizes	Percentage Passing
No. 4	100
No. 8	77
No. 16	63
No. 30	42
No. 50	19
No. 100	7
No. 200	3
No. 270	0

B. The material passing the No. 4 sieve and retained on the No. 50 sieve shall conform to the provisions in Section 90-2.02B, "Fine Aggregate," of the Standard Specifications. The material passing the No. 50 sieve and retained on the No. 270 sieve shall consist of inert glass beads.

C. The glass beads and soil shall be thoroughly mixed while damp, carefully installed around the test sample of prefabricated vertical drain in the test chamber and compacted by rodding.

Splices in prefabricated vertical drains will be permitted provided the splices are fabricated in a workmanlike manner approved by the Engineer, and the spliced wicks conform to the provisions in these special provisions.

The Contractor shall submit for testing a sample of the unspliced prefabricated vertical drain to be used and 3 samples of proposed splices to the Engineer at least 21 days prior to the installation of the prefabricated vertical drain. The sample of unspliced prefabricated vertical drains shall be at least 10 feet long. Samples of spliced prefabricated vertical drain shall be long enough to include the splice plus 2 feet of unspliced wick on either side of the splice. At the same time, the Contractor shall submit full details of the sequence and method proposed for installation of the prefabricated vertical drains for the Engineer's review and approval. Approval by the Engineer of installation details and methods shall not relieve the Contractor of the responsibility to install prefabricated vertical drains in conformance with the plans and these special provisions.

Prior to installation of the prefabricated vertical drains, the Contractor shall demonstrate that the proposed equipment and methods will produce satisfactory installations of approved prefabricated vertical drain in conformance with the plans and these special provisions. For this purpose, trial prefabricated vertical drains shall be installed at those locations designated by the Engineer. Payment for trial prefabricated vertical drains will be made at the contract price per linear foot for prefabricated vertical drain. Payment will not be made for unsatisfactory installations of trial prefabricated vertical drains.

Prefabricated vertical drains shall be installed using a driving sleeve. The driving sleeve shall protect the prefabricated vertical drain from tears, cuts, and abrasions during installation and shall be retracted after each prefabricated vertical drain is installed. The cross section of the driving sleeve shall be of a shape that will produce minimum disturbance of the soil surrounding the installed prefabricated vertical drain and shall not exceed 12 square inches in area. The tip of the driving sleeve shall cut through the filter fabric layer cleanly without tearing, gathering, folding, or otherwise distressing or stressing the fabric.

Prefabricated vertical drains shall not be installed by jetting or impact methods.

Upon written request from the Contractor and when approved by the Engineer, augering or other methods may be used to loosen the soil and permeable material prior to installation of prefabricated vertical drains provided the augering does not penetrate more than one foot into the underlying compressible native soil and does not tear, gather, fold or otherwise disturb or stress the filter fabric layer.

Equipment for installing prefabricated vertical drains shall be plumbed prior to installing each wick and shall not deviate from the vertical more than 0.1-foot in 10 feet during installation of the wicks. Prefabricated vertical drains that are out of proper location more than 6 inches or are damaged or improperly installed will be rejected. Rejected prefabricated vertical drain may be removed or abandoned in place, at the Contractor's option, except that rejected prefabricated vertical drains which interfere with installation of replacement prefabricated vertical drains, or other acceptable prefabricated vertical drains, shall be removed.

Prefabricated vertical drain locations shall be marked on the ground by the Contractor. The locations of the prefabricated vertical drains shall not vary by more than 6 inches from the locations shown on the plans.

Prefabricated vertical drains shall be installed from the working surface to the depth shown on the plans or designated by the Engineer.

The Contractor shall provide the Engineer with suitable means of determining the quantity of prefabricated vertical drain installed at each location and shall provide suitable means for the Engineer to determine the depth of the wick at any given time.

Prefabricated vertical drains shall be cut off neatly at the ground line at the location shown on the plans.

Prefabricated vertical drains will be measured by the linear foot. The length of prefabricated vertical drain to be paid for will be the length shown on the plans or designated by the Engineer. Prefabricated vertical drain placed in excess of such lengths will not be paid for.

The contract price paid per linear foot for prefabricated vertical drain shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing prefabricated vertical drains, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.78 OVERSIDE DRAIN

Hot mix asphalt overside drains shall conform to the provisions in Section 69, "Overside Drains," of the Standard Specifications.

10-1.79 MISCELLANEOUS FACILITIES

Bituminous coated corrugated steel pipe riser, concrete flared end section, and precast concrete pipe manhole shall conform to the provisions in Section 70, "Miscellaneous Facilities," of the Standard Specifications and these special provisions.

10-1.80 DRAINAGE INLET MARKER

GENERAL

Summary

This work includes installing drainage inlet markers.

Use only the type of drainage inlet marker shown on the project plans. If the project plans do not show a specific type, choose one type from the following list:

1. Thermoplastic

Submittals

If you are using a prefabricated drainage inlet marker such as thermoplastic, metal medallion, or plastic medallion, submit a sample of marker at least 5 business days before installation.

If you are using a concrete stamp for the drainage inlet marker, submit a sample of the stamp at least 5 business days before concrete activities start.

Submit a Certificate of Compliance as specified in Section 6-1.07, "Certificates of Compliance" of the Standard Specifications for prefabricated drainage inlet marker.

MATERIALS

Thermoplastic drainage inlet marker must:

- 1. Be free of lead and chromium
- 2. Comply with the following:

Property	Specifications	Requirements
Thickness, inches	Measured	0.080-0.160
Legend color (non-reflective)	Observed	Blue or Green
Background color (non-reflective)	AASHTO M 249	White
Skid Resistance	ASTM E 303	60 BPN

Metal drainage inlet marker must:

- 1. Be commercial grade stainless steel, aluminum, brass, or bronze
- 2. Be stamped from sheet metal or cast
- 3. Comply with the following:

Property	Specifications	Requirements
Thickness of metal, inches	Measured	0.055-0.138
Height of marker, inches	Measured	0.055-0.138
Skid Resistance	ASTM E 303	60 BPN

4. If metal marker is colored, it must comply with the following:

Property	Specifications	Requirements
Legend color (non-reflective)	Observed	Blue or Green
Background color (non-reflective)	Observed	White or bare metal

Plastic drainage inlet marker must:

- 1. Contain ultraviolet inhibitors
- 2. Comply with the following:

Property	Specifications	Requirements
Thickness, inches	Measured	0.025-0.060
Thickness (with dome), inches	Measured	0.055-0.120
Legend color (non-reflective)	Observed	Blue or Green
Background color (non-reflective)	Observed	White
Weathering Resistance	ASTM D1435	1 year without yellowing,
		fogging, or pitting

CONSTRUCTION

Install prefabricated drainage inlet markers by:

- 1. Mechanically cleaning and preparing the surface
- 2. Attaching the prefabricated drainage inlet markers to the surface with adhesives, fasteners, or heat as recommended by the manufacturer

Install stamped concrete drainage inlet markers by:

- 1. Imprinting uncured concrete with an approved drainage inlet marker concrete stamp
- 2. Producing stamped concrete surfaces that are free from blemishes

MEASUREMENT AND PAYMENT

Drainage inlet marker is measured as units determined from actual count in place.

The contract price paid for drainage inlet marker includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing drainage inlet markers, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.81 WELDED STEEL PIPE CASING (BRIDGE)

Welded steel pipe casings through bridges and under approach slabs shall be of the size shown and shall conform to the provisions in Section 70, "Miscellaneous Facilities," of the Standard Specifications and these special provisions.

Unless otherwise shown on the project plans, casings shall be installed at each abutment, and casings shall be extended to the greater of: (1) 5 feet beyond the approach slab, (2) 5 feet beyond the end of the adjacent wingwall, or (3) 20 feet beyond the abutment.

WORKING DRAWINGS

Working drawings for temporary support of casing pipe at the abutments shall be submitted for approval in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings" of the Standard Specifications.

MATERIALS

Casing pipe

Casing pipe shall be welded steel pipe conforming to the provisions in Section 70-1.02B, "Welded Steel Pipe," of the Standard Specifications, except that the pipe shall be treated in accordance with the following requirements, prior to shipping. Exterior surfaces of welded steel pipe shall be cleaned and coated in conformance with the requirements in ANSI/AWWA C213 or at the option of the Contractor, cleaned, primed, and coated in accordance with specifications of ANSI/AWWA C214.

Pipe wrapping tape

Wrapping tapes for pipe in contact with the ground shall be a pressure sensitive polyvinyl chloride or polyethylene tape having thickness of 50 mils, minimum.

CONSTRUCTION

If a blockout is provided in the bridge abutment wall for casing pipe, the space between the casing pipe and bridge abutment wall shall be filled with mortar conforming to the provisions in Section 51-1.135,"Mortar" of the Standard Specifications.

Openings for utilities through bridge superstructure concrete shall either be formed or shall consist of pipe sleeves.

Wrapping and coating pipe

Damaged coating on steel pipe casing in contact with earth shall be wrapped as follows:

- A. Pipe to be wrapped shall be thoroughly cleaned and primed as recommended by the tape manufacturer.
- B. Tapes shall be tightly applied with 1/2 uniform lap, free from wrinkles and voids to provide not less than a 100—mil thickness.
- C. Field joints and fittings for wrapped pipe shall be covered by double wrapping 50—mil thick tape. Wrapping at joints shall extend a minimum of 6 inches over adjacent pipe coverings. Width of tape for wrapping fittings shall not exceed 2 inches. Adequate tension shall be applied so tape will conform closely to contours of joint.

Where a welded steel pipe casing passes through the abutment wall, the welded steel pipe casing shall be additionally wrapped with 2 layers of 15—pound asphalt-felt building paper, securely taped or wired in place.

MEASUREMENT AND PAYMENT

Measurement and payment for welded steel pipe casing (bridge) for each size listed in the Engineers Estimate shall conform to the provisions in Sections 70-1.04,"Measurement" and 70-1.05,"Payment" of the Standard Specifications.

Full compensation for furnishing and installing mortar, building paper, casing, and other fittings shall be considered as included in the contract prices paid per linear foot for the sizes of welded steel pipe casing (bridge) involved, and no additional compensation will be allowed therefor.

10-1.82 SLOPE PROTECTION

Slope protection shall be placed or constructed in conformance with the provisions in Section 72, "Slope Protection," of the Standard Specifications.

Rock slope protection fabric must be Class 8.

10-1.83 SLOPE PAVING

Slopes under the bridge ends where shown on the plans shall be paved in conformance with the provisions in Section 72-6, "Slope Paving," of the Standard Specifications and these special provisions.

The color of masonry blocks for slope paving shall be tan conforming to Color No. 30450 of Federal Standard No. 595B.

Masonry block for slope paving shall be concrete pavers conforming to ASTM Designation: C 90, Type II. The surface exposed to view shall have split face texture.

The nominal size of concrete pavers shall be 8 inches x 2 inches x 16 inches. Head and bed mortar joints shall be 1/2 inch thick.

Cement shall conform to the provisions in Section 90-2.01, "Cementitious Materials," of the Standard Specifications.

Hydrated lime shall conform to ASTM Designation: C 207, Type S.

Mortar sand shall be commercially produced for masonry work and free of organic impurities and lumps of clay and shale.

Mortar for laying concrete pavers shall consist, by volume, of one part cementitious material, 0 to 1/2 part of hydrated lime, and 2-1/4 to 3 parts of mortar sand. Sufficient water shall be added to make a workable mortar. Each batch of mortar shall be accurately measured and thoroughly mixed. Mortar shall be freshly mixed as required. Mortar shall not be retempered more than one hour after mixing. The amount of lime shall be reduced as necessary to prevent leaching and efflorescence on finished surfaces.

A proprietary, premixed packaged blend of cement, lime, and sand, without color, that requires only water to prepare for use as brick mortar or grout may be furnished for mortar. Packages of premix shall bear the manufacturer's name, brand, weight, and color identification. The manufacturer's recommended mixing proportions and procedures shall be furnished to the Engineer.

The top surface of the air-blown mortar or concrete base shall be lightly and evenly scored horizontally and vertically with a metal scratcher having grooves not more than one inch apart.

The air-blown mortar or concrete base shall be cured by the water method for at least 2 days.

Concrete pavers shall be laid and embedded in approximately one inch thick mortar. Embedment shall be shoved tight so that mortar is flushed into the joints to a depth of approximately 1/2 inch.

Joints shall be straight and of uniform and equal width.

Surfaces of completed masonry, concrete, and other materials exposed to view shall be protected from spillage, splatters, and other deposits of cementitious materials from masonry construction. Such deposits shall be removed without damage to the materials or exposed surfaces. Stains, efflorescence, laitance, splashes, or spots on the faces of masonry exposed to view shall be removed. Cleaning agents shall conform to the concrete paver manufacturers recommendations. Cleaning agents shall be applied to a sample area acceptable to the Engineer, and their performance and the cleaning methods approved by the Engineer before proceeding with cleaning beyond the sample area.

Slope paving will be measured by the square foot. The area to be paid for will be calculated from the lengths and widths placed.

The contract price paid per square foot for slope paving of the types listed on Engineer's Estimate shall include full compensation for furnishing all labor, materials (including concrete pavers, reinforcement, and 3" plastic pipes), tools, equipment, and incidentals, and for doing all the work involved in slope paving, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.84 MISCELLANEOUS CONCRETE CONSTRUCTION

Concrete curb, gutter, and sidewalk shall conform to the provisions in Section 73, "Concrete Curbs and Sidewalks," of the Standard Specifications and these special provisions.

Curb ramp detectable warning surface shall consist of raised truncated domes constructed or installed on curb ramps in conformance with the details shown on the plans and these special provisions. At the option of the Contractor, the detectable warning surface shall be prefabricated, cast-in-place, or stamped into the surface of the curb ramp. The color of the detectable warning surface shall be yellow conforming to Federal Standard 595B, Color No. 33538.

Prefabricated detectable warning surface shall be in conformance with the requirements established by the Department of General Services, Division of State Architect and be attached in conformance with the manufacturer's recommendations.

Cast-in-place and stamped detectable warning surfaces shall be painted in conformance with the provisions in Section 59-6, "Painting Concrete," of the Standard Specifications.

The finished surfaces of the detectable warning surface shall be free from blemishes.

Prior to constructing the cast-in-place or stamping the detectable warning surface, the Contractor shall demonstrate the ability to produce a detectable warning surface conforming to the details shown on the plans and these special provisions by constructing a 24" x 24" test panel.

The manufacturer shall provide a written 5-year warranty for prefabricated detectable warning surfaces, guaranteeing replacement when there is defect in the dome shape, color fastness, sound-on-cane acoustic quality, resilience, or attachment. The warranty period shall begin upon acceptance of the contract.

Full compensation for constructing or furnishing and installing curb ramp detectable warning surfaces shall be considered as included in the contract price paid per cubic yard for minor concrete (miscellaneous construction) and no separate payment will be made therefor.

10-1.85 MISCELLANEOUS IRON AND STEEL

Miscellaneous iron and steel shall conform to the provisions in Section 75, "Miscellaneous Metal," of the Standard Specifications.

10-1.86 MISCELLANEOUS METAL (BRIDGE)

Miscellaneous metal (bridge) shall conform to the provisions for miscellaneous bridge metal in Section 75, "Miscellaneous Metal," of the Standard Specifications and these special provisions.

Miscellaneous metal (bridge) shall consist of the miscellaneous bridge metal items listed in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications and the following:

A. Drainage grate (for soffit opening)

10-1.87 BRIDGE DECK DRAINAGE SYSTEM

Bridge deck drainage systems shall conform to the provisions for miscellaneous bridge metal in Section 75, "Miscellaneous Metal," of the Standard Specifications and these special provisions.

Self-tapping screws used for sleeve connections shall be hex-head stainless steel, installed in holes drilled to fit the self-tapping screws, conforming to the requirements of ASTM Designation: A 276, Type 304.

At the Contractor's option, fiberglass pipes and fittings with the same diameter and minimum bend radius as those shown on the plans may be substituted for welded steel pipe in deck drain systems.

Fiberglass pipe and fittings shall conform to the requirements in ASTM Designation: D 2996, and shall have a minimum short-term rupture strength of 30,000 psi. The adhesive type recommended by the manufacturer shall be used for joining pipe and fittings. Fiberglass pipe not enclosed in a box girder cell or encased in concrete shall be manufactured from ultraviolet-resistant resin pigmented with concrete-gray color, or be coated with a concrete-gray resin-rich exterior coating. Paint shall not be used. Fiberglass pipe treated with ultraviolet protection shall withstand a minimum of 2,500 hours of accelerated weathering when tested in conformance with the requirements in ASTM Designation: G 154. Lamps shall be UV-B (313 nm wavelength). The resting cycle shall be 4 hours of ultraviolet exposure at 140° F, and then 4 hours of condensate exposure at 120° F. After testing, the surface of the pipe shall exhibit no fiber exposure, crazing, or checking, and only a slight chalking or color change.

Support spacing for fiberglass pipe shall be the same as shown on the plans for welded steel pipe. Pipe supports shall have a width of not less than 1.5 inches.

A Certificate of Compliance for fiberglass pipe and fittings shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall include all laboratory test results conforming to the provisions specified herein.

For drainage piping NPS 8 or smaller, the Contractor shall have the option of substituting polyvinyl chloride (PVC) plastic pipe and fittings with the same diameter and minimum bend radius as shown on the plans for welded steel pipe, which is:

- A. Enclosed in a box girder cell and exposed for a length not greater than 20 feet within the cell, or
- B. encased in concrete.

The PVC plastic pipe and fittings shall be Schedule 40 conforming to the requirements of ASTM Designations: D 1785. The maximum support spacing for PVC plastic pipe shall be 6 feet.

Couplings used to connect PVC plastic pipe or fiberglass pipe to steel shall be threaded or flanged. The sleeve connections shown on the plans shall not be used for either PVC plastic pipe or fiberglass pipe.

If PVC plastic pipe or fiberglass pipe is substituted for welded steel pipe, the quantity of drainage piping will be computed on the basis of the dimensions and details shown on the plans, and no change in the quantities to be paid for will be made because of the use of PVC plastic pipe or fiberglass pipe.

Bridge deck drainage systems will be measured and paid for by the pound in the same manner specified for miscellaneous metal (bridge) in Section 75-1.06, "Measurement," and Section 75-1.07, "Payment," of the Standard Specifications.

10-1.88 MANAGEMENT OF CONTAMINATED GROUNDWATER

GENERAL

Summary

This work includes handling potential petroleum hydrocarbon impacted groundwater generated during construction activities (i.e. excavation, grading, etc.) and dewatering in conformance with the Standard Specifications and these special provisions.

Attention is directed to "Removal of Underground Storage Tank (UST) System, Removal of Underground Waste Oil Tank System, Removal of Hydraulic Lift, Removal of Remediation/Vapor Extraction System (VES), Removal and Disposal of Petroleum Hydrocarbon Contaminated Soil, Removal and Disposal of Pea Gravel, and Backfilling and Compaction of Soil" of these special provisions.

Definitions

Petroleum hydrocarbon impacted material is defined as groundwater having concentrations of petroleum hydrocarbons, and constituents including benzene, toluene, ethylbenzene, total xylenes (BTEX), and other fuel related volatile organic compounds (VOCs) that are above the concentration limits allowed in the NPDES permit, Order No, R9-2008-0002 of the Regional Water Quality Control Board (RWQCB).

Submittals

Laboratory Name: Submit the name of the laboratory that will perform the analysis to the Engineer before beginning any sampling or analysis.

Analytical Reports: For every shipment of 5,000 gallons of groundwater or less, provide laboratory analysis results for a minimum of two samples showing that the concentration of contaminants were higher than the concentrations allowed in the NPDES permit. The laboratory results must be in a table format. Submit the analytical report to the Engineer for approval prior to the disposal of the contaminated groundwater.

Quality Control and Assurance

Manage petroleum impacted groundwater in conformance with the rules and regulations of the following agencies:

- 1. San Diego Regional Water Quality Control Board (RWQCB);
- 2. California Division of Occupational Safety and Health Administration (CAL-OSHA);
- 3. City of San Juan Capistrano.

Laboratories used to perform sample analysis must hold current certification from the CA Department of Public Health Environmental Laboratory Accreditation Program for all analyses to be performed.

Procure all permits and licenses, pay all applicable charges and fees, and give all notices necessary in conformance with these special provisions and Section 7-1.04, "Permits and Licenses," of the Standard Specifications.

MATERIALS

Materials must conform to the provisions in Section 6, "Control of Materials," Section 7-1.16, "Contractor's Responsibility for the Work and Materials," and Section 74-2, "Drainage Pump Equipment" of the Standard Specifications and these special provisions.

Provide holding tanks to collect the dewatered groundwater. Holding tanks must be transportable and totally enclosed. Holding tanks must have an inlet and outlet capable of receiving and discharging flows. Holding tanks must accommodate temporary installation of submersible pumps. The tanks must remain on the job site until dewatering operations are no longer necessary as determined by the Engineer.

Pumps must be submersible and be capable of discharging water and other materials; including, but not limited to, small rocks, gravel, sand and sediments.

Plastic piping may be approved for use as determined by the Engineer in writing. If plastic piping is used, it must conform to the provisions in section 20-5.03E, "Pipe" of the Standard Specifications. Provide piping for dewatering and discharge operations.

Conduct a daily inspection of the dewatering operation to ensure that components are functional and maintained to prevent leakage. If a component is damaged, the operation must be discontinued and the component must be repaired or replaced.

CONSTRUCTION

Health and Safety

Comply with health and safety and health and safety training requirements in "Removal of Underground Storage Tank (UST) System, Removal of Hydraulic Lift, Removal of Remediation/Vapor Extraction System (VES), Removal of Underground Waste Oil Tank System, Removal and Disposal of Petroleum Hydrocarbon Contaminated Soil, Removal and Disposal of Pea Gravel, and Backfilling and Compaction of Soil" of these special provisions.

Groundwater Management

Mobilization and demobilization includes the following:

- 1. Moving equipment onto the job site
- 2. Setting up equipment
- 3. Removing tools, equipment, and machinery
- 4. Removing excess materials

Dewater; collect, store, test, and dispose of collected groundwater during construction.

If the concentration of contaminants in groundwater or non-storm water is below NPDES permit concentrations, the water must be handled according to the provisions of the permit.

Contract No. 12-0E3104

If the concentrations of the contaminants are above the limits allowed in the NPDES permit, transport dewatered groundwater using a transporter, licensed in the State of California, for proper treatment and disposal.

MEASUREMENT AND PAYMENT

The contract price paid per gallon for management of contaminated groundwater includes full compensation for furnishing all labor, training, permits, fees, materials, tools, equipment, incidentals, pumping, sampling, testing, analysis, reporting requirements, disposal, compliance with regulatory agencies and for doing all the work involved in managing removal and disposal of all contaminated groundwater per these special provisions and as directed by the Engineer.

The contract unit price paid for mobilization/demobilization for pumping of contaminated groundwater includes full compensation for transporting pumping equipment to and from the job site, and all associated labor, fees, materials, tools, incidentals.

10-1.89 CHAIN LINK FENCE

Chain link fence shall be Type CL-6 and shall conform to the provisions in Section 80, "Fences," of the Standard Specifications.

10-1.90 MARKERS AND DELINEATORS

Markers and delineators shall conform to the provisions in Section 82, "Markers and Delineators," of the Standard Specifications and these special provisions.

Markers and delineators on flexible posts shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Flexible posts shall be made from a flexible white plastic which shall be resistant to impact, ultraviolet light, ozone, and hydrocarbons. Flexible posts shall resist stiffening with age and shall be free of burns, discoloration, contamination, and other objectionable marks or defects which affect appearance or serviceability.

Retroreflective sheeting for metal and flexible target plates shall be the retroreflective sheeting designated for channelizers, markers, and delineators conforming to the requirements in ASTM Designation: D 4956-95 and in conformance with the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

10-1.91 METAL BEAM GUARD RAILING

Metal beam guard railing shall be constructed in conformance with the provisions in Section 83-1, "Railings," of the Standard Specifications and these special provisions.

Attention is directed to "Order of Work" of these special provisions.

Line posts shall be wood, steel, or plastic. Blocks shall be wood or plastic.

ALTERNATIVE IN-LINE TERMINAL SYSTEM

Alternative in-line terminal system shall be furnished and installed as shown on the plans and in conformance with these special provisions.

The allowable alternatives for an in-line terminal system shall consist of one of the following or a Department approved equal.

- A. TERMINAL SYSTEM (TYPE SKT) Terminal system (Type SKT) shall be a SKT 350 Sequential Kinking Terminal manufactured by Road Systems, Inc., located in Big Spring, Texas, and shall include items detailed for terminal system (Type SKT) shown on the plans. The SKT 350 Sequential Kinking Terminal can be obtained from the distributor, Universal Industrial Sales, P.O. Box 699, Pleasant Grove, UT 84062, telephone (801) 785-0505 or from the distributor, Gregory Highway Products, 4100 13th Street, S.W., Canton, OH 44708, telephone (330) 477-4800.
- B. TERMINAL SYSTEM (TYPE ET) Terminal system (Type ET) shall be an ET-2000 PLUS (4-tube system) extruder terminal as manufactured by Trinity Industries, Inc., and shall include items detailed for terminal system (Type ET) shown on the plans. The ET-2000 PLUS (4-tube system) extruder terminal can be obtained from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, telephone (800) 772-7976.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that the terminal systems furnished conform to the contract plans and specifications, conform to the prequalified design and material requirements, and were manufactured in conformance with the approved quality control program.

Terminal systems shall be installed in conformance with the manufacturer's installation instructions and these requirements. Each terminal system installed shall be identified by painting the type of terminal system in neat black letters and figures 2 inches high on the backside of the rail element between system posts numbers 4 and 5.

For terminal system (Type ET) the steel foundation tubes with soil plates attached shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. The wood terminal posts shall be inserted into the steel foundation tubes by hand and shall not be driven. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 149° F or less. The edges of the wood terminal posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

For terminal system (Type SKT) the soil tubes shall be, at the Contractor's option, driven with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. Wood posts shall be inserted into the steel foundation tubes by hand. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 149° F or less. The edges of the wood posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

Surplus excavated material remaining after the terminal system has been installed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

The contract unit price paid for alternative in-line terminal system shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing alternative in-line terminal system, complete in place, including excavation, backfill and disposal of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

ALTERNATIVE FLARED TERMINAL SYSTEM

Alternative flared terminal system shall be furnished and installed as shown on the plans and in conformance with these special provisions.

The allowable alternatives for a flared terminal system shall consist of one of the following or a Department approved equal.

- A. TERMINAL SYSTEM (TYPE FLEAT) Terminal system (Type FLEAT) shall be a Flared Energy Absorbing Terminal 350 manufactured by Road Systems, Inc., located in Big Spring, Texas, and shall include items detailed for terminal system (Type FLEAT) shown on the plans. The Flared Energy Absorbing Terminal 350 can be obtained from the distributor, Universal Industrial Sales, P.O. Box 699, Pleasant Grove, UT 84062, telephone (801) 785-0505 or from the distributor, Gregory Highway Products, 4100 13th Street, S.W., Canton, OH 44708, telephone (330) 477-4800.
- B. TERMINAL SYSTEM (TYPE SRT) Terminal system (Type SRT) shall be an SRT-350 Slotted Rail Terminal (8-post system) as manufactured by Trinity Industries, Inc., and shall include items detailed for terminal system (Type SRT) shown on the plans. The SRT-350 Slotted Rail Terminal (8-post system) can be obtained from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, telephone (800) 772-7976.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that the terminal systems furnished conform to the contract plans and specifications, conform to the prequalified design and material requirements, and were manufactured in conformance with the approved quality control program.

Terminal systems shall be installed in conformance with the manufacturer's installation instructions and these requirements. Each terminal system installed shall be identified by painting the type of terminal system in neat black letters and figures 2 inches high on the backside of the rail element between system posts numbers 4 and 5.

For terminal system (Type SRT), the steel foundation tubes with soil plates attached shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. The wood terminal posts shall be inserted into the steel foundation tubes by hand and shall not be driven. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 149° F or less. The edges of the wood terminal posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

For terminal system (Type FLEAT), the soil tubes shall be, at the Contractor's option, driven with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. Wood posts shall be inserted into the steel foundation tubes by hand. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 149° F or less. The edges of the wood posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

Surplus excavated material remaining after the terminal system has been installed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

The contract unit price paid for alternative flared terminal system shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing alternative flared terminal system, complete in place, including excavation, backfill and disposal of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.92 VEGETATION CONTROL (MINOR CONCRETE)

This work shall consist of furnishing and constructing vegetation control as specified in these special provisions, as shown on the plans and as directed by the Engineer.

MATERIALS

Minor Concrete

Concrete for vegetation control shall consist of a mixture of portland cement concrete, crumb rubber and concrete reinforcing fibers. Concrete shall conform to the provisions for minor concrete in Section 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions. Components of the concrete for vegetation control shall be incorporated homogeneously at the concrete plant before delivery to the work site.

Reinforcing fibers for minor concrete shall consist of polypropylene fibers with an engineered sinusoidal contoured profile, manufactured specifically for use as concrete reinforcement. Reinforcing fiber shall consist of a blended ratio of 4 parts of coarse monofilament fibers with maximum individual fiber lengths of 2-inch \pm 1/2-inch and 1 part of fine fibrillated polypropylene fibers of various lengths and thickness. Reinforcing fibers shall be of a commercial source, combined with the concrete in proportions as recommended by the manufacturer.

Grout

Grout for vegetation control shall conform to the provisions in Section 19-3.062, "Slurry Cement Backfill," of the Standard Specifications and these special provisions.

Not more than 188 pounds of cement shall be used for each cubic yard of material produced.

Aggregate for grout shall be commercial quality concrete sand.

Landscape Fabric

Landscape fabric shall be manufactured from thermally spun bonded polypropylene fabric and shall conform to the following:

Specification	Minimum Requirement		
Grab Tensile Strength	135 lbs		
Grab Elongation	70%		
UV Resistance	70% @ 150 hours		
Weight	3 ounces per square yard		

Staples for landscape fabric shall be 2 inches in width, 6 inches in length and 11-gauge wire.

A copy of the manufacturer's product sheet, together with instructions for installation, shall be furnished to the Engineer 5 business days before installation.

A Certificate of Compliance for the landscape fabric shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

SITE PREPARATION

Clearing

Areas to receive vegetation control shall be cleared of trash and debris in conformance with Section 16, "Clearing and Grubbing," of the Standard Specifications and these special provisions.

Vegetation shall be removed to the ground. Cleared trash, debris and removed vegetation shall be disposed of outside the highway right of way in conformance with Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Earthwork

Earthwork shall conform to the provisions in Section 19, "Earthwork," of the Standard Specifications and these special provisions.

After clearing, areas to receive vegetation control shall be excavated. Where vegetation control abuts the existing surfacing, the edge of the existing surfacing shall be on a neat line or shall be cut on a neat line to a minimum depth of 0.17-foot before removing the surfacing. The area to receive vegetation control shall be excavated to maintain planned flow lines, slope gradient and contours of the project site.

After excavation, areas to receive vegetation control shall be graded to a smooth, uniform surface and compacted to a relative compaction of not less than 90 percent.

PLACEMENT

Landscape fabric shall be stapled to prevent shifting during concrete placement. Fabric shall lie flat, smooth, without bulges or wrinkles, and maintain uniform contact with the soil surface.

Grout shall be spread to completely fill voids as shown on the plans.

Minor concrete shall be struck off and compacted until a layer of mortar has been brought to the surface. Minor concrete shall receive a broom finish.

Two weakened plane joints shall be constructed in the minor concrete at each post location, perpendicular to the rail and in line with the edge of the grout. The joints shall be constructed to a minimum depth of one inch by scoring with a tool that will leave the corners rounded and ensure free movement of concrete at the joint.

The finished grade of vegetation control shall be uniform; maintaining planned flow lines, slope gradient and contours of the project site.

MEASUREMENT AND PAYMENT

Quantities of vegetation control (minor concrete) will be measured by the square yard computed from measurements of actual areas placed. Vegetation control (minor concrete) placed outside the dimensions shown on the plans will not be paid for.

The contract price paid per square yard for vegetation control (minor concrete) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing vegetation control (minor concrete), including clearing trash, debris and vegetation and excavation, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.93 CHAIN LINK RAILING

Chain link railing shall conform to the provisions in Section 83-1, "Railings," of the Standard Specifications and these special provisions.

The color of vinyl coated chain link fabric shall be brown.

The chain link fabric shall be 9-gage (0.148-inch diameter), Type IV, Class B, bonded vinyl coated fabric, conforming to the requirements in AASHTO Designation: M 181.

The strength of the bond between the coating material and steel of the bonded vinyl coated chain link fabric shall be equal to or greater than the cohesive strength of the polyvinyl chloride (PVC) coating material.

10-1.94 CABLE RAILING

Cable railing shall conform to the provisions in Section 83-1, "Railings," of the Standard Specifications.

10-1.95 CONCRETE BARRIER

Concrete barriers shall conform to the provisions in Section 83-2, "Barriers," of the Standard Specifications and these special provisions.

Handrailing and tubular lower rail, shown on the plans for Retaining Walls No. 10 and 83, shall conform to the provisions in Section 83-1, "Railings," of the Standard Specifications.

Resin capsule anchors shall conform to Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications. Mortar for the mortar pad shown on the plans shall conform to Section 51-1.135, "Mortar," of the Standard Specifications.

Drilling and bonding threaded rods shall conform to the details shown in the plans, the provisions in Section 83-2.02D(1), "General," of the Standard Specifications, and these special provisions. Threaded rods shall conform to Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications.

Concrete pavers located on bridge sidewalk (Bridge No. 55-1104) shall conform to the plans and "Interlocking Concrete Pavers (Sidewalk)" of these special provisions.

Concrete barriers shall be constructed on a layer of Class 2 Aggregate Base as shown on the plans. Aggregate base shall conform to the provisions in "Aggregate Base" of these special provisions. When concrete barriers are to be constructed on aggregate base, the height of the barriers shall be adjusted to compensate for irregularities in the surface of the finished aggregate base. The amount of adjustment will be determined by the Engineer and will be ordered before the concrete is placed.

The provisions of the third paragraph in Section 83-2.02D(4), "Finishing," of the Standard Specifications shall not apply.

At those locations shown on the plans, concrete barrier markers shall be cemented to the barrier in conformance with the manufacturer's recommendations.

Forms for Type 80 concrete barrier railing shall remain in place for a minimum of 36 hours after the concrete has been placed.

Full compensation for furnishing and installing handrailing, tubular lower rail, resin capsule anchors, for furnishing threaded rods, base plates, and associated hardware, for constructing the mortar pad, and for drilling holes and bonding threaded rods, shall be considered as included in the contract price paid per linear foot for concrete barrier of the types listed on Engineer's Estimate, and no separate payment will be allowed therefor.

Concrete barrier (Type 26A Modified) will be measured and paid for as concrete barrier (Type 26 Modified).

Full compensation for furnishing and constructing concrete pavers, as shown on the plans, located on bridge sidewalk (Bridge No.55-1104) shall be considered as included in the contract price paid per linear foot for concrete barrier (Type 26 Modified), and no separate payment will be made therefore.

Full compensation for furnishing and installing concrete barrier marker shall be considered as included in the contract price paid per linear foot for concrete barrier of types listed on Engineer's Estimate and no separate payment will be allowed therefor.

10-1.96 TRANSITION RAILING (TYPE WB)

Transition railing (Type WB) shall be furnished and installed in conformance with details shown on the plans, the provisions in Section 83-2, "Barriers," of the Standard Specifications and these special provisions.

The 10-gage rail elements shall conform to the requirements of Class B, Type 1 thrie beam guard railing as shown in AASHTO Designation: M 180. End caps shall conform to the requirements of Class A, Type 1 thrie beam guard railing as shown in AASHTO Designation: M 180.

Surplus excavated material remaining after the transitional railing (Type WB) has been constructed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

The contract unit price paid for transition railing (Type WB) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing transition railing (Type WB), complete in place, including drilling holes for wood posts, driving posts, backfill, and disposal of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.97 CRASH CUSHION (TYPE CAT)

Crash cushion (Type CAT) and crash cushion (Type CAT) backup shall be furnished and installed as shown on the plans and in conformance with these special provisions.

Crash cushion (Type CAT) shall be a CAT-350 Crash Cushion Attenuating Terminal as manufactured by Trinity Industries, Inc., and shall include all the items detailed for crash cushion (Type CAT) shown on the plans.

Crash cushion (Type CAT) backup shall consist of items detailed for crash cushion (Type CAT) backup shown on the plans and shall conform to the provisions in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications.

Excluding the crash cushion (Type CAT) backup, arrangements have been made to ensure that any successful bidder can obtain the CAT-350 Crash Cushion Attenuating Terminal from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, telephone (800) 772-7976. The price quoted by the manufacturer for the CAT-350 Crash Cushion Attenuating Terminal, FOB Centerville, Utah is \$3300.00, not including sales tax.

The above price will be firm for orders placed on or before September 9, 2012, provided delivery is accepted within 90 days after the order is placed.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that crash cushion (Type CAT) conforms with the contract plans and specifications, conforms to the prequalified design and material requirements, and was manufactured in conformance with the approved quality control program.

The crash cushion (Type CAT) shall be installed in conformance with the manufacturer's installation instructions and these requirements. The steel foundation tubes with soil plates attached, shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 4 inches thick and each layer shall be moistened and thoroughly compacted. Wood posts shall be inserted into the steel foundation tubes by hand. Before the wood posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 149 °F or less. The edges of the wood posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

Surplus excavated material remaining after the crash cushion (Type CAT) and backup have been constructed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

Crash cushion (Type CAT) and crash cushion (Type CAT) backup will be measured as units determined from actual count in place in the completed work.

The contract unit prices paid for crash cushion (Type CAT) and for crash cushion (Type CAT) backup shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing crash cushion (Type CAT) and crash cushion (Type CAT) backup, complete in place, including excavation, backfill, and disposal of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.98 TEMPORARY CRASH CUSHION (ADIEM)

Temporary crash cushion shall be furnished and installed as shown on the plans and in conformance with the provisions in the Standard Specifications and these special provisions.

Crash cushion shall be an ADIEM-350 as manufactured by Trinity Industries, Inc., and shall include the items detailed for crash cushion shown on the plans.

The successful bidder can obtain the crash cushion from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, telephone (800) 772-7976.

The price quoted by the manufacturer for ADIEM-350, FOB Centerville, Utah is \$14,275.00, not including sales tax.

The above price will be firm for orders placed on or before September 6, 2012, provided delivery is accepted within 90 days after the order is placed.

The Contractor shall furnish the Engineer one copy of the manufacturer's plan and parts list.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that the crash cushion conforms to the contract plans and specifications, conforms to the prequalified design and material requirements, and was manufactured in conformance with the approved quality control program.

Crash cushion shall be installed in conformance with the manufacturer's installation instructions.

Structural excavation and backfill shall not be required.

Temporary crash cushion (ADIEM) will be measured by the unit as determined from actual count in place in the completed work.

Replacing temporary crash cushion damaged by public traffic will be paid for as extra work as provided in section 4-1.03D of the Standard Specification.

The contractor shall remove temporary crash cushion (ADIEM) when no longer required.

Holes left in the existing pavement, after the base anchor rods have been removed, shall be repaired by the Contractor.

Removed temporary crash cushion (ADIEM) is to be disposed of outside the highway right of way.

The contract unit price paid for temporary crash cushion (ADIEM) shall include full compensation for furnishing all labor, materials (including anchor bolts, nuts, washers, and marker panels), tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing maintaining the ADIEM type crash cushion, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.99 CRASH CUSHION (REACT)

Crash cushion (REACT) shall be furnished and installed as shown on the plans and in conformance with the provisions in the Standard Specifications and these special provisions.

Crash cushion (REACT) shall be a multiple recoverable type, manufactured by Energy Absorption Systems, Inc. Crash cushion (REACT) and additional components shall conform to the descriptions as follows:

Contract Item Description	Manufacturer's Product Description			
Crash Cushion (REACT 9CBB)	REACT 350.9 Concrete Side Mount			

The successful bidder can obtain from the following distributors the crash cushion (REACT) manufactured by Energy Absorption Systems, Inc. at 35 East Wacker Drive, Suite 1100, Chicago, IL 60601:

- 1. Northern California: Traffic Control Service, Inc., 8585 Thys Court, Sacramento, CA 95828, telephone (800) 884-8274, FAX (916) 387-9734
- 2. Southern California: Traffic Control Service, Inc., 1818 E. Orangethorpe, Fullerton, CA 92831-5324, telephone (800) 222-8274, FAX (714) 526-9501

The price quoted by the manufacturer for Crash Cushion (REACT 9CBB), FOB Pell City, Alabama is \$34,365.00, not including sales tax.

The above prices will be firm for orders placed within 30 days of contract award, and provided delivery is accepted within 90 days after the order is placed.

The price quoted for crash cushion (REACT 9CBB) includes the concrete anchorage devices, but does not include the concrete anchor slab or the concrete backup block.

Crash cushion shall be installed in conformance with the manufacturer's recommendations.

Concrete anchorage devices used for attaching the crash cushion to the base slab shall be limited to those which have been provided by the manufacturer.

The concrete anchor slab and backup block shall conform to the provisions in Section 51, "Concrete Structures," and Section 52, "Reinforcement," of the Standard Specifications and these special provisions.

The concrete anchor slab and backup block shall be constructed of concrete containing not less than 590 pounds of cementitious material per cubic yard.

The Contractor shall furnish the Engineer one copy of the manufacturer's plan and parts list for each model installed.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that crash cushion conforms with the contract plans and specifications, and conforms to the prequalified design and material requirements.

Crash cushion will be measured by the unit as determined from actual count in place in the completed work.

The contract unit prices paid for crash cushion (REACT 9CBB) shall include full compensation for furnishing all labor, materials (including anchor bolts, nuts, washers, and marker panels), tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing the crash cushions, complete in place, including structure excavation, structure backfill, and concrete anchor slab and backup block with bar reinforcing steel, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

10-1.100 THERMOPLASTIC TRAFFIC STRIPE AND PAVEMENT MARKING

Thermoplastic traffic stripes (traffic lines) and pavement markings shall be applied in conformance with the provisions in Section 84, "Traffic Stripes and Pavement Markings," of the Standard Specifications and these special provisions.

For each batch of thermoplastic material for traffic stripes and pavement markings, the Contractor shall submit to the Engineer:

- 1. Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications
- 2. Department's Materials Engineering and Testing Services notification letter stating that the material is approved for use
- 3. Material Safety Data Sheet

Thermoplastic material shall be free of lead and chromium, and shall conform to the requirements in State Specification PTH-02ALKYD.

Within 14 days of applying a thermoplastic traffic stripe or pavement marking, the retroreflectivity of the traffic stripe or pavement marking shall be a minimum of 250 millicandelas per square meter per lux for white, and 150 millicandelas per square meter per lux for yellow. The Contractor shall test the retroreflectivity under ASTM E 1710.

Where striping joins existing striping, as shown on the plans, the Contractor shall begin and end the transition from the existing striping pattern into or from the new striping pattern a sufficient distance to ensure continuity of the striping pattern.

Thermoplastic traffic stripes shall be applied at the minimum thickness and application rate as specified below. The minimum application rate is based on a solid stripe of 4 inches in width.

Minimum	Minimum
Stripe Thickness	Application Rate
(inch)	(lb/ft)
0.098	0.34

Thermoplastic traffic stripes and pavement markings shall be free of runs, bubbles, craters, drag marks, stretch marks, and debris.

At the option of the Contractor, permanent traffic striping and pavement marking tape conforming to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions may be placed instead of the thermoplastic traffic stripes and pavement markings specified herein. Permanent tape, if used, shall be installed in conformance with the manufacturer's specifications.

If permanent tape is placed instead of thermoplastic traffic stripes and pavement markings, the tape will be measured and paid for by the linear foot as thermoplastic traffic stripe and by the square foot as thermoplastic pavement marking.

10-1.101 PAINT TRAFFIC STRIPE AND PAVEMENT MARKING

Painted traffic stripes (traffic lines) and pavement markings shall be applied in conformance with the provisions in Section 84, "Traffic Stripes and Pavement Markings," of the Standard Specifications and these special provisions. For each batch of paint for traffic stripes and pavement markings, the Contractor shall submit to the Engineer:

- 1. Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications
- 2. Department's Materials Engineering and Testing Services notification letter stating that the material is approved for use
- 3. Material Safety Data Sheet

Traffic stripe and pavement marking paint shall conform to the requirements in State Specification No. PTWB-01.

The color of the painted traffic stripes and pavement markings shall conform to the requirements in ASTM Designation: D 6628-01.

Within 14 days of applying a painted traffic stripe or painted pavement marking, the retroreflectivity of the traffic stripe or pavement marking shall be a minimum of 250 millicandelas per square meter per lux for white, and 150 millicandelas per square meter per lux for yellow. The Contractor shall test the retroreflectivity under ASTM E 1710.

At the option of the Contractor, permanent traffic striping and pavement marking tape conforming to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions may be placed

instead of painted traffic stripes and pavement markings. Permanent tape, if used, shall be placed in conformance with the manufacturer's specifications.

If permanent tape is placed instead of painted traffic stripes and pavement markings, the tape will be measured and paid for by the linear foot as paint traffic stripe and by the square foot as paint pavement marking of the number of coats designated in the Engineer's Estimate.

10-1.102 PAVEMENT MARKERS

Pavement markers shall be placed in conformance with the provisions in Section 85, "Pavement Markers," of the Standard Specifications and these special provisions.

Attention is directed to "Traffic Control System For Lane Closure" of these special provisions regarding the use of moving lane closures during placement of pavement markers with bituminous adhesive.

The Contractor shall furnish the Engineer certificates of compliance for the pavement markers in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

Retroreflective pavement markers shall be marked as abrasion resistant on the body of the markers.

SECTION 10-2 HIGHWAY PLANTING AND IRRIGATION SYSTEMS

10-2.01 **GENERAL**

The work performed in connection with highway planting and irrigation systems shall conform to the provisions in Section 20, "Erosion Control and Highway Planting," of the Standard Specifications and these special provisions.

The Contractor shall notify the Engineer not less than 72 hours prior to requiring initial access to the existing irrigation controllers. When the Engineer determines that access to the controllers is required at other times, arrangements will be made to provide this access.

When fluctuations of water pressure and water supply are encountered during normal working hours, plants shall be watered at other times, as often, and in sufficient amounts as conditions may require to keep the soil and plant roots moist during the life of the contract.

Full compensation for watering plants outside normal working hours shall be considered as included in the contract lump sum prices paid for highway planting and plant establishment work and no additional compensation will be allowed therefor.

PROGRESS INSPECTIONS

Progress inspections will be performed by the Engineer for completed highway planting and irrigation system work at designated stages during the life of the contract.

Progress inspections will not relieve the Contractor of responsibility for installation in conformance with the special provisions, plans and Standard Specifications. Work within an area shall not progress beyond each stage until the inspection has been completed, corrective work has been performed, and the work is approved, unless otherwise permitted by the Engineer.

The requirements for progress inspections will not preclude additional inspections of work by the Engineer at other times during the life of the contract.

The Contractor shall notify the Engineer, in writing, at least 4 working days prior to completion of the work for each stage of an area and shall allow a minimum of 3 working days for the inspection.

Progress inspections will be performed at the following stages of work:

- A. During pressure testing of the pipelines on the supply side of control valves.
- B. During testing of low voltage conductors.
- C. Before planting begins and after completion of the work specified for planting in Section 20-4.03, "Preparing Planting Areas," of the Standard Specifications.
- D. Before plant establishment work begins and after completion of the work specified for planting in Section 20-4.05, "Planting," of the Standard Specifications.
- E. At intervals of one month during the plant establishment period.

COST BREAK-DOWN

The Contractor shall furnish the Engineer a cost break-down for the contract lump sum items of highway planting and irrigation system. Cost break-down tables shall be submitted to the Engineer for approval within 30 working days after the contract has been approved. Cost break-down tables will be approved, in writing, by the Engineer before any partial payment will be made for the applicable items of highway planting and irrigation system involved.

Attention is directed to "Time-Related Overhead" of these special provisions regarding compensation for time-related overhead.

Cost break-downs shall be completed and furnished in the format shown in the samples of the cost break-downs included in this section. Line item descriptions of work shown in the samples are the minimum to be submitted. Additional line item descriptions of work may be designated by the Contractor. If the Contractor elects to designate additional line item descriptions of work, the quantity, value and amount for those line items shall be completed in the same manner as for the unit descriptions shown in the samples. The line items and quantities given in the samples are to show the manner of preparing the cost break-downs to be furnished by the Contractor.

The Contractor shall determine the quantities required to complete the work shown on the plans. The quantities and their values shall be included in the cost break-downs submitted to the Engineer for approval. The Contractor shall be responsible for the accuracy of the quantities and values used in the cost break-downs submitted for approval.

The sum of the amounts for the line items of work listed in each cost break-down table for highway planting and for irrigation system work shall be equal to the contract lump sum price bid for Highway Planting and Irrigation System, respectively. Overhead and profit, except for time-related overhead, shall be included in each individual line item of work listed in a cost break-down table.

No adjustment in compensation will be made in the contract lump sum prices paid for highway planting and irrigation system due to differences between the quantities shown in the cost break-downs furnished by the Contractor and the quantities required to complete the work as shown on the plans and as specified in these special provisions.

Individual line item values in the approved cost break-down tables will be used to determine partial payments during the progress of the work and as the basis for calculating an adjustment in compensation for the contract lump sum items of highway planting and irrigation system due to changes in line items of work ordered by the Engineer. When the total of ordered changes to line items of work increases or decreases the lump sum price bid for either Highway Planting or Irrigation System by more than 25 percent, the adjustment in compensation for the applicable lump sum item will be determined in the same manner specified for increases and decreases in the total pay quantity of an item of work in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications.

HIGHWAY PLANTING COST BREAK-DOWN

Contract No. 12-0E3104

		APPROXIMATE		
UNIT DESCRIPTION	UNIT	QUANTITY	VALUE	AMOUNT
ROADSIDE CLEARING	LS	LUMP SUM		
PLANT (GROUP A), 1 GAL.	EA	860		
<i>'''</i>				
PLANT (GROUP B), 5 GAL.	EA	19		
PLANT (GROUP T), TURF (SOD)	SQYD	1360		
TEMINI (GROCT 1), TOTA (GGE)	SQID	1300		
MULCH	CY	144		
Medell		111		
COMMERCIAL FERTILIZER	LB	492		
COMMERCIAL I ERTILIZER	LD	7)2		
SOIL AMENDMENT	CY	13.2		
SOIL AMENDMENT	CI	13.2		
CULTIVATE	SQYD	1360		
COLITYATE	SQID	1300		

TOTAL	ſ			
1 (<i>)</i> 1 A 1				

IRRIGATION SYSTEM COST BREAK-DOWN

Contract No. 12-0E3104

	<u> </u>	APPROXIMATE		I
UNIT DESCRIPTION	UNIT	QUANTITY	VALUE	AMOUNT
36 STATION CONTROLLER	EA	2		
16 STATION CONTROLLER	EA	1		
2" BACKFLOW PREVENTER ASSEMBLY	EA	1		
BACKFLOW PREVENTER ASSEMBLY ENCLOSURE	EA	1		
2" FLOW SENSOR	EA	1		
CONTROL AND NEUTRAL CONDUCTORS	LS	LUMP SUM		
1 1/2" ELECTRICAL REMOTE CONTROL VALVE	EA	24		
2" ELECTRICAL REMOTE CONTROL VALVE	EA	34		
2" GATE VALVE	EA	2		
3" GATE VALVE	EA	7		
1 1/2" BALL VALVE	EA	6		
2" BALL VALVE	EA	13		
3/4" QUICK COUPLING VALVE	EA	6		
1 1/2" FILTER ASSEMBLY UNIT	EA	9		
3/4" PLASTIC PIPE (SCHEDULE 40)	LF	3390		
1" PLASTIC PIPE (SCHEDULE 40)	LF	1120		
1 1/4" PLASTIC PIPE (SCHEDULE 40)	LF	1390		
1 1/2" PLASTIC PIPE (SCHEDULE 40)	LF	650		
2" PLASTIC PIPE (SCHEDULE 40)	LF	820		
3" PVC PIPE PR315	LF	6400		
SPRINKLER (TYPE A-1)	EA	47		
SPRINKLER (TYPE A-2)	EA	2		
SPRINKLER (TYPE A-3)	EA	10		
SPRINKLER (TYPE A-5)	EA	17		
SPRINKLER (TYPE A-6)	EA	13		

		APPROXIMATE		
UNIT DESCRIPTION	UNIT	QUANTITY	VALUE	AMOUNT
		4.4		
SPRINKLER (TYPE A-7)	EA	11		
SPRINKLER (TYPE A-8)	EA	8		
SPRINKLER (TYPE B-1)	EA	8		
SPRINKLER (TYPE B-2)	EA	5		
SPRINKLER (TYPE B-3)	EA	14		
SPRINKLER (TYPE B-4)	EA	47		
SPRINKLER (TYPE B-5)	EA	46		
SPRINKLER (TYPE B-6)	EA	28		
SPRINKLER (TYPE B-7)	EA	21		
SPRINKLER (TYPE C-3)	EA	19		
RECYCLED WATER WARNING SIGNS	LS	LUMP SUM		

TOTAL		

10-2.02 EXISTING HIGHWAY PLANTING

In addition to the provisions in Section 20, "Erosion Control and Highway Planting," of the Standard Specifications, work performed in connection with existing highway planting shall conform to the provisions in "Existing Highway Facilities," of these special provisions.

MAINTAIN EXISTING PLANTED AREAS

Existing planted areas, designated on the plans to be maintained, shall be maintained throughout the life of the contract in conformance with these special provisions.

Existing plants shall be watered in conformance with the provisions in Section 20-4.06, "Watering," of the Standard Specifications.

Existing planted areas to be maintained shall be inspected for deficiencies by the Contractor in the presence of the Engineer. Deficiencies requiring corrective action shall include weeds; dead, diseased, or unhealthy plants; missing plant stakes and tree ties; inadequate plant basins; and other deficiencies needing corrective action to promote healthy plant life. The inspection shall be completed within 15 days after the start of work.

Deficiencies found during the inspection shall be corrected within 15 days after the inspection ends. Correction of deficiencies, as directed by the Engineer, will be paid for as extra work in conformance with the provisions in Section 4-1.03D, "Extra Work," of the Standard Specifications.

After deficiencies have been corrected, the Contractor shall perform work to maintain existing planted areas in a neat appearance and to promote healthy plant growth. The work shall include the following:

- A. Weeds shall be killed before the weeds reach the seed stage of growth or exceed 6 inches in length.
- B. Weeds shall be removed from existing planted areas. Weeds shall be killed prior to removal. Weed removal in ground cover areas shall extend beyond the outer limits of ground cover areas to the adjacent edges of paving, fences and proposed plants and planting areas, and a 6-foot diameter area centered at each existing tree and shrub outside of existing ground cover areas.
- C. When a portion of a new automatic irrigation system is completed, the existing plants to be watered by that portion of the irrigation system shall be watered automatically.

The contract lump sum price paid for maintain existing planted areas shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in maintain existing planted areas, complete in place, as shown on the plans, as specified in the standard specifications and these special provisions, and as directed by the Engineer.

10-2.03 EXISTING HIGHWAY IRRIGATION FACILITIES

The work performed in connection with the various existing highway irrigation system facilities shall conform to the provisions in "Existing Highway Facilities," of these special provisions.

Water shall be maintained in conformance with the provisions in Section 20-5.025, "Maintain Existing Water Supply," of the Standard Specifications.

CHECK AND TEST EXISTING IRRIGATION FACILITIES

Existing irrigation facilities that are to remain or to be relocated, and that are within those areas where clearing and grubbing or earthwork operations are to be performed, shall be checked for missing or damaged components and proper operation prior to performing clearing and grubbing or earthwork operations. Existing irrigation facilities outside of work areas that are affected by the construction work shall also be checked for proper operation.

A written list of existing irrigation system deficiencies shall be submitted to the Engineer within 5 working days after checking the existing facilities.

Deficiencies found during checking of the existing facilities shall be corrected as directed by the Engineer. Corrective work ordered by the Engineer will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

REMOVE EXISTING IRRIGATION FACILITIES

Existing irrigation facilities where shown on the plans to be removed, shall be removed. Facilities that are more than 6 inches below finished grade, excluding facilities to be salvaged, may be abandoned in place.

Immediately after disconnecting an existing irrigation facility to be removed or abandoned from an existing facility to remain, the remaining facility shall be capped or plugged, or shall be connected to a new or existing irrigation facility.

Existing controller and controller enclosure cabinet, where shown on the plans to be removed, shall be salvaged. The Engineer shall be given written notification of the intent to salvage existing irrigation facilities a minimum of 72 hours prior to salvaging these facilities.

Salvaged irrigation facilities shall remain the property of the State and shall be delivered to Caltrans San Juan Capistrano maintenance yard.

A list of salvaged facilities, including the quantity and size of each item salvaged, shall be included with each delivery.

Facilities to be removed, excluding facilities to be salvaged, shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

10-2.04 HIGHWAY PLANTING

The work performed in connection with highway planting shall conform to the provisions in Section 20-4, "Highway Planting," of the Standard Specifications and these special provisions.

HIGHWAY PLANTING MATERIALS

Mulch

Mulch must consist of either wood chips or tree bark or a combination of both.

Commercial Fertilizer (Slow Release)

Commercial fertilizer (slow release) shall be a pelleted or granular form, shall be slow or controlled release with a nutrient release over an 8-month to 12-month period, and shall fall within the following guaranteed chemical analysis range:

Ingredient	Percentage
Nitrogen	16-21
Phosphoric Acid	6-8
Water Soluble Potash	4-10

ROADSIDE CLEARING

Before preparing planting areas and erosion control (compost blanket) areas, or commencing irrigation trenching operations for planting areas, trash and debris shall be removed from these areas as required under Construction Site Management of these special provisions.

The project area shall be cleared as specified herein:

- A. Existing plants, where shown on the plans to be removed, shall be removed.
- B. At the option of the Contractor, removed trees and shrubs may be reduced to chips. Chipped material shall be spread within the project limits at locations designated by the Engineer. Chipped material shall not be substituted for mulch, nor shall the chipped material be placed within areas to receive mulch.
- C. Weeds shall be killed and removed within proposed ground cover areas and within the area extending beyond the outer limits of the proposed ground cover areas to the adjacent edges of shoulders, dikes, curbs, sidewalks, walls, existing planting and fences. At those locations where proposed ground cover areas are 12 feet or more from the adjacent edges of shoulders, dikes, curbs, sidewalks, walls, and fences, the clearing limit shall be 6 feet beyond the outer limits of the proposed ground cover areas.
- D. Weeds shall be killed and removed from within areas where asphalt concrete surfacing, portland cement concrete surfacing, rock blankets, graveled or decomposed granite areas are to be placed, and from within unpaved gore areas between the edge of pavement and planting areas as shown on the highway planting plans.
- E. Roadside clearing for erosion control (compost blanket) areas shall also consist of mowing weeds in the areas to be seeded until the start of the wild flower seeding operation.
- F. Disposal of weeds killed during the initial roadside clearing will not be required, unless otherwise directed by the Engineer. When directed by the Engineer, killed weeds shall be disposed of and the disposal will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications.

After the initial roadside clearing is complete, additional roadside clearing work shall be performed as necessary to maintain the areas, as specified above, in a neat appearance until the start of the plant establishment period. This work shall include the following:

- A. Trash and debris shall be removed.
- B. Rodents shall be controlled.
- C. Weed growth shall be killed before the weeds reach the seed stage of growth or exceed 6 inches in length, whichever occurs first.
- D. Weeds in plant basins, including basin walls, shall be removed by hand pulling, after the plants have been planted.

Weed Control

Weed control shall also conform to the following:

- A. Stolon type weeds shall be killed with glyphosate.
- B. Tumbleweeds shall be removed by hand pulling before the tumbleweeds reach a height of 6 inches.
- C. Removed weeds and ground cover shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.
- D. At the option of the Contractor, weed growth in mowed areas may be controlled by growth regulators. Growth regulators shall be applied before weeds exceed 12 inches in height.
- E. Areas to be mowed shall be mowed when weed height exceeds 12 inches. Weeds shall be mowed to a height of 2 inches to 6 inches.

Roadside clearing work shall not include work required to be performed as clearing and grubbing as specified in Section 16, "Clearing and Grubbing," of the Standard Specifications.

PESTICIDES

Pesticides used to control weeds shall conform to the provisions in Section 20-4.026, "Pesticides," of the Standard Specifications. Except as otherwise provided in these special provisions, pesticide use shall be limited to the following materials:

Diquat

Fluazifop-P-Butyl

Glyphosate

Imazapyr

Isoxaben (Preemergent)

Oryzalin (Preemergent)

Oxyfluorfen (Non-odor type)

Pendimethalin (Preemergent)

Prodiamine (Preemergent)

Sethoxydim

A granular preemergent may be used when applied to areas that will be covered with mulch, excluding plant basins. Granular preemergent shall be limited to the following material:

Oxadiazon

Granular preemergent shall be applied prior to the application of mulch. Mulch applications shall be completed in these areas on the same working day.

Glyphosate shall be used to kill stolon type weeds.

Prior to the application of preemergents, ground cover plants shall have been planted a minimum of 3 days and shall have been thoroughly watered.

A minimum of 100 days shall elapse between applications of preemergents.

Except for ground cover plants, preemergents shall not be applied within 18 inches of plants or within wild flower seeding areas.

If the Contractor elects to request the use of other pesticides on this project, the request shall be submitted, in writing, to the Engineer not less than 15 days prior to the intended use of the other pesticides. Except for the pesticides listed in these special provisions, no pesticides shall be used or applied without prior written approval of the Engineer.

Pesticides shall not be applied within the limits of the plant basins. Pesticides shall not be applied in a manner that allows the pesticides to come in contact with the foliage and woody parts of the plants.

PREPARING PLANTING AREAS

Plants adjacent to drainage ditches shall be located so that after construction of the basins, no portion of the basin walls shall be less than the minimum distance shown on the plans for each plant involved.

CULTIVATE

Areas to be planted with SOD shall be cultivated.

After cultivation is complete and the irrigation systems have been installed and the plant holes have been excavated and backfilled, no further planting work shall be done in the cultivated areas for a period of 30 days, except the soil shall be kept sufficiently moist to germinate weeds. Weeds that germinate shall be killed.

PLANTING

Backfill material for plant holes must be a mixture of soil amendment. The quantity of soil amendment shall be as shown on the Plant List. Thoroughly mix backfill material and uniformly distribute throughout the entire depth of the plant hole without clods and lumps.

Apply or place commercial fertilizer (slow release) at the time of planting and at the rates shown on the Plant List.

A granular preemergent must be applied to areas to be covered with mulch outside of plant basins.

Mulch placed in areas outside of plant basins shall be spread to a uniform depth.

Spread mulch from the outside of the proposed plant basin to the adjacent edges of shoulders, dikes, curbs, sidewalks, walls, fences, and existing plantings. If the proposed plant material is 12 feet or more from the adjacent edges of shoulders, dikes, curbs, sidewalks, walls, fences, and other existing plantings, the mulch must be spread 6 feet beyond the outside edge of the proposed plant basins.

Do not place mulch within 4 feet of the centerline of earthen drainage ditches, within 4 feet of the edge of paved ditches, and within 4 feet of the centerline of drainage flow lines.

Attention is directed to "Irrigation Systems Functional Test" of these special provisions regarding functional tests of the irrigation systems. Do not perform planting in an area until the functional test has been completed for the irrigation system serving that area.

TURF (SOD)

Turf (sod) shall be placed on the areas shown on the plans as "Turf."

Sod shall be a mixture of Nassella pulchra, Festuca rubra 'Molate', Hordeum californicum, Hordeum brachyantherum varieties, in proportions of 39%, 36%, 13% and 12% and shall be healthy field grown sod containing not more than 1/2 inch thick thatch. The age of the sod shall be not less than 8 months or more than 16 months.

Sod shall be grown in conformance with California agricultural codes. The sod shall be free from disease, weeds, insects, and nondesirable types of grasses and clovers. Soil upon which the sod has been grown shall contain less than 50 percent silt and clay.

Sod shall be machine cut at a uniform soil thickness of 5/8 inch ± 1/4 inch, not including top growth and thatch.

A Certificate of Compliance for the sod shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

Sod shall be protected with tarps or other protective covers during delivery and shall not be allowed to dry out during delivery or prior to placement.

Areas to be planted to sod shall be cultivated in conformance with the provisions in "Cultivate" of these special provisions.

Weeds and debris shall be removed before cultivation and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Commercial fertilizer shall be applied at the rates shown on the plans and in conformance with the provisions in "Cultivate" of these special provisions.

After cultivation, installation of irrigation systems, and excavation and backfilling of plant holes are completed, areas to be planted to sod shall be fine graded and rolled. Areas to be planted to sod shall be graded to drain and shall be smooth and uniform prior to placing sod. Areas to be planted to sod adjacent to sidewalks, concrete headers, header boards, and other paved borders and surfaced areas shall be 1-1/2 inches $\pm 1/4$ inch below the top grade of the facilities, after fine grading, rolling, and settlement of the soil.

Sod shall be placed so that the ends of adjacent strips of sod are staggered a minimum of 2 feet. Edges and ends of sod shall be placed firmly against adjacent sod and against sidewalks, concrete headers, header boards, and other paved borders and surfaced areas.

After placement of the sod, the entire sodded area shall be lightly rolled to eliminate air pockets and to ensure close contact with the soil. After rolling, the sodded areas shall be watered so that the soil is moistened to a minimum depth of 4 inches. Sod shall not be allowed to dry out.

If irregular or uneven areas appear before or during the plant establishment period, these areas shall be restored to a smooth and even appearance.

When the turf (sod) has reached a height of 12 inches the turf shall be mowed to a height of 6 inches. Turf (sod) edges, including edges adjacent to sidewalks, concrete headers, header boards, and other paved borders and surfaced areas, shall be trimmed to a uniform edge not extending beyond the edge of turf or the facilities. Mowed and trimmed growth shall be removed and disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Trimming shall be repeated whenever the edge of turf exceeds one inch.

Mowing and trimming turf (sod) and disposing of mowed material, during the plant establishment period, will be paid for in conformance with the provisions in "Plant Establishment Work" of these special provisions.

PLANT ESTABLISHMENT WORK

The plant establishment period shall be Type 2 and shall not be less than 250 working days.

Attention is directed to "Relief From Maintenance and Responsibility" in these special provisions regarding relief from maintenance and protection.

Commercial fertilizer (slow release) shall be applied to trees, shrubs, vines and ground cover during the first week of March and July of each year. Commercial fertilizer shall be applied at the rates shown on the plans and shall be spread with a mechanical spreader wherever possible.

The center to center spacing of replacement plants for unsuitable ground cover plants shall be determined by the number of completed plant establishment working days at the time of replacement and the original spacing in conformance with the following:

ORIGINAL SPACING	SPACING OF REPLACEMENT GROUND COVER PLANTS			
(Inches)	(Inches)			
	Number of Completed Plant Establishment Working Days			
	1-125 126-190 191-End of Plant			
			Establishment	
9	9	6	6	
12	12	9	6	
18	18	12	9	
24	24	18	12	
36	36	24	18	

During the plant establishment period, the plants shall be watered utilizing the Remote Irrigation Control System (RICS) software program. A watering schedule shall be submitted to the Engineer for use during the plant establishment period.

Weeds within plant basins, including basin walls and ground cover, shall be controlled by hand pulling.

Weeds within mulched and ground cover areas and outside of plant basins shall be controlled by killing.

Weeds outside of mulched areas, plant basins, ground cover, the median, and paved areas shall be controlled by mowing. At locations where proposed planting areas are 12 feet or more from the edges of existing plantings to remain and from shoulders, dikes, curbs, sidewalks, fences, and walls, the mowing limit shall be 6 feet beyond the outer limits of the proposed planting area.

Weeds within median areas, pavement, curbs, sidewalk, and other surfaced areas shall be controlled by killing.

Except as specified in these special provisions, disposal of mowed material will not be required unless ordered by the Engineer. Disposal of mowed material, as directed by the Engineer, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

At the option of the Contractor, plants of a larger container size than those originally specified may be used for replacement plants during the first 125 working days of the plant establishment period.

After 125 working days of the plant establishment period have been completed, replacement of plants, except for ground cover plants, shall be one-gallon size for seedlings, pot and liner size plants; 5-gallon size for one-gallon size plants; 15-gallon size for 5-gallon size plants; and other plant replacement plants shall be the same size as originally specified.

When ordered by the Engineer, one application of a preemergent pesticide conforming to the provisions in "Pesticides" of these special provisions, shall be applied between 40 working days and 50 working days prior to completion of the plant establishment period. This work will be paid for as extra work as provided in Section 4-1.03D,"Extra Work," of the Standard Specifications.

Wye strainers shall be cleaned at least 15 days prior to the completion of the plant establishment period.

Previously installed filters shall be removed, cleaned and reinstalled at least 15 days prior to the completion of the plant establishment period.

The final inspection shall be performed in conformance with the provisions in Section 5-1.13, "Final Inspection," of the Standard Specifications and shall be completed a minimum of 20 working days before the estimated completion of the contract.

Turf areas shall be moved in conformance with the provisions in "Turf (Sod)" of these special provisions.

Full compensation for mowing and trimming turf (sod) and disposing of mowed and trimmed material during the plant establishment period shall be considered as included in the contract lump sum price paid for plant establishment work and no additional compensation will be allowed therefor.

10-2.05 IRRIGATION SYSTEMS

Irrigation systems shall be furnished and installed in conformance with the provisions in Section 20-5, "Irrigation Systems," of the Standard Specifications, except materials containing asbestos fibers shall not be used.

Method A pressure testing shall conform to the provisions in Section 20-5.03H(1), "Method A", of the Standard Specifications, except leaks that develop in the tested portion of the system shall be located and repaired after each test period when a drop of more than 5 pounds per square inch is indicated by the pressure gage. After the leaks have been repaired, the one hour pressure test shall be repeated and additional repairs made until the drop in pressure is 5 pounds per square inch or less.

Only pipeline trenches and excavation pits for supply lines being supplied from one water service point shall be open at one time. After pressure testing is complete, trenches and pits excavated for pipe supply lines, being supplied from one water service point, shall be backfilled prior to commencing excavations for pipe supply lines being supplied from another water service point.

VALVE BOXES

Valve boxes shall conform to the provisions in Section 20-2.24, "Valve Boxes," of the Standard Specifications, except as otherwise provided herein.

Valve boxes shall be precast portland cement concrete.

Covers for concrete valve boxes shall be cast iron or steel. Cast iron and steel covers shall be hinged with brass hinge pins for valve boxes containing valves smaller than 2 inches.

Valve boxes shall be identified on the top surface of the covers by labels containing the appropriate abbreviation for the irrigation facility contained in the valve box as shown on the plans. Valve boxes that contain remote control valves shall be identified by the appropriate letters and numbers (controller and station numbers). Labels for valve boxes shall conform to the provisions in Section 20-5.03F, "Valves and Valve Boxes," of the Standard Specifications.

Label material shall be polyurethane.

BALL VALVES

Ball valves shall be furnished and installed as shown on the plans and in conformance with these special provisions.

Ball valves shall be manufactured from Chlorinated Polyvinyl Chloride (CPVC) or polyvinyl chloride (PVC) and shall conform to the following:

Specification	Minimum Requirement
Non-shock cold water working pressure	235 psi
for 3/4-inch to 4-inch valves	
Non-shock cold water working pressure	150 psi
for 6-inch valves	
Seats	PTFE (Teflon)
O-Ring Seals	EPDM or Viton

Ball valves shall be of the same size as the pipeline which the valves serve, unless otherwise noted on the plans. Ball valves shall be installed in a valve box.

GATE VALVES

Gate valves shall be as shown on the plans and in conformance with the provisions in Section 20-2.28, "Gate Valves," of the Standard Specifications and these special provisions.

Gate valves, smaller than 3 inches in size, shall be furnished with a cross-handle.

Gate valves, 3 inches and larger in size, shall be furnished with a square nut and 3 long shank keys that will operate the valve.

Gate valves shall have a solid bronze or brass wedge.

ELECTRIC AUTOMATIC IRRIGATION COMPONENTS

The base station for the existing remote controlled irrigation system is located at the Department of Transportation's District Maintenance 32941 Camino Capistrano, San Juan Capistrano, CA 92675 (949) 661-2226.

Irrigation Controllers

The irrigation controllers 'A' and 'B' shall be RICS compatible Weathermatic Controller model AS12-VAC36-VPSMF-VCDMA-RPC36, 36 station controller assembly which is compatible with master valve, pump start, flow sensor modules, Varizon CDMA wireless modem and Remote Valve Actuator. All components shall be factory installed and warranted to a period of 5 years from date of installation.

The price quote for each controller including stainless enclosure is \$9,496.23.

Arrangements have been made to insure that any successful bidder can obtain the specified equipments listed above from Aqua-Flo Supply, The address is 250 Grand Cypress Ave., Suite 604, Palmdale, CA 93551. The contact telephone number is (661) 273-5820. The price includes delivery but does not include sales tax and is guaranteed by Aqua-Flo Supply until December 31, 2012:

The irrigation controller 'S' shall be Rainmaster model GT EAGLE PLUS-16 station with PMX (PROMAX) remote communication. All components shall be factory installed and warranted to a period of 5 years from date of installation.

The price quote for this controller including stainless steel enclosure cabinet is \$8565.

Arrangements have been made to insure that any successful bidder can obtain the specified equipments listed above from John Deere Landscapes, Green Tech Divison#342, The address is 3 Chrysler Unit 100, Irvine, CA 92618-2009. The contact person and telephone number is Joh Ross (714) 585-9352. The e-mail address is jross@johndeeregreentech.com. The price does not include sales tax. The price is guaranteed until December 31, 2012.

Attention is directed to the provisions in "Electric Service (Irrigation)" of these special provisions regarding electrical power for irrigation controllers and irrigation controller enclosure cabinets.

Electric Remote Control Valves

Electric remote control valves shall conform to the provisions in Section 20-2.23, "Control Valves," of the Standard Specifications and the following:

- A. Valves shall be glass filled nylon, brass or bronze construction.
- B. Valves shall be angle pattern (bottom inlet) or straight pattern (side inlet) as shown on the plans.

Pull Boxes

Pull box installations shall conform to the provisions in Section 20-5.027I, "Conductors, Electrical Conduits and Pull Boxes," of the Standard Specifications.

Conductors

Low voltage, as used in this section "Conductors," shall mean 36 V or less.

Low voltage control and neutral conductors in pull boxes and valve boxes, at irrigation controller terminals, and at splices shall be marked as follows:

- A. Conductor terminations and splices shall be marked with adhesive backed paper markers or adhesive cloth wrap-around markers, with clear, heat-shrinkable sleeves sealed over the markers.
- B. Non-spliced conductors in pull boxes and valve boxes shall be marked with clip-on, "C" shaped, white extruded polyvinyl chloride sleeves. Marker sleeves shall have black, indented legends of uniform depth with transparent overlays over the legends and "chevron" cuts for alignment of 2 or more sleeves.

Markers for the control conductors shall be identified with the appropriate number or letter designations of irrigation controllers and station numbers. Markers for neutral conductors shall be identified with the appropriate number or letter designations of the irrigation controllers.

New control and neutral conductors that are to replace existing control and neutral conductors shall be the same size and color as the existing control and neutral conductors being connected to.

The color of low voltage neutral and control conductor insulation, except for the striped portions, shall be homogeneous throughout the entire thickness of the insulation.

Insulation for conductors may be UL listed polyethylene conforming to UL44 test standards with a minimum insulation thickness of 41 mils for wire sizes 10AWG and smaller.

Relief from maintenance and responsibility for electric automatic irrigation components will be granted in conformance with "Relief from Maintenance and Responsibility" of these special provisions. Before the Engineer grants relief from maintenance and responsibility, the functional test specified in Section 20-5.027J, "Testing," of the Standard Specifications shall be satisfactorily completed, and the manufacturer's written instructions shall be provided to the Engineer on the use and adjustment of the installed irrigation controllers.

IRRIGATION CONTROLLER ENCLOSURE CABINET

Irrigation controller enclosure cabinets shall be constructed and equipment installed in the cabinets in conformance with the details shown on the plans, the provisions of Section 86-3.04A, "Cabinet Construction," of the Standard Specifications, and these special provisions.

Electric service shall be installed in accordance with "Electric Service (Irrigation)" of these special provisions.

Irrigation controller enclosure cabinets shall be provided with cross ventilation, roof ventilation or a combination of both. The ventilation shall not compromise the weather resistance properties of the irrigation controller enclosure cabinets and shall be fabricated by the manufacturer.

The anchorage arrangement shall be inside the cabinet as shown on the plans. Dimensions of the cabinet shall be suitable for the equipment to be installed as shown on the plans and specified in these special provisions.

Irrigation controller enclosure cabinets shall be fabricated in conformance with the provisions in Section 86-3.04A, "Cabinet Construction," of the Standard Specifications.

Irrigation controller enclosure cabinets shall be stainless steel.

Irrigation controller enclosure cabinet doors shall not be furnished with integral door locks. Irrigation controller enclosure cabinet door handles shall have provisions for padlocking in the latched position. Padlocks will be furnished by the Engineer.

Mounting panels shall be fabricated of stainless steel metal sheets with a minimum thickness of 0.157 inch. Inside of the doors shall have provisions for storage of the irrigation plans.

Solid-state automatic shut-off rain sensor units shall be installed for the irrigation controller enclosure cabinets. Rain sensor units shall automatically interrupt the master remote control valves when approximately 1/8 inch of rain has fallen. The irrigation system shall automatically be enabled again when the accumulated rainfall evaporates from the rain sensor unit collection cup. Rain sensor units shall be rated 24 V (ac) to 30 V (ac). Static charge protection shall be included to protect against lightning damage.

Equipment, except for field wiring, shall be installed in the cabinet in a shop by the equipment manufacturer's representative or distributor prior to field installation.

IRRIGATION SYSTEMS FUNCTIONAL TEST

Functional tests for the remote irrigation controller system (RICS) and associated automatic irrigation systems shall conform to the provisions in Section 20-5.027J, "Testing," of the Standard Specifications and these special provisions.

Two functional tests shall be performed, one without and one with connection to the remote irrigation controller system base station. Both tests shall consist of demonstrating to the Engineer, through one complete cycle of the irrigation controllers in the automatic mode, that the associated automatic components of the irrigation systems operate properly.

The Contractor shall notify the Engineer not less than 2 weeks prior to starting the functional tests for the remote irrigation control system.

The existing remote irrigation controller system base station is located at Department of Transportation's District Maintenance Yard 32941 Camino Capistrano, San Juan Capistrano, CA 92675 Telephone: (949) 661-2226.

Associated automatic components for both tests shall include, but not limited to, new and existing remote control valve actuator systems, booster pump systems, irrigation controllers, remote control valves, conductors, flow sensors, and rain sensors. Associated automatic components for the second test shall include, but not be limited to, existing irrigation software programs, cellular phone, and flow alarms for high, low, zero, and maximum mainline flows.

The first test shall be performed prior to planting the plants and shall consist of testing the irrigation controllers and associated automatic irrigation systems without connection to the remote irrigation controller system base station. Upon completion of a satisfactory functional test, and correction of the deficiencies, the plants to be planted in the areas watered by the irrigation system may be planted, provided the planting areas have been prepared as specified in these special provisions.

The second test shall be performed prior to the start of plant establishment and shall consist of testing the irrigation controllers (field units) and associated automatic irrigation systems with connection to the remote irrigation controller system base station. As part of the second test, a remote irrigation controller system watering schedule shall be submitted for each irrigation controller (field unit) to the Engineer. The Engineer will enter the watering schedule into the irrigation software program, and a computer printout will be made available to the Contractor for verification. If the Engineer determines the submitted watering schedule is unacceptable, a revised watering schedule shall be submitted to the Engineer for approval within 5 working days. Also as part of the second test, the Contractor shall demonstrate to the Engineer that the remote irrigation controller system base station detects and reports the high, low, zero, and maximum mainline flow alarms. Upon completion of a satisfactory test, including correction of deficiencies, the plant establishment period may begin, provided planting work as specified in these special provisions has been completed except for plant establishment work.

If existing and new automatic components of the irrigation systems, including remote irrigation controller system base station components, fail a functional test, the components shall be repaired. Repairs shall be at the Contractor's expense, except for repairs to an existing base station (personal computer, printer, mouse, keyboard, cables, and software) which will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Testing shall be repeated until satisfactory operation is obtained.

Repair or replacement of existing irrigation facilities due to unsatisfactory performance shall conform to the provisions in Section 20-5.025, "Maintain Existing Water Supply," of the Standard Specifications and "Existing Highway Irrigation Facilities" of these special provisions.

PIPE

Plastic Pipe

Plastic pipe supply lines must be polyvinyl chloride (PVC) schedule 40.

Plastic pipe supply lines and fittings that are 3 inches or larger in diameter on the supply side of control valves must be the rubber ring gasket type, except when pressure rating (PR) 315 plastic pipe supply line is required.

Plastic pipe supply lines less than 3 inches in diameter must have solvent cemented type joints. Primers must be used on the solvent cemented type joints.

Plastic pipe supply lines (main) must have a minimum cover of 1.5 feet.

Fittings for plastic pipe supply lines with a pressure rating (PR) of 315 must be Schedule 80.

Recycled Water Supply Lines

New and exposed recycled water supply lines shall be purple in color.

Purple colored polyvinyl chloride (PVC) supply lines shall be used for recycled water supply lines in place of standard PVC supply line. Purple colored PVC supply lines shall conform to the following:

- A. Pipe shall be made of PVC 1120 with the minimum pressure ratings (PR) shown on the plans.
- B. Pipe shall conform to the requirements in one of the following Standards: ASTM Designation: D 1785, ASTM Designation: D 3139 and ASTM Designation: D 2241 or ASTM Designation: D 2672.
- C. Pipe shall have permanent wording "CAUTION RECYCLED WATER" in 2 rows, approximately 180 degrees apart, in the longitudinal direction of the pipe. The warning message shall be repeated every 24 inches continuously along the pipe.

THRUST BLOCK

Thrust blocks shall be installed in accordance with these special provisions. Thrust blocks shall be installed on the main supply line at all changes in direction and terminus run.

WATER METER

Water meter for the irrigation systems will be furnished by the serving utility and installed by contractor at the locations shown on the plans.

The Contractor shall make the arrangements and pay the costs and fees required by the serving utility.

The City of San Juan Capistrano Water District has established a total fee of \$28,128.00 including preliminary processing, plan check, inspection and water capacity charge fees for furnishing a water meter. If this fee has been changed, the State will take a credit for the reduction in the fee, or the State will pay the difference for the increase in the fee. The credit or payment will be taken or paid on the first monthly progress payment made after the meter is installed. The Contractor shall furnish the Engineer with a copy of the invoice for the fee.

Installation of water meter should follow the standard plans and specification as shown in the website:

www.sanjuancapistrano.org/index.aspx?page=1309

Attention is directed to Section 20-4.06, "Watering," of the Standard Specifications. The Contractor shall make the arrangements for furnishing and applying water until the water meters have been installed.

The contract lump sum price paid for water meter shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing water meters, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

BACKFLOW PREVENTER ASSEMBLIES

Backflow preventers shall conform to the provisions in Section 20-2.25, "Backflow Preventers," of the Standard Specifications and these special provisions.

Backflow preventers shall have current approval from the University of Southern California Foundation for Cross-Connection Control and Hydraulic Research (USC Foundation).

Before backflow preventer assembly installation, the Contractor shall provide the Engineer with the portion of the USC Foundation "List of Approved Backflow Prevention Assemblies" showing type of assembly, manufacturer's name, model number, edition of the manual under which the assembly was approved, approval date and the last renewal date.

The "List of Approved Backflow Prevention Assemblies" is available to Foundation Members. Membership information to join the USC Foundation is available at:

http://www.usc.edu/dept/fccchr/membership.html

Questions concerning the USC Foundation "List of Approved Backflow Prevention Assemblies" can be answered by calling the Foundation at toll free (866) 545-6340.

Pressure loss through the backflow preventers shall not exceed the following:

BACKFLOW PREVENTER SIZE	FLOW RATE	PRESSURE LOSS
(Inches)	(Gallons Per Minute)	(PSI)
2"	50	6

BACKFLOW PREVENTER ASSEMBLY ENCLOSURE

Enclosures shall be fabricated of structural steel angles and flattened expanded metal and shall be installed over backflow preventer assemblies on a portland cement concrete pad as shown on the plans and in conformance with these special provisions.

Expanded metal for sides, ends and top panels shall be fabricated from 9-gage minimum thickness, sheet steel. The flattened expanded metal openings shall be approximately 3/4-inch x 1-3/4-inch in size.

Expanded metal panels shall be attached to the 3/16-inch thick steel angle frames by a series of welds, not less than 1/4-inch in length and spaced not more than 4-inches on center, along the edges of the enclosure.

Lock-guard shall be made of a minimum thickness of 3/16-inch cold rolled steel.

Padlocks will be furnished by the Engineer.

Enclosures shall be galvanized, after fabrication, in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications.

Hold down bolt assemblies shall be galvanized and shall be installed when the portland cement concrete pad is still plastic. Nuts shall be hexagonal and washers shall be the lock type.

Enclosures shall be painted by the manufacturer with one application of a commercial quality pre-treatment, vinyl wash primer and a minimum of one application of a commercial quality, exterior enamel for metal. The finish color shall be a tan to light brown closely matching Federal Standard No. 595B, Color No. 20450.

All parts of the backflow preventer assembly enclosure, including hold down assemblies, may be constructed of stainless steel instead of standard steel materials specified above. Stainless steel enclosures shall conform to the provisions herein except galvanizing, priming and painting shall not be required. Stainless steel enclosures shall be powder coated a dark green color closely matching Federal Standard 595B, Color No. 34066, by the manufacturer.

Lock-guard for stainless steel enclosures shall be 12-gage stainless steel, Type 304.

TESTING NEW BACKFLOW PREVENTERS

New backflow preventers shall be tested for proper operation in conformance with the provisions in Section 20-5.03J, "Check and Test Backflow Preventers," of the Standard Specifications and these special provisions.

Tests for new backflow preventers shall be satisfactorily completed after installation and before operation of the irrigation systems.

New backflow preventers shall be retested one year after the satisfactory completion of the previous test, and each year thereafter until the plant establishment period is completed. An additional test shall be provided not more than 10 days prior to acceptance of the contract.

SPRINKLERS

Sprinklers shall conform to the type, pattern, material, and operating characteristics listed in the "Sprinkler Schedule" shown on the plans.

RECYCLED WATER WARNING SIGNS

Recycled water warning signs shall be furnished and installed at the locations shown on the plans, as specified in these special provisions, and as directed by the Engineer. Recycled water warning signs shall be affixed to the above ground irrigation facilities that use or are associated with recycled water.

Warning sign decals shall be commercially available, and shall include the following information: "Recycled Water, Do Not Drink" and the "Do Not Drink" drinking glass graphic symbol. Warning sign decals shall be UV fade resistant, purple in color with black text, manufactured from a flexible, vinyl based or flexible, vinyl based with mylar product. Warning sign decals shall be all-weather, self-adhesive with peel-off backs.

Aluminum sign plates shall be 1/16 inch aluminum.

Warning tags shall be purple, doubled sided, manufactured from polyurethane, incorporating an integral neck attachment and attachment hole. The attachment hole shall be capable of withstanding 178 pounds of pull out resistance. Tag lettering shall be hot-stamped in black and capable of withstanding outdoor usage. Warning tags shall include the following information: "Recycled Water, Do Not Drink" and the "Do Not Drink" drinking glass graphic symbol.

Warning signs on above ground irrigation facilities shall be placed in visible locations.

Warning sign decals shall be applied directly to clean smooth surfaces. The smooth surfaces shall be cleaned with alcohol, or an equivalent cleaner, before applying the decals.

Warning sign decals shall be applied directly to irrigation facilities with smooth surfaces or affixed to aluminum sign plates, which shall be attached to the various above ground irrigation facilities.

Warning sign decals or warning sign decals on aluminum sign plates shall be permanently affixed to backflow preventers, valve boxes, nozzle lines, sprinkler risers, irrigation controller enclosure cabinets, and flow sensors, .

Warning sign decals approximately 2.5 inches x 3 inches shall be permanently affixed to sprinkler risers.

A 4 inch x 4 inch warning sign decal shall be permanently affixed to irrigation controller enclosure cabinet doors, irrigation controller enclosures not in cabinets, backflow preventer assemblies, backflow preventer assembly enclosures, and valve box covers. Decals for valve box covers shall be affixed to aluminum sign plates and the plates affixed to the valve box cover with a silicon base adhesive. Decals for cabinets may be affixed to aluminum sign plates and the plates attached with commercial quality, cadmium plated, non-removable, self-tapping screws or commercial quality, cadmium plated bolts, nuts and washers.

Warning tags approximately 2 inch x 2 inch shall be attached to the remote control valves, remote control valves (master), inside the valve box in accordance with the manufacturers recommendations.

Marking underground pipe for recycled water shall conform to the provisions in "Pipe" of these special provisions.

FILTER ASSEMBLY UNIT

A filter assembly unit shall consist of a filter housing, a reusable filter cartridge, a ball valve, fittings, pipe, and valve box as shown on the plans.

Filter assembly units shall withstand a cold water working pressure of 150 psi.

Pressure loss through the filter assembly units shall not exceed the following:

FILTER ELEMENT SIZE	MAX FLOW RATE	PRESSURE LOSS AT MAX FLOW
(inches)	(GPM)	(psi)
1 1/2"	80	6

Filter housings shall be manufactured of reinforced polypropylene plastic.

Filter cartridges shall be reusable stainless steel and shall be capable of 150 size mesh filtration.

Ball valves in filter assembly units shall be polyvinyl chloride (PVC). The ball seats shall be high molecular weight-high density polyethylene.

FINAL IRRIGATION SYSTEM CHECK

A final check of existing and new irrigation facilities shall be performed not more than 40 working days and not less than 30 working days prior to acceptance of the contract.

The length of watering cycles using potable water measured by water meters for the final check of irrigation facilities will be determined by the Engineer.

Remote control valves connected to existing and new irrigation controllers shall be checked for automatic performance when the controllers are in automatic mode.

Unsatisfactory performance of irrigation facilities installed or modified by the Contractor shall be repaired and rechecked at the Contractor's expense until satisfactory performance is obtained, as determined by the Engineer.

Repair or replacement of existing irrigation facilities due to unsatisfactory performance shall conform to the provisions in "Existing Highway Irrigation Facilities" of these special provisions.

Nothing in this section "Final Irrigation System Check" shall relieve the Contractor of full responsibility for making good or repairing defective work or materials found before the formal written acceptance of the entire contract by the Director.

Full compensation for checking the irrigation systems prior to the acceptance of the contract shall be considered as included in the contract lump sum price paid for plant establishment work and no additional compensation will be allowed therefor.

SECTION 10-3. ELECTRICAL SYSTEMS

10-3.01 DESCRIPTION

Signal and lighting, signal and lighting (remove), temporary signal and lighting, signal and lighting (City), temporary signal and lighting (City), ramp metering systems, ramp metering systems (remove), lighting and sign illumination, lighting (City Street), electric service (irrigation), electric service (irrigation) (City), communication system, communication system (temporary), closed circuit television system, closed circuit television system (City), lighting and sign illumination (temporary), flashing beacon (temporary), and maintaining existing traffic management system elements during construction shall conform to the provisions in Section 86, "Electrical Systems," of the Standard Specifications and these special provisions.

Lighting equipment is included in the following structures:

A. Ortega Highway Overcrossing (Bridge No. 55-1104)

Traffic signal work shall be performed at the following locations:

- A. Ortega Highway at Del Obispo Street
- B. Ortega Highway at Route 5 Southbound On-Off Ramps
- C. Ortega Highway at Route 5 Northbound On/Off-Ramp and Avenida Los Cerritos

10-3.02 COST BREAK-DOWN

Cost break-downs shall conform to the provisions in Section 86-1.03, "Cost Break-Down," of the Standard Specifications and these special provisions.

The Engineer shall be furnished a cost break-down for each contract lump sum item of work described in this Section 10-3.

The cost break-down shall be submitted to the Engineer for approval within 15 days after the contract has been approved. The cost break-down shall be approved, in writing, by the Engineer before any partial payment for the items of electrical work will be made.

The cost break-down shall include the following items in addition to those listed in the Standard Specifications:

- A. Batteries for Battery Backup System (BBS).
- B. Fiber optic cable.
- C. Splice vault.
- D. Fiber optic splice closure.
- E. Fiber distribution unit.
- F. Fiber optic data modem.
- G. Warning tape.
- H. Tracer wire.
- I. Video image vehicle detection system.
- J. City of San Juan Capistrano Battery Backup System (BBS).

10-3.03 MAINTAINING EXISTING AND TEMPORARY ELECTRICAL SYSTEMS

Traffic signal system shutdowns shall be limited to periods between the hours of 9 a.m. and 3 p.m.

10-3.04 MAINTAINING EXISTING TRAFFIC MANAGEMENT SYSTEM ELEMENTS DURING CONSTRUCTION

Traffic Management System (TMS) elements include, but are not limited to ramp metering (RM) system, communication system, traffic monitoring stations, video image vehicle detection system (VIVDS), microwave vehicle detection system (MVDS), loop detection system, changeable message sign (CMS) system, extinguishable message sign (EMS) system, highway advisory radio (HAR) system, closed circuit television (CCTV) camera system, roadway weather information system (RWIS), visibility sensor, and fiber optic system.

Existing TMS elements, including detection systems, identified on the plans and located within the project limits shall remain in place and be protected from damage. If the construction activities require existing TMS elements to be nonoperational or off line, and if temporary or portable TMS elements are not shown on the plans, the Contractor shall provide for temporary or portable TMS elements. The Contractor shall receive the Engineer's approval on the type of temporary or portable TMS elements and installation method.

Before work is performed, the Engineer, the Contractor, and the Department's Traffic Operations Electrical representatives shall jointly conduct a pre-construction operational status check of all existing TMS elements and each element's communication status with the Traffic Management Center (TMC), including existing TMS elements that are not shown on the plans and elements that may not be impacted by the Contractor's activities. The Department's Traffic Operations Electrical representatives will certify the TMS elements' location and status, and provide a copy of the certified list of the existing TMS elements within the project limits to the Contractor. The status list will include the operational, defined as having full functionality, and the nonoperational components.

The Contractor shall obtain written approval from the Engineer at least 72 hours before interrupting existing TMS elements' communication with the TMC that will result in the elements being nonoperational or off line. The Contractor shall notify the Engineer at least 72 hours before starting excavation activities.

Traffic monitoring stations and their associated communication systems, which were verified to be operational during the pre-construction operational status check, shall remain operational on freeway/highway mainline at all times, except:

- 1. For a duration of up to 15 days on any continuous segment of the freeway/highway longer than 3 miles
- 2. For a duration of up to 60 days on any continuous segment of the freeway/highway shorter than 3 miles

If the construction activities require existing detection systems to be nonoperational or off line for a longer time period or the spacing between traffic monitoring stations is more than the specified criteria above, and temporary or portable detection operations are not shown on the plans, the Contractor shall provide provisions for temporary or portable detection operations. The Contractor shall receive the Engineer's approval on the type of detection and installation before installing the temporary or portable detection.

If existing TMS elements shown on the plans or identified during the pre-construction operational status check, except traffic monitoring stations, are damaged or fail due to the Contractor's activity, where the elements are not fully functional, the Engineer shall be notified immediately. If the Contractor is notified by the Engineer that existing TMS elements have been damaged, have failed or are not fully functional due to the Contractor's activity, the damaged or failed TMS elements, excluding structure-related elements, shall be repaired or replaced, at the Contractor's expense, within 24 hours. For a structure-related elements, the Contractor shall install temporary or portable TMS elements within 24 hours. For nonstructure-related TMS elements, the Engineer may approve temporary or portable TMS elements for use during the construction activities.

If fiber optic cables are damaged due to the Contractor's activities, the Contractor shall install new fiber optic cables from an original splice point or termination to an original splice point or termination, unless otherwise authorized in writing by the Engineer. Fiber optic cable shall be spliced at the splice vaults if available. The amount of new fiber optic cable slack in splice vaults and the number of new fiber optic cable splices shall be equivalent to the amount of slack and number of splices existing before the damage or as directed by the Engineer. Fusion splicing will be required.

The Contractor shall demonstrate that repaired or replaced elements operate in a manner equal to or better than the replaced equipment or as directed by the Engineer. If the Contractor fails to perform required repairs or replacement work, as determined by the Engineer, the State may perform the repair or replacement work and the cost will be deducted from monies due to the Contractor.

A TMS element shall be considered nonoperational or off line for the duration of time that active communications with the TMC is disrupted, resulting in messages and commands not transmitted from or to the TMS element

The Contractor shall provide provisions for replacing existing TMS elements within the project limits, including detection systems, that were not identified on the plans or during the pre-construction operational status check that became damaged due to the Contractor's activities.

If the pre-construction operational status check identified existing TMS elements, then the Contractor, the Engineer, and the Department's Traffic Operations Electrical representatives shall jointly conduct a post construction operational status check of all existing TMS elements and each element's communication status with the TMC. The Department's Traffic Operations Electrical representatives will certify the TMS elements' status and provide a copy of the certified list of the existing TMS elements within the project limits to the Contractor. The status list will include the operational, defined as having full functionality, and the nonoperational components. TMS elements that cease to be functional between pre and post construction status checks shall be repaired at the Contractor's expense and as directed by the Engineer.

The Engineer will approve, in writing, the schedule for final replacement, the replacement methods and the replacement elements, including element types and installation methods before repair or replacement work is performed. The final TMS elements shall be new and of equal or better quality than the existing TMS elements.

COMMUNICATION SYSTEM CUTOVER DESCRIPTION

Communication system cutover is the orderly disconnection of the existing Traffic Management System (TMS) elements, and the connection, activation, integration and testing of the new Traffic Management System (TMS) elements.

Traffic Management System (TMS) elements include, but are not limited to telephone communication system, ramp metering (RM) system, traffic monitoring stations, loop detection system, changeable message sign (CMS) system, and closed circuit television (CCTV) camera system.

Communication system cutover consists of the following steps:

- 1. Verify connectivity and communications at all ramp meters, TMS, CCTV No. 84 in construction area, and between Data Node 8 (NB I-5 at El Camino Real) and Hub 3 (NB I-5 at Avery Parkway).
- 2. Install temporary communication system as shown on the plans.
- 3. Test for continuity from each end of temporary fiber optic cable to each field site.
- 4. Cutover to temporary communication systems, after disconnect the existing communication system.
- 5. Verify fiber test for continuity and functionality between Data Node 8 and Hub 3, and from CCTV No. 84, and field elements to hub/node using OTDR (bi-directional) and power meter and verify proper operation of all connected field sites.
- 6. Install new communication system as shown on the plans.
- 7. Continuity fiber test on the new communication system.
- 8. Cutover to new communication system after disconnect the temporary communication system.
- Verify communication and proper operation of the field elements using controls from Hub No. 3 and Data Node 8.
- 10. Remove temporary communication system completely after functionality of new system has been verified and approved by the Engineers.

To minimize downtime of the system, cutover of field sites to the new communication system shall begin only after the following tasks have been performed:

- A. Perform pre-installation tests on all new equipment.
- B. Install and test the entire project cable plant.
- C. Install terminal blocks at all controller cabinets where required.
- D. Perform subsystem testing on all data and video links.

All testing listed above shall be performed as described in "System Testing and Documentation," elsewhere in these special provisions.

The Contractor shall provide a detailed cutover plan to the Engineer for approval, at least 30 working days prior to the beginning of communication system cutover. The cutover plan shall be designed to minimize the downtime of each field site. The Contractor shall coordinate all cutover activity with the Engineer.

The Contractor shall notify the engineer a minimum of 48 hours before cutting any fiber optic cables.

Except as otherwise provided in these special provisions, ramp metering and surveillance controllers shall be interrupted only during the hours specified and subject to the restrictions listed below for each system.

Except as otherwise provided in these special provisions, disconnection shall be defined to be the disconnection of communication equipment or cabling resulting in the loss or disruption of communication to or from the TMC, hub, and data node.

The maximum time during which the communication system may remain inactive during cutover from existing to temporary, and from temporary to permanent shall be 24 hours (one day), except ramp meters, traffic monitoring station, and CCTV for which the maximum time for inactive communications or loss of power is 8 hours.

TRAFFIC SIGNAL, RAMP METERING AND SURVEILLANCE CONTROLLER RESTRICTIONS

The Contractor shall carry out traffic signal, ramp metering and surveillance controller cutover subject to the following restrictions:

- 1. No more than five individual controller locations, each with its own unique controller ID number, as indicated on the plans, shall be subject to disruption at any time during system cutover.
- 2. No traffic signal, ramp metering or surveillance controller shall be disconnected or disrupted between the hours of 6:00 a.m. and 9:00 a.m., or from 3:00 p.m. to 7:00 p.m., Monday through Friday.
- 3. No traffic signal, ramp metering or surveillance controller shall be disconnected from AC power for more than 15 minutes in any 24 hour period without prior written approval from the Engineer.

The Contractor shall obtain written approval from the Engineer, not less than two working days prior to any testing, disconnection or disruption of services from any ramp metering or surveillance controller site.

PAYMENT

The contract lump sum price paid for maintaining existing traffic management system elements during construction shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in maintaining existing traffic management system elements as shown on the plans, specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Furnishing and installing temporary or portable TMS elements that are not shown on the plans, but are required when an existing TMS element becomes nonoperational or off line due to construction activities, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

Furnishing and installing temporary or portable TMS elements and replacing TMS elements that are not shown on the plans nor identified during the pre-construction operational status check and were damaged by construction activities will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

If the Contractor is required to submit provisions for the replacement of TMS elements that were not identified, the provisions will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

10-3.05 CAST-IN-DRILLED-HOLE CONCRETE PILE FOUNDATIONS

GENERAL

Summary

This work includes constructing cast-in-drilled-hole concrete pile foundations for traffic signal, lighting standards, and closed circuit television system pole.

Comply with Section 86-2.03, "Foundations," of the Standard Specifications and "Piling" of these special provisions.

MATERIALS

Concrete must contain not less than 590 pounds of cementitious material per cubic yard.

CONSTRUCTION

For standards located in sidewalk areas, the pile foundation must be:

- 1. Placed to final sidewalk grade before the sidewalk is placed
- 2. Square for the top 4 inches

Use sleeve nuts on Type 1-A standards. The bottom of the base plate must be flush with finished grade.

PAYMENT

Payment for cast-in-drilled-hole concrete pile foundations shall conform to the provisions in Section 86-8, "Payment," of the Standard Specifications.

10-3.06 STANDARDS, STEEL PEDESTALS, AND POSTS

Standards, steel pedestals, and posts for traffic signal and lighting standards shall conform to the provisions in Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, "Steel Structures" of these special provisions, and the following requirements.

Steel bolts not designated on the plans as high-strength (HS) or stainless steel shall be for general applications and shall conform to the requirements in ASTM Designation: A 307.

Anchor bolts shall conform to the requirements in ASTM Designation: F 1554, Grade 36. High-strength (HS) anchor bolts shall conform to the requirements in ASTM Designation: F 1554, Grade 105.

Where the plans refer to the side tenon detail at the end of the signal mast arm, the applicable tip tenon detail may be substituted.

The sign mounting hardware shall be installed at the locations shown on the plans.

Non-illuminated street name signs shall be installed on signal mast arms using a minimum 3/4" x 0.020" round edge stainless steel strap and saddle bracket. The strap shall be wrapped at least twice around the mast arm, tightened, and secured with a 3/4" stainless strap seal. The sign panel shall be leveled and hardware securely tightened.

Handhole reinforcement rings for standards, steel pedestals, and posts shall be continuous around the handholes. Type 1 standards shall be assembled and set with the handhole on the downstream side of the pole in relation to traffic or as shown on the plans.

10-3.07 CONDUIT

Conduit to be installed underground shall be Type 1, except communication conduit shall be Type 1 or Type 3. The conduit in a foundation and between a foundation and the nearest pull box shall be Type 1.

When a standard coupling cannot be used for joining Type 1 conduit, a UL-listed threaded union coupling conforming to the provisions in Section 86-2.05C, "Installation," of the Standard Specifications, or a concrete-tight split coupling, or concrete-tight set screw coupling shall be used.

When Type 3 conduit is placed in a trench (not in pavement or under portland cement concrete sidewalk), after the bedding material is placed and the conduit is installed, the trench shall be backfilled to not less than 4 inches above the conduit with minor concrete conforming to the provisions in Section 90-10, "Minor Concrete," of the Standard Specifications, except the concrete shall contain not less than 421 pounds of cementitious material per cubic yard. The remaining trench shall be backfilled to finished grade with backfill material.

After conductors have been installed, the ends of conduits terminating in pull boxes, service equipment enclosures, and controller cabinets shall be sealed with an approved type of sealing compound.

10-3.08 TRAFFIC PULL BOXES

Grout shall not be placed in the bottom of traffic pull boxes.

10-3.09 PULL BOX

GENERAL

Summary

This work includes installing a non-traffic-rated pull box as shown on the plans and as specified in these special provisions. Comply with Section 86-2.06, "Pull Boxes," of the Standard Specifications.

Submittals

Before shipping pull boxes to the jobsite, submit a list of materials, Contract number, pull box manufacturer, manufacturer's instructions for pull box installation, and your contact information to the Transportation Laboratory. Submit reports for pull box from an NRTL-accredited lab to the Engineer.

Quality Control and Assurance

Pull boxes may be tested by the Department. Deliver pull boxes and covers to the Transportation Laboratory and allow 30 days for testing. When testing is complete, you will be notified. You must pick up the boxes and covers from the test site and deliver it to the job site.

Any failure of the pull box or the cover that renders the unit noncompliant with these specifications will be a cause for rejection. If the unit is rejected, you must allow 30 days for retesting. Retesting period starts when the replacement pull box is delivered to the test site. You must pay for all retesting costs. Delays resulting from submittal of noncompliant materials does not relieve you from executing the contract within the allotted time.

If the pull box submitted for testing does not comply with the specifications, remove the unit from the test site within 5 business days after notification that it is rejected. If the unit is not removed within that period, it may be shipped to you at your expense.

You must pay for all shipping, handling, and transportation costs related to the testing and retesting.

Functional Testing

The pull box and cover must be tested under ANSI/SCTE 77, "Specifications for Underground Enclosure Integrity."

Warranty

Provide a 2-year manufacturer replacement warranty for pull box and cover from the date of installation of the pull box and cover. All warranty documentation must be submitted to the Engineer before installation.

Replacement parts must be provided within 5 business days after receipt of failed pull box, cover, or both at no cost to the Department and must be delivered to the Department's Maintenance Electrical Shop at 1808 N. Batavia Street, Orange, CA 92865, Telephone (714) 974-3092.

MATERIALS

The pull box and cover must comply with ANSI/SCTE 77, "Specifications for Underground Enclosure Integrity," for Tier 22 load rating and must be gray or brown in color.

Each pull box cover must have an electronic marker cast inside.

Extension for the pull box must be of the same material as the pull box and attached to the pull box to maintain the minimum combined depths as shown.

Include recesses for a hanger if a transformer or other device must be placed in a pull box.

The bolts, nuts, and washers must be a captive bolt design.

The captive bolt design must be capable of withstanding a torque range of 55 to 60 ft-lb and a minimum pull out strength of 750 lb. Perform the test with the cover in place and the bolts torqued. The pull box and cover must not be damaged while performing the test to the minimum pull out strength.

Stainless steel hardware must have an 18 percent chromium content and an 8 percent nickel content.

Galvanize ferrous metal parts under Section 75-1.05, "Galvanizing."

Manufacturer's instructions must provide guidance on:

- 1. Quantity and size of entries that can be made without degrading the strength of the pull box below Tier 22 load rating
- 2. Where side entries cannot be made
- 3. Acceptable method to be used to create the entry

Tier 22 load rating must be labeled or stenciled by the manufacturer on the inside and outside of the pull box and on the underside of the cover.

CONSTRUCTION

Do not place grout in the bottom of the pull box.

Do not install pull box in curb ramps or driveways.

A pull box for a post or a pole standard must be located within 5 feet of the standard. Place a pull box adjacent to the back of the curb or edge of the shoulder. If this is impractical, place the pull box in a suitable, protected, and accessible location.

COMMUNICATION PULL BOXES

Communication pull boxes must comply with Section 86-2.07, "Traffic Pull Boxes," of the Standard Specifications and these special provisions.

Communication pull box steel covers must have "CALTRANS COMMUNICATION" markings.

Pull boxes must have tamper resistant pinhead bolts to secure the cover/metal lid to the box. Tamper resistant pinhead bolts must be approved by the Engineer before ordering and installing.

Concrete placed around and under communication pull boxes must contain a minimum of 20 pounds of cement per cubic foot.

Steel covers must be installed and kept bolted down.

Communication pull boxes shown on the plans in shoulders are shown for general location. The location must be outside of paved shoulders unless the unpaved shoulder is not accessible. The exact location will be determined by the Engineer.

Additional communication pull boxes must not be installed without the Engineer's written approval.

Full compensation for communication pull boxes is included in the contract lump sum price paid for communication system and no separate payment will be made therefor.

10-3.10 CONDUCTORS, CABLES, AND WIRING

The splicing and materials shall conform to the requirements provided in section 86-2.09, "Wiring," of the Standard Specifications. Splices shall be insulated by "Method B," except the splice insulation method to be used for loop wire to loop detector lead-in cable (DLC) shall be "Modified Method B."

In "Modified Method B," splicing shall be as "Method B" shown on Standard Plan ES-13A, in addition a heat-shrink tubing shall be placed over the entire splice. The loop start wire and finish wire splices shall be placed in the same heat-shrink tubing.

Conductors and cables shall be secured to the projecting end of conduit in pull boxes to prevent pulling of cables.

Signal Interconnect Cable (SIC) shall be the 12-pair No. 19 type.

10-3.11 SERVICE

Continuous welding of exterior seams in service equipment enclosures is not required.

Service equipment enclosures shall be the aluminum type.

Each service shall be provided with up to 2 main circuit breakers which shall disconnect ungrounded service entrance conductors. Where the "Main" circuit breaker consists of 2 circuit breakers as shown on the plans or required in the special provisions, each of the circuit breakers shall have a minimum interrupting capacity of 10,000 A, rms.

ELECTRIC SERVICE (IRRIGATION)

Electric service (irrigation) shall be from the service points to the irrigation controllers (IC) and to the spaces provided in the irrigation controller enclosure cabinets (CEC) for irrigation controllers as shown on the plans.

Irrigation Controller (IC) "A", and "B": Electric service (irrigation) shall be 120/240 V(ac) obtained from the existing Type III service equipment enclosure.

Irrigation Controller (IC) "C": Electric service (irrigation) shall be a metered 120/240 V(ac), single-phase service in a Type III service equipment enclosure.

The inscription on nameplates shall be as directed by the Engineer.

Electric service (irrigation) will be paid for on a lump sum basis.

The contract lump sum price paid for electric service (irrigation) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing electric service (irrigation) for irrigation controllers, complete in place, including conductors, conduit and pull boxes to the pull box adjacent to irrigation controller enclosure cabinets and irrigation controllers, as shown on the plans, as specified in these special provisions, and as directed by the Engineer.

10-3.12 NUMBERING ELECTRICAL EQUIPMENT

The placement of numbers on electrical equipment will be done by others.

10-3.13 STATE-FURNISHED CONTROLLER ASSEMBLIES

The Model 170 and 2070L controller assemblies, excluding anchor bolts, will be State-furnished as provided under "Materials" of these special provisions.

The Contractor shall construct each controller cabinet foundation as shown on the plans for Model 332 and 334 cabinets (including furnishing and installing anchor bolts), shall install the controller cabinet on the foundation, and shall make field wiring connections to the terminal blocks in the controller cabinet.

A listing of field conductor terminations, in each State-furnished controller cabinet, will be furnished free of charge to the Contractor at the site of the work.

State forces will maintain controller assemblies. The Contractor's responsibility for controller assemblies shall be limited to conforming to the provisions in Section 6-1.02, "State-Furnished Materials," of the Standard Specifications.

10-3.14 LIGHT EMITTING DIODE SIGNAL MODULE

GENERAL

Summary

This work includes installing LED signal module. Comply with Section 86, "Electrical Systems," of the Standard Specifications.

Use LED signal module as the light source for the following traffic signal faces:

- 1. 12-inch section
- 2. 12-inch arrow section
- 3. 12-inch programmed visibility (PV) section

Submittals

Before shipping LED signal modules to job site, submit the following to the Transportation Laboratory:

- 1. Delivery form including district number, EA, and contact information
- 2. List containing all LED signal module serial numbers anticipated for use
- 3. LED signal modules

Quality Control and Assurance

Module must be one listed on the Pre-Qualified Products List for LED traffic signals at:

http://www.dot.ca.gov/hq/esc/approved_products_list

The State will test LED signal module shipments as specified in ANSI/ASQ Z1.4. Testing will be completed within 30 days of delivery to the Transportation Laboratory. LED signal modules tested or submitted for testing must be representative of typical production units. LED and circular LED signal modules will be tested as specified in California Test 604. Arrow, U-turn, and bicycle LED signal modules will be tested as specified in California Test 3001. All parameters of the specification may be tested on the modules. LEDs must be spread evenly across the module. LED arrow indication must provide the minimum initial luminous intensity listed. Measurements will be performed at the rated operating voltage of 120 V(ac).

Delays resulting from submittal of non-compliant materials do not relieve you from executing the contract within the allotted time. Non-compliant materials will be rejected. You must resubmit new LED for retesting and pick up the failed units within 7 days of notification. You must provide new LED signal modules and allow a minimum of 30 days for the retest. You must pay for all shipping and handling costs related to testing and retesting. Delays resulting from resubmittal and retesting are your responsibility and no extra time will be allowed.

After testing, you must pick up the tested LED signal modules from the Transportation Laboratory and deliver to the job site.

Warranty

The manufacturer must provide a written warranty against defects in materials and workmanship for LED signal modules for a minimum period of 48 months after installation of LED signal modules. Replacement LED signal modules must be provided within 15 days after receipt of failed LED modules at your expense. The State pays for shipping the failed modules to you. All warranty documentation must be submitted to the Engineer before installation. Replacement LED signal modules must be delivered to State Maintenance Electrical Shop at 1808 N. Batavia Street, Orange, CA 92865, Telephone (714) 974-3092.

MATERIALS

Minimum power consumption for LED signal module must be 5 W.

LED signal module must have an operational lifecycle rating of 48 months. During the operational lifecycle, LED signal module must meet all parameters of this specification.

LED signal module must be designed for installation in the door frame of standard traffic signal housing.

LED signal module must:

- 1. Be 4 pounds maximum weight
- 2. Be manufactured for 12-inch circular, and arrow section
- 3. Be from the same manufacturer
- 4. Be the same model for each size
- 5. Be sealed units with:
 - 5.1. 2 color-coded conductors for power connection.
 - 5.2. Printed circuit board and power supply contained inside and complying with Chapter 1, Section 6 of TEES published by the Department.
 - 5.3. Lens that is:
 - 5.3.1. Integral to the units
 - 5.3.2. Convex or flat with a smooth outer surface
 - 5.3.3. Made of UV stabilized plastic or glass, and withstands UV exposure from direct sunlight for 48 months without exhibiting evidence of deterioration

5.4. 1-piece EPDM gasket

- 6. Include 3-foot long conductors with quick disconnect terminals attached
- 7. Be sealed in door frames
- 8. Fit into existing traffic signal section housing and comply with ITE publication, Equipment and Material Standards, Chapter 2, "Vehicle Traffic Control Signal Heads"

Individual LEDs must be wired so catastrophic loss or failure of 1 LED will not result in loss of more than 5 percent of the signal module light output. Failure of an individual LED in a string must not result in loss of entire string or other indication.

No special tools for installation are allowed.

12-inch Arrow

Comply with Section 9.01 of ITE publication, Equipment and Material Standards, Chapter 2, "Vehicle Traffic Control Signal Heads" for arrow indications.

LED signal module must:

- 1. Be weather tight and connect directly to electrical wiring.
- 2. Be capable of optical unit replacement.
- 3. Be a single, self-contained device, ready for installation into traffic signal housing.
- 4. Have manufacturer's name, trademark, model number, serial number, lot number, month and year of manufacture, and required operating characteristics, including rated voltage, power consumption, and voltampere, permanently marked on the back of the module.
- 5. Have a symbol of module type and color. Symbol must be an inch in diameter. Color must be written out in 0.50 inch high letters next to the symbol.
- 6. Be AlInGaP technology for red and yellow indications and gallium nitride technology for green indications.
- 7. Be ultra bright type rated for 100,000 hours of continuous operation from -40 to +74 °C.
- 8. Have a maximum power consumption as follows:

Power Consumption Requirements

	Power Consumption					
LED Signal Module	(Watts)					
Type	Red Yellow Gr				een	
	25 °C	74 °C	25 °C	74 °C	25 °C	74 °C
12-inch circular	11	17	22	25	15	15
12-inch arrow	9	12	10	12	11	11
Programmed Visibility	11	17	22	25	15	15

Lens may be tinted, or may use transparent film or materials with similar characteristics to enhance "ON/OFF" contrasts. Tinting or other materials to enhance "ON/OFF" contrast must not affect chromaticity and must be uniform across the face of the lens.

If polymeric lens is used, surface coating or chemical surface treatment must be applied for front surface abrasion resistance.

Power supply must be integral to the module.

Internal components must be adequately supported to withstand mechanical shock and vibration from high winds and other sources.

Lens and LED signal module material must comply with the ASTM specifications for that material.

Enclosures containing either the power supply or electronic components of LED signal module, except lenses, must be made of UL94VO flame-retardant material.

If a specific mounting orientation is required, the LED signal module must have prominent and permanent vertical markings for accurate indexing and orientation within the signal housing. Markings must include an up arrow, or the word "UP" or "TOP."

LED signal module must meet or exceed the following values when operating at 25 °C:

Minimum Initial Intensities for Circular Indications (cd)

	12-inch			
Angle (v,h)	Red	Yellow	Green	
2.5, ±2.5	399	798	798	
$2.5, \pm 7.5$	295	589	589	
2.5, ±12.5	166	333	333	
$2.5, \pm 17.5$	90	181	181	
$7.5, \pm 2.5$	266	532	532	
$7.5, \pm 7.5$	238	475	475	
$7.5, \pm 12.5$	171	342	342	
$7.5, \pm 17.5$	105	209	209	
$7.5, \pm 22.5$	45	90	90	
$7.5, \pm 27.5$	19	38	38	
12.5, ±2.5	59	119	119	
12.5, ±7.5	57	114	114	
12.5, ±12.5	52	105	105	
12.5, ±17.5	40	81	81	
12.5, ±22.5	26	52	52	
12.5, ±27.5	19	38	38	
17.5, ±2.5	26	52	52	
17.5, ±7.5	26	52	52	
17.5, ±12.5	26	52	52	
17.5, ±17.5	26	52	52	
17.5, ±22.5	24	48	48	
17.5, ±27.5	19	38	38	

Minimum Luminance for Arrows and PV Indications (FL)

	Red	Yellow	Green
Arrow Indication	1,605	3,210	3,210
PV Indication (cd at 2.5°±2.5°)	91	91	91

LED signal module must meet or exceed the following illumination values for 48 months when operating over a temperature range of -40 to + 74 $^{\circ}$ C. Yellow LED signal module must meet or exceed the following illumination values for 48 months, when operating at 25 $^{\circ}$ C:

Minimum Maintained Intensities for Circular Indications (cd)

	12-inch				
Angle (v,h)	Red	Yellow	Green		
2.5, ±2.5	339	678	678		
2.5, ±7.5	251	501	501		
2.5, ±12.5	141	283	283		
2.5, ±17.5	77	154	154		
7.5, ±2.5	226	452	452		
$7.5, \pm 7.5$	202	404	404		
$7.5, \pm 12.5$	145	291	291		
$7.5, \pm 17.5$	89	178	178		
$7.5, \pm 22.5$	38	77	77		
$7.5, \pm 27.5$	16	32	32		
12.5, ±2.5	50	101	101		
12.5, ±7.5	48	97	97		
12.5, ±12.5	44	89	89		
12.5, ±17.5	34	69	69		
12.5, ±22.5	22	44	44		
12.5, ±27.5	16	32	32		
17.5, ±2.5	22	44	44		
17.5, ±7.5	22	44	44		
17.5, ±12.5	22	44	44		
17.5, ±17.5	22	44	44		
17.5, ±22.5	20	41	41		
17.5, ±27.5	16	32	32		

Minimum Maintained Luminance for Arrow and PV Indications (FL)

	Red	Yellow	Green
Arrow Indication	1,610	3,210	3,210
PV Indication (at 2.5°±2.5°)	91	91	91

LED signal module must comply with the following chromaticity requirements for 48 months when operating over a temperature range of -40 to +74 °C.

Chromaticity Standards (CIE Chart)

Red	Y: not greater than 0.308, or less than 0.998 -x		
	Y: not less than 0.411, nor less than 0.995 - x,		
Yellow	nor greater than 0.452		
	Y: not less than 0.506 - 0.519x, nor less than		
Green	0.150 + 1.068x, nor more than $0.730 - x$		

LED signal module must operate:

- 1. At a frequency of 60 ± 3 Hz, over a voltage range from 95 to 135 V(ac), without perceptible flicker to the unaided eye. Fluctuations of line voltage must have no visible effect on luminous intensity of the indications. Rated voltage for measurements must be 120 V(ac).
- 2. Compatible with currently used controller assemblies, including solid state load switches, flashers, and conflict monitors. Comply with TEES Chapters 3 and 6. If a 20 mA alternating current or less is applied to the unit, the voltage read across the 2 leads must be 15 V(ac) or less.

Wiring and terminal block must comply with Section 13.02 of ITE publication, Equipment and Material Standards, Chapter 2, "Vehicle Traffic Control Signal Heads." Electrical connection for each Type 1 LED signal module must be 2 secured, color-coded, 3-foot long, 600 V(ac), 20 AWG minimum stranded jacketed copper wires. Wires must comply with NEC, rated for service at $+105 \,^{\circ}\text{C}$.

LED signal module on-board circuitry must:

- 1. Include voltage surge protection to withstand high-repetition noise transients. The voltage surge protection must comply with NEMA Standard TS2, Section 2.1.6.
- 2. Comply with FCC, Title 47, SubPart B, Section 15 regulations for Class A emission limits for electronic noise.

LED signal module must provide a power factor of 0.90 or greater.

Total harmonic distortion from current and voltage induced into an alternating current power line by LED signal module must not exceed 20 percent at an operating temperature of 25 °C.

When power is applied to LED signal module, light emission must occur within 90 ms.

10-3.15 PROGRAMMED VISIBILITY VEHICLE TRAFFIC SIGNAL HEADS

A signal technician qualified to program the programmed visibility signal heads shall be present at the time the signal heads are placed in operation.

10-3.16 BATTERY BACKUP SYSTEM

GENERAL

Summary

This work includes installing battery backup system (BBS). Comply with Section 86, "Electrical Systems," of the Standard Specifications and TEES.

The State will furnish BBS components as listed in "Materials" of these special provisions.

You must furnish the external cabinet and batteries.

Submittals

Before shipping external cabinets to the jobsite, submit material list including contract number, cabinet serial numbers, and contact information to the Transportation Laboratory.

Submit a Certificate of Compliance for each external cabinet and batteries to the Engineer under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications.

Quality Control and Assurance

The State may test the cabinets.

Functional Testing

After complete installation, BBS functional test must be performed. Test for 30 minutes of continuous, satisfactory operation with utility power turned off. Perform test in the presence of the Engineer.

Warranty

Batteries must be warranted by the manufacturer to operate within a temperature range of -25 to +60 °C for 2 years.

Batteries must have a written warranty against defects in materials and workmanship from the manufacturer prorated for a period of 60 months after installation. You must provide the Engineer with all warranty documentation before installation. Replacement batteries must be available within 5 business days after receipt of failed batteries at no cost to the State except the cost of shipping the failed batteries. Replacement batteries must be delivered to Caltrans Maintenance Electrical Shop at 1808 N. Batavia Street, Orange, CA 92865, Telephone (714) 974-3092.

MATERIALS

Batteries must:

1. Be deep cycle, sealed prismatic, lead-calcium-based, absorbed-glass mat and valve-regulated lead acid (AGM/VRLA) type

- 2. Have voltage rating of 12 V
- 3. Be group size 24
- 4. Be commercially available and stocked locally
- 5. Have a carrying handle
- 6. Be marked with date code, maximum recharge data, and recharge cycles
- 7. Have 2 top-mounted, threaded, stud posts that include all washers and nuts required for attaching 3/8-inch ring lugs of a State-furnished BBS battery harness
- 8. Include rubber insulating protective covers for protecting the lugs, posts, and wiring red for positive terminal and black for negative terminal
- 9. Be new and fully-charged when furnished
- 10. Be free from damage or deformities

External cabinet must be one listed on the Pre-Qualified Products List at:

http://www.dot.ca.gov/hq/esc/approved_products_list/

External cabinet must be capable of housing:

- 1. 8 batteries
- 2. Inverter/charger unit
- 3. Power transfer relay
- 4. Manually-operated bypass switch
- 5. Required control panels
- 6. Wiring and harnesses

Details for wiring the State-furnished equipment will be available in an information handout as described in "Supplemental Project Information" of these special provisions.

The following details must comply with Section 86-3.04, "Controller Cabinets," of the Standard Specifications and TEES:

- 1. Door construction, including material, thickness, coating, and welds
- 2. Frame
- 3. Door seals
- 4. Continuous stainless steel piano hinge or 4 leaves with 2 bolts on each side of each leaf, used to connect the door to external cabinet
- 5. Padlock clasp or latch and lock mechanism

The external cabinet must be ventilated by using louvered vents, filter, and a thermostatically controlled fan. Fan must be AC-operated from the same line output as the Model 332 cabinet. A 2-position terminal block must be provided on the fan panel, along with 10 feet of connected hookup wire.

The external cabinet surface must be anodized aluminum. Anti-graffiti paint must not be used.

The external cabinet must include all bolts, washers, nuts, and cabinet-to-cabinet coupler fittings necessary for mounting it to the Model 332 cabinet.

Fasteners for the external cabinet must include:

- 1. 8 cabinet mounting bolts that are 18-8 stainless steel hex head, fully-threaded, and 3/8" 16 x 1"
- 2. 2 washers per bolt designed for 3/8-inch bolt and are 18-8 stainless steel 1-inch OD round flat type
- 3. K-lock nut per bolt: K-lock washer that is 18-8 stainless steel and hex-nut

External cabinet to Model 332 cabinet couplings must include a conduit for power connections between the 2 cabinets. Couplings must include:

- 1. 2-inch nylon-insulated steel chase nipple, T & B 1947 or equivalent
- 2. 2-inch sealing, steel locknut, T & B 146SL or equivalent
- 3. 2-inch nylon-insulated steel bushing, T & B 1227 or equivalent

CONSTRUCTION

Mount external cabinet to either the left or right side of Model 332 cabinet. The typical side-mounting location of external cabinet is flush with the bottom of the Model 332 cabinet and approximately equidistant from the front and rear door edges.

MEASUREMENT AND PAYMENT

Full compensation for assembling and installing battery backup system is included in the contract lump sum price paid for temporary signal and lighting, and no separate payment will be made therefor.

10-3.17 CITY OF SAN JUAN CAPISTRANO BATTERY BACKUP SYSTEM

GENERAL

Minimum Requirements

This specification establishes the minimum requirements for a complete emergency battery backup system (BBS) for use with Light Emitting Diode (LED) Traffic Signal Modules. The BBS shall be designed for outdoor applications in accordance with these specifications requirements.

ACRONYMS

FTP - Files Transfer Protocol

HTTP - Hyper Text Transfer Protocol

IP - Internet Protocol

SNMP - Simple Network Management Protocol

TCP - Transmission Control Protocol

Telnet - Telecommunication Network

UDP - User Datagram Protocol

UPS – Uninterruptable Power Supply

Guaranty

A material guaranty for a period of one year from the date the agency records a notice of completion for the BBS installation work will be required for this contract.

Equipment List

The Contractor shall furnish an operation and maintenance manual for each BBS unit. The combined maintenance and operation manual shall be submitted to engineering prior to testing. The combined operations and maintenance manual shall include, but need not be limited to, the following items:

- a. Specifications
- b. Design Characteristics
- c. General operation theory
- d. Function of all controls
- e. Detailed circuit analysis
- f. Troubleshooting procedure (diagnostic routine)
- g. Voltage charts with wave forms
- h. Geographical layout of components
- i. Schematic diagrams
- i. List of replaceable component parts with stock numbers

Battery Backup System Configuration

The Battery Backup System (BBS) shall include, but not be limited to the following:

- 1. Inverter/Charger.
- 2. Power Transfer Relay.
- 3. Two (2) separate manually operated non-electronic bypass switches in one assembly: one for inverter & one for generator.
- 4. A generator plug with compartment door.
- 5. An "on battery" warning light on top of enclosure.

- 6. All necessary hardware and interconnect wiring.
- 7. Batteries.
- 8. External BBS Cabinet (enclosure).

System Reliability

The BBS shall provide reliable emergency power to a traffic signal system (Vehicle and Pedestrian Traffic) in the event of a power failure or interruption. The BBS shall be capable of providing power for full run-time operation for "LED-only" intersections (all colors: red, yellow, green and pedestrian heads).

OPERATION

Compatibility

The BBS shall be compatible with NEMA Type P cabinets.

Run-Time

The BBS shall provide a minimum two (2) hours of full run-time operation for an all LED intersection.

Output Capacity

The BBS shall be able to provide a minimum of 1100 W @ +25 °C, continuous active output capacity, with 80 percent minimum inverter efficiency while running in Backup Mode (on batteries).

Output Voltage

When operating in Backup mode, the BBS output shall be 120 ± 5 V(ac), pure sine wave output, ≤ 3 percent THD, 60 ± 0.05 Hz.

DC System Voltage

The BBS DC system voltage shall be either 24 V(dc) or 48 V(dc).

Transfer Time

The maximum transfer time allowed, from disruption of normal utility line voltage to stabilized Backup Mode line voltage, shall be no greater than 40 milliseconds. The same maximum allowable transfer time shall also apply when switching from Backup Mode line voltage back to utility line voltage.

Operating Temperature

The operating temperature for the inverter/charger, power transfer relay and manual bypass switch shall be -40 to +74 °C. Additionally, all components and parts used shall, at the very least, be rated for that temperature range.

AC Feedback

The BBS shall be equipped to prevent a malfunction feedback to the cabinet or from feeding back to the utility service.

Feedback Level

In the event the AC service feeding the BBS is severed, or a utility blackout, the AC voltage measured at the AC inputs to BBS (Line to Neutral), shall be less than 1 V(ac). This shall be measured with a Simpson 260 Meter, or equivalent.

Surge Protection

The BBS shall have lightning surge protection compliant with IEEE/ANSI C.62.41 and must be able to withstand 2000 V surges applied 50 times across line and neutral. These surges shall not cause the BBS to transfer to Backup mode.

Power & Control Connections

The BBS shall be easily installed, replaced, or removed by using easily removable cables for AC input, AC output, DC input, external transfer relay control and battery temperature sensor.

AC Connection

The AC input and output may be a panel mounted plug/receptacles that allow no possibility of accidental exposure to dangerous voltages (male receptacle for AC Input and female receptacle for AC Output). The receptacles shall utilize a locking mechanism or hold down clamps in order to prevent any accidental disconnects. The connection may also be accomplished through the use of terminal blocks.

DC Connection

The DC connection shall be a recessed one or two piece receptacle.

Relay/Temperature Probe Connections

The external power transfer relay control and the battery temperature sense inputs shall be heavy duty panel-mounted style connectors.

General Connections

All connections shall provide mechanically and electrically secure connections without the use of a screwdriver. The only exception will be the 18-position Relay Terminal Block which shall require a small screwdriver for holding down the relay wires.

Relay/Switch Ratings

The Power Transfer Relay and Manual Bypass Switches shall be rated at 240 V(ac)/30 A, minimum.

Unit Failure

In the event of inverter/charger failure, battery failure or complete battery discharge, the power transfer relay shall revert to the NC (and de-energized) state, where utility line power is connected to the cabinet.

Overload

The BBS must be able to automatically shutdown in order to protect against internal damage in the event of an overload at the output.

Bypass (Switches)

a. Placing the Inverter Bypass Switch into "Bypass" and setting the BBS Supply Breaker to "OFF" shall cut AC utility power to the inverter/charger and route it directly to the signal cabinet. In this condition, if the inverter is then disabled and the batteries disconnected from the system, the inverter/charger unit shall be completely de-energized and shall be safe to remove from the intersection system, while still allowing the intersection to function normally.

Note: Placing the inverter Bypass switch into "Bypass" only will allow the batteries to continue to charge while deactivating the BBS.

b. Placing the Generator Bypass Switch into "Generator" mode will transfer from utility power to generator power.

FUNCTIONALITY, DISPLAYS AND CONTROLS

Standby Mode

The BBS shall be provided with a standby mode. In this mode, the utility AC voltage shall be passed directly to the signal. The transfer switch shall transfer BBS to power the signal (Backup mode) at pre-defined, low and high cutoff voltage level transfer set points that are adjustable between 90 and 135 V(ac).

Low and High Cutoff

When the BBS is in standby mode (Buck / Boost is Disabled), the BBS shall bypass the utility line power whenever the utility line voltage is outside of the transfer set points ($\pm 2 \text{ V(ac)}$).

Low Restore

In cases of low (below the low voltage transfer set point), or absent utility line voltage, when the utility line voltage has been restored at or above 5 ± 2 V(ac) of the low transfer set point for more than 30 seconds of pure sine wave output, ≤ 3 percent THD, 60 ± 0.05 Hz, the BBS shall transfer from Backup Mode back to Utility Line Mode.

High Restore

In cases of high (above the high voltage transfer set point) utility line voltage, when the utility line voltage has been restored at or below 5 ± 2 V(ac) of the high transfer set point for more than 30 seconds of pure sine wave output, ≤ 3 percent THD, 60 ± 0.05 Hz, the BBS shall transfer from Backup Mode back to Utility Line Mode.

Buck/Boost "Line-Interactive" Mode

The Buck/Boost mode of the BBS shall have a minimum range from 90 to 150 V(ac). There shall not be any user configurable transfer set point for the Buck/Boost mode. Whenever Buck/Boost mode is selected, the output of the system shall be regulated between 100 - 130 V(ac). When the output of the system can no longer be maintained within that range, the BBS shall transfer to Backup Mode.

Line Qualify Time

The BBS shall have adjustable line qualify time. There will be a minimum of three (3) settings possible. The minimum settings shall be 3 seconds, 10 seconds, and 30 seconds. The default value shall be 30 seconds.

Display

The BBS shall have a backlit LCD type display that is easily seen in both bright sunlight and in darkness. The screen shall be large enough to display the following minimum information on a continuous basis; operating mode (Standby, Buck/Boost), utility input voltage, BBS output voltage, charger status, percent battery charge, battery voltage, BBS status (Standby, Backup, Buck, Boost), any alarms and faults, and relay status information.

Keypad

The BBS shall use a well defined keypad that includes arrow, enter and escape keys to efficiently navigate the menu system to make system programming changes and gather other status information.

Status LED's

In addition to the LCD display the BBS shall be provided with discrete status LED indicators. As a minimum, the Red "Fault" LED indicator shall be provided.

Green "Output" LED

This LED will be ON any time that the output of the BBS is modified, either by Backup Mode, or by Buck/Boost Modes.

Solid Red "Fault" LED

This LED will be ON any time that there are any faults in the system.

Flashing Red "Alarm" LED

This LED will be flashing any time that there are any alarms in the system.

Event Log and Counters

The BBS shall keep track of the number of times that the unit was in Backup, Buck and Boost modes and the total number of hours and minutes that the unit has operated in those modes since last reset. This information shall be displayed through the LCD and shall be available for viewing via the EIA-232 port and the Ethernet Interface. The BBS shall also keep a running event log with the latest events. For each event, the log shall contain as a minimum, a date/time stamp, the current operating mode, and what the event was.

Programmable Relay Contacts

The BBS shall provide a minimum six (6) programmable dry relay contacts. These relay contacts shall be rated for a minimum of 1 Ampere @ 125 V(ac). When any relay is energized, it shall show up on the main screen of the LCD. As a minimum, the programming options will be, On Battery, Low Battery, Timer, Alarm, Fault, and Off.

On Battery Relay Contacts

The dry relay contacts that are configured for "On Battery" shall only energize when the Inverter is operating in Backup Mode.

Timer Relay Contacts

The BBS shall have a timer that will energize the dry relay contacts (when configured for "Timer") after the settable configured time has elapsed. This timer is started when the BBS in the Backup mode. The configuration of the timer must range from 0 to 480 minutes, in a minimum of 15 minute increments. The default setting must be 120 minutes.

Low Battery Relay Contacts

The BBS shall have an adjustable low battery relay setting. This setting shall be adjustable to set the point at which the low battery relay energizes. This setting applies to any dry contact relay that is configured for "Low Battery".

Alarm and Fault Relay Contacts

When an alarm or fault is displayed on the inverter, this relay will energize.

Relay Contact Terminals

The relay contacts shall be made available on the front panel of the BBS via an 18-position screw hold-down printed circuit board mounted terminal block. Additional terminals are allowed if they are adequately identified and labeled.

Terminal Type

The relay contact terminal blocks shall conform to On-Shore Technology, type ED2200/22, or Phoenix Contact type FRONT 2,5-H/SA 5, or WECO type 180-A-111, or equivalent. The spacing between each terminal shall be 0.197-inch, with the hold-down screw and wire entrance both on the same face, facing forward and in the horizontal axis.

Contacts

Each relay shall have their own common and their own set of normally open (NO) and normally closed (NC) terminals. The terminals for each relay shall be oriented as NO-C-NC, on the terminal block.

Labeling

The contacts of the terminal block shall be labeled 1...18, left to right. Additionally, each set of contacts shall be labeled with the NO-C-NC designation, as well as C1...C6, again, from left to right. Any remaining contacts on the terminal block shall be labeled as "Spare", unless used for some other purpose, in which case they shall be labeled as to their actual use.

Ventilation

There shall be adequate clearance in front of all BBS intakes and exhaust vents, and fans. Specifically, any venting on the back panel must be able to maintain adequate airflow through the Inverter/Charger by utilizing a method to prevent back panel from being placed directly against the cabinet enclosure.

Battery Voltage Jacks

There shall be standard meter probe (0.08 inch) input jacks (+RED) and (- BLACK) on the BBS front panel used to measure battery voltage externally.

Circuit Breakers

The BBS shall be equipped with both Input and Output AC circuit breakers, and with either a DC circuit breaker or fused battery harness.

Battery Charger

The BBS shall have an integral charger. The charger shall be a 3-step "Smart Charger" utilizing bulk, absorption and float charging techniques, appropriate for the battery type. The charger must prevent destructive discharge and overcharge.

Battery Type

The BBS shall operate with 102 Ah "GelCell" type batteries (Group Size 31).

MOUNTING AND CONFIGURATION

EIA 19-inch Rack

All references made to EIA rail or EIA 19-inch rack shall conform to Electronic Industries Standards EIA-310-D, Racks, Panels, and Associated Equipment with 10-32 "Universal Spacing" threaded holes.

Mounting Method and Space

The BBS shall be able to be rack-mounted on EIA 19-inch rack mount rails (vertically). The external BBS cabinet shall be 48" H x 16.5" W x 16.5" D.

BBS Dimensions

The entire BBS, including the Inverter/Charger, Power Transfer Relay and Bypass Switch Assemblies must be able to fit on the EIA 19-inch rack mount rails in the dimensions specified above. Inverter/Charger dimensions shall be no greater than 15.5" W x 8.75" D x 5.25" H and with EIA mounting brackets attached must be able to install on the EIA rails.

Included Hardware

All necessary hardware for mounting shall be included in the bid price of the BBS. This shall include EIA mounting brackets, bolt and washers, cable ties, and adhesive backed panel-mount style cable tie holders.

Bolt and Washer Requirements

Bolts and washers shall meet the following requirements:

Screw Type: ± 10-32 clip nut for equipment rack

Quantity	Size and Thread Pitch	Material
8	10-32	18-8 stainless steel (Type 316 stainless steel is acceptable as an alternate).

Bolt Type: 1/4"-20 hex head bolts and nuts

Quantity	Size and Thread Pitch	Material	Washer
6	1/4"-20	18-8 stainless steel (Type 316 stainless steel is acceptable as an alternate).	6 EA Lock and Plain washers

Cable Ties and Cable Tie Holders

The amount and size of cable ties and the adhesive backed panel-mount style cable tie holders shall be adequate for the wire size of the particular BBS and be of sufficient quantity to neatly dress the full length of provided wire inside of the External BBS Cabinet.

Interconnect Wiring

All interconnect wiring shall be provided between Power Transfer Relay, Bypass Switch assembly, and NEMA Cabinet Terminal Service Block. This wiring shall be no less than 9 feet of UL Style 1015 CSA TEW with the following characteristics:

AWG Rating	10 AWG
Stranding	105 strands of 30 AWG tinned copper
Rating	600 V, 105 °C, PVC Insulation

Relay Contact Wiring

Four (4) sets of relay contact wiring shall be provided. Each set shall be two twisted insulated conductors of UL Style 1015 CSA TEW 18 AWG wire, same ratings as above, except 16 strands of 30 AWG tinned copper.

Transfer Relay / Bypass Switches

The Power Transfer Relay and Bypass Switch Assemblies shall be combined into one assembly.

Power Transfer Switch

This switch shall be of the universal automatic transfer type with both fail-safe and manual operation, and shall have a dry contact for monitoring the transfer switch status and an auxiliary output to be used to power battery heater mats, etc.

Generator Transfer Switch

This switch shall be universal generator transfer switch with both automatic and manual operation, and shall have a dry contact for generator transfer switch monitoring.

COMMUNICATIONS

Serial and Network Communications Interface

The BBS shall have Serial and Ethernet communications interfaces for configuration and management compatible with serial port EIA-232 (DB9-Female) connector. The Ethernet Port will be an RJ45, EIA 568B Pin Out connector.

User Configuration Menus

All BBS Configuration and System menus shall be accessible and programmable from the EIA-232 port and from the Ethernet port below. Additionally, all log files shall be available through these ports.

Network Configuration

The BBS shall support the following features:

Provide TCP and UDP over IP protocol communications and support the following applications layer protocols FTP, Telnet, and HTTP. The BBS shall be SNMP compliant.

Subnet masks for Class A, B, and C networks (See Table Below):

Network Class	Host BITS	Subnet Mask	Example IP Address
A	24	255.0.0.0.0	10.0.0.100
В	16	255.255.0.0	172.31.0.100
С	8	255.255.255.0	192.168.0.100

The BBS shall be provided with Web-Based-Interface (WBI). The WBI shall allow setting Network Configuration Parameters and all system configurations using a Web Browser.

As a minimum a user shall be able to do the following via the Web Browser:

- 1. View Logs
- 2. Change Modes of Operation
- 3. Configure Email Alarms
- 4. Adjust Line Qualify Time
- 5. Program Relay Contacts
- 6. Configure Network Parameters

The BBS shall have a default IP Address of 192.168.1.51, Subnet Mask as 255.255.255.0 with username as "admin" and password as "user."

QUALITY ASSURANCE

Quality Assurance

Each BBS shall be manufactured in accordance with a manufacturer Quality Assurance (QA) program. The QA program shall include two Quality Assurance procedures: (1) Design QA (see below) and (2) Production QA. The Production QA shall include statistically controlled routine tests to ensure minimum performance levels of BBS units built to meet this specification and a documented process of how problems are to be resolved.

QA Process

QA process and test results documentation shall be kept on file for a minimum period of seven years.

QA Approval

Battery Backup System designs not satisfying Design QA Testing and Production QA Testing requirements shall not be labeled, advertised, or sold as conforming to this specification.

Testing

For Design Qualification Testing, as a minimum, the following will be tested for compliance to the specifications:

- a. Minimum of two hours of run time while operating in Backup Mode, at full load.
- b. Proper operations of all relay contacts.
- c. Inverter output voltage, frequency, harmonic distortion, and efficiency, when in Backup Mode.
- d. All power transfer voltage levels and all modes of operation.
- e. Power transfer time from loss of utility line voltage to stabilized inverter line voltage from batteries.
- f. Backfeed voltage to utility when in Backup Mode.
- g. IEEE/ANSI C.62.41 compliance.
- h. Battery charger operation.
- i. Event counter and runtime meter accuracy.
- j. User ability to control, monitor, get reports, and configure the system through the standard EIA-232 and Ethernet ports.
- k. Complete physical inspection of the system for quality workmanship.

Production Quality Control Testing

Production Quality Control tests shall consist of all of the above listed tests and shall be performed on each new system prior to shipment. Test documents must be presented upon arrival to the Engineer. Failure to meet requirements of any of these tests shall be cause for rejection. The manufacturer shall retain test results for seven years.

100-Hour Burn-In-Period

Documents showing that each BBS was given a minimum 100-hour burn-in period to eliminate any premature failures must be submitted to the Engineer. The burn-in period can be a combination of running in Backup Mode with a full load and running in Charger Mode.

Visual Inspection

Each system will be visually inspected for any exterior physical damage or assembly anomalies. Any defects will be cause for rejection.

WARRANTY

Terms and Conditions

Manufacturer shall provide a five (5) year warranty. The first three (3) years shall be termed the "Advanced Replacement Program". The last two years of the warranty will be factory-repair warranty for parts on the BBS.

EXTERNAL BBS CABINET

The BBS Enclosure shall be a NEMA 3R Rated Side-Mount Cabinet and installed on the side of the traffic signal cabinet as indicated. The enclosure will house the batteries, BBS, (2) manual bypass switches, power transfer relay, generator connection compartment, other control panels and all wiring & harnesses. The cabinet must meet the requirements for NEMA 3R enclosures. The housing must have the dimensions so that it may easily be attached the side of P Type cabinet. Dimensions of the enclosure shall not exceed 48" H x 16.5" W x 16.5" D. The BBS enclosure must not interfere with the opening of the signal cabinet door.

Details for the external cabinet (External cabinet details, Exhibit 1), will be available in an information handout as described in "Supplemental Project Information" of these special provisions.

The complete enclosure and door must be made from 0.125 inch thick raw aluminum. All external seams must be continuously welded. The door opening must have a double flange for weather sealing purposes.

- a. **Door:** The cabinet must have a door to provide access to the complete cabinet interior. The door must include a continuous piano hinge made of 14-gauge stainless steel and a 0.120" diameter stainless steel hinge pin. The hinge must be attached to the enclosure and the door with close end pop rivets. The door must have a three (3) point locking mechanism with rollers at the ends for the latch rods. The key lock must be a Corbin cylinder lock with a No. 2 key. When the door is opened it must have stops at 90, and 130 degrees. A continuous neoprene gasket must be used to weatherproof the enclosure when the door is closed. The door swing (hinge side) shall be on the left.
- b. **Ventilation Fan:** A fan must be mounted in the air baffle at the top of the cabinet with an air outlet built into the overhang. The fan must be thermostatically controlled. The bottom of the door must be louvered to allow airflow. A removable dust filter must be located behind the vent.
- c. **Finish:** The enclosure shall be natural aluminum (unless otherwise specified by the Engineer).
- d. **Features:** An "On Battery" factory installed high impact red light option shall be installed on the BBS enclosure. The "On Battery" LED shall operate from the DC voltage of the BBS to notify that the BBS is on battery power without opening the door. The light will be wired to and controlled by the BBS power module. The enclosure shall be designed to rack mount the BBS and Fail Safe ATS transfer switch. When the BBS is mounted into the enclosure it must be mounted to accommodate straight-on horizontal viewing of the LCD screen on the BBS. Two (2) battery shelves with mats shall be provided.
- e. **Generator Connection:** A factory-installed flush mount generator compartment with neoprene gaskets for weatherproofing shall be installed in the enclosure. The generator compartment shall include a locking 30 Ampere plug, L5-30P, for connecting of a portable AC generator. A manual transfer switch shall be mounted within the generator compartment to allow for transferring from utility power to generator power. The generator door will provide a cable slot to allow for closing of the door when the generator is plugged in and to lock the cable inside of the compartment. The door shall include a Corbin Type 2 lock.
- f. **Mounting:** The cabinet will be mounted to the traffic control cabinet with six (6) hex head bolts, ¼" x 20". All holes will be field drilled by the Contractor to accommodate the specific situation. A grommet must be supplied to protect the cable in a field drilled 1.5 inch to 2 inch hole for cable connection to the existing traffic controller. The BBS mounting hardware, bolts, washers, nuts, gaskets, bushings, grommets, etc., must comply with the manufacturer's recommendation as necessary to install the BBS cabinet in a safe and weatherproof manner. The Contractor shall supply the caulking.

BATTERY SYSTEM

a. Individual batteries shall be:

Voltage rating: 12 V type

Amp-hour rating: 102 Ampere-hour minimum Group size: 31 minimum

Easily replaced and commercially available off the shelf.

- b. Batteries used for each BBS shall consist of 4 batteries. All batteries must meet their specifications out of the box immediately after the initial 24-hour top off charge. Batteries that require cycling to meet the AH rating specifications are not acceptable.
- c. Batteries shall be deep discharge, sealed prismatic lead-calcium based GEL/VRLA (Gelled Electrolyte/Valve Regulated Lead Acid). Batteries designed for Cycle applications, such as Solar, are not acceptable. The battery must be designed for Standby Applications.
- d. Batteries shall have a discharge operating temperature range of –40 to +71 °C.

- e. Batteries shall have a Manufactures Warranty of 4 Years Full Replacement plus one (1) additional year when a battery balancer is used. The warranty shall cover any battery that does not meet 80 percent of its original reserve capability during the warranty period.
- The batteries shall be provided with appropriate interconnect wiring and corrosion-resistant mounting trays, shelf's and/or brackets appropriate for the cabinet into which they will be installed.
- Batteries shall indicate maximum recharge data and recharging cycles.
- Battery Harness:
 - 1. Battery interconnect wiring shall be via a two-part modular harness.
 - 2. Part I shall be equipped with red (+) and black (-) 12 inch cabling that can be permanently connected to the positive and negative posts of each battery.
 - 3. Part II shall be equipped with the mating Power Pole style connector for the batteries and a single, insulated Power Pole style connection to the inverter/charger unit. Harness shall be fully insulated and constructed to allow batteries to be quickly and easily connected in any order to ensure proper polarity and circuit configuration.
 - Power Pole connectors may be either one-piece or two-piece. If a two-piece connector is used, a locking pin shall be used to prevent the connectors from separating.
 - All battery interconnect harness wiring shall be UL Style 1015 CSA TEW or Welding Style Cable or equivalent, all of proper gauge with respect to design current and with sufficient strand count for flexibility and ease of handling.
 - 6. Battery terminals shall be covered and insulated with molded boots so as to prevent accidental shorting.
- Battery Balancer: The battery balancer shall be provided to automatically balance the battery charge voltage on all batteries in the string to within ±100 mV between any two batteries. The Balancer shall allow for any single 12 V battery within the battery string to be replaced at any time throughout the warranty period and not require the purchase of new batteries, to install the battery covered under the warranty.

BBS INSTALLATION & TESTING

Installation

The Contractor shall install the complete BBS cabinet assembly as designated by the Engineer.

Wiring and Programming

The Contractor shall be responsible to completely wire each battery backup system, including contact wiring and programming as follows:

- 1. Contact 1 (C1) "On-Battery" (Signal Cabinet 'Alarm No. 2').
- Contact 2 (C2) "Low Battery" (Signal Cabinet 'Maintenance Required' Alarm).
 Contact 3 (C3) "Low Battery" (Signal Cabinet 'Flash Activation').
- 4. Contact 4 (C4) "BBS Faults" (Signal Cabinet 'Maintenance Required' Alarm).
- 5. Contact 5 (C5) "BBS Alarms" (Signal Cabinet 'Maintenance Required' Alarm).

Important: An approved method shall be provided by the Contractor/BBS supplier for wiring between the BBS and signal cabinet for "Flash Activation" during the "Low Battery" period. The Contractor shall be responsible for obtaining approval by the Engineer, once a method is determined for the remote (automatic) flash activation in order to provide consistency in citywide installation.

Turn-On

Upon final installation at the project location, the Contractor shall "Turn-On" and test the BBS system. The Contractor shall arrange to have a knowledgeable technician from the BBS manufacturer present at the time of each BBS "Turn-On". The representative shall be fully-qualified to work on their respective BBS equipment and its connectivity to various types of traffic signal cabinets. The Engineer shall be notified at least seven (7) working days prior to each intersection "Turn-On".

Testing shall include BBS operation in the "On-Battery" mode, "Low Battery" mode, and verification that alarm and fault relay contacts are properly functioning.

Upon satisfactory "Turn-On" at the project location, the Engineer shall be notified within three (3) days, for field-verification of all tests performed.

10-3.18 LIGHT EMITTING DIODE PEDESTRIAN SIGNAL FACE MODULES GENERAL

Summary

This work includes installing LED pedestrian signal face (PSF) module into standard Type A pedestrian signal housing. Comply with Section 86, "Electrical Systems," of the Standard Specifications.

Submittals

Before shipping LED PSF modules to job site, submit the following to the Transportation Laboratory:

- 1. Delivery form including district number, EA, and contact information
- 2. List containing all LED PSF module serial numbers anticipated for use
- 3. LED PSF modules
- 4. Manufacturer's name, trademark, model number, lot number, month and year of manufacture

Quality Control and Assurance

Module must be one listed on the Pre-Qualified Products List for LED traffic signals at:

http://www.dot.ca.gov/hq/esc/approved_products_list

The State will test LED PSF module shipments as specified in ANSI/ASQ Z1.4. Testing will be completed within 30 days of delivery to the Transportation Laboratory. LED PSF modules tested or submitted for testing must be representative of typical production units. LED PSF modules will be tested as specified in California Test 606. All parameters of the specification may be tested on the modules.

Delays resulting from submittal of non-compliant materials do not relieve you from executing the contract within the allotted time. Non-compliant materials will be rejected. You must resubmit new LED for retesting and pick up the failed units within 7 days of notification. You must provide new LED PSF modules and allow a minimum of 30 days for the retest. You must pay for all shipping and handling costs related to testing and retesting. Delays resulting from resubmittal and retesting are your responsibility and no extra time will be allowed.

After successful testing, you must pick up the tested LED PSF modules from the Transportation Laboratory and deliver to the job site.

Warranty

The manufacturer must provide a written warranty against defects in materials and workmanship for LED PSF modules for a minimum period of 48 months after installation of LED PSF modules. Replacement LED PSF modules must be provided within 15 days after receipt of failed LED PSF modules at your expense. The State pays for shipping the failed modules to you. All warranty documentation must be submitted to the Engineer before installation. Replacement LED PSF modules must be delivered to State Maintenance Electrical Shop at 1808 N. Batavia Street, Orange, CA 92865, Telephone (714) 974-3092.

MATERIALS

LED PSF module must:

- 1. Be from the same manufacturer.
- Be installed in standard Type A pedestrian signal housing, "UPRAISED HAND" and "WALKING PERSON." Do not include reflectors.
- 3. Use LED as the light source.
- 4. Be designed to mount behind or replace face plates of standard Type A housing as specified in ITE publication, Equipment and Material Standards, Chapter 3, "Pedestrian Traffic Control Signal Indications" and the "California MUTCD."
- 5. Have a minimum power consumption of 10 W.
- 6. Use required color and be ultra bright type rated for 100,000 hours of continuous operation from -40 to +74 °C.

- 7. Be able to replace signal lamp optical units and pedestrian signal faces with both LED and incandescent light sources.
- 8. Fit into pedestrian signal section housings without modifications to the housing. The housing must comply with ITE publication, Equipment and Materials Standards, Chapter 3, "Pedestrian Traffic Control Signal Heads."
- 9. Be a single, self-contained device, not requiring on-site assembly for installation into standard Type A housing.
- 10. Have the following information permanently marked on the back of module:
 - 10.1. Manufacturer's name
 - 10.2. Trademark
 - 10.3. Model number
 - 10.4. Serial number
 - 10.5. Lot number
 - 10.6. Month and year of manufacture
 - 10.7. Required operating characteristics, as follows:
 - 10.7.1. Rated voltage
 - 10.7.2. Power consumption
 - 10.7.3. Volt-ampere (VA)
 - 10.7.4. Power factor
- 11. Have prominent and permanent vertical markings for accurate indexing and orientation within the signal housing if a specific mounting orientation is required. Markings must include an up arrow, or the word "UP" or "TOP." Marking must be a minimum of 1-inch diameter.

Circuit board and power supply must be contained inside the LED PSF modules. Circuit board must comply with Chapter 1, Section 6 of TEES published by the Department.

Individual LEDs must be wired so catastrophic loss or failure of 1 LED will not result in loss of more than 5 percent of the PSF module light output. Failure of an individual LED in a string must not result in the loss of entire string or other indication.

LEDs must be evenly distributed in each indication. Do not use outline forms.

No special tools for installation are allowed.

Installation of the LED PSF module into pedestrian signal face must require only removal of lenses, reflectors, lamps, and existing LED modules.

Power supply for LED PSF module must be integral to the module. Power supply for each symbol must be isolated to avoid turn-on conflict.

Assembly and manufacturing processes for LED PSF module must assure that all internal components are adequately supported to withstand mechanical shock and vibration from high winds and other sources.

Material used for LED PSF module must comply with ASTM D 3935.

Enclosures containing either the power supply or electronic components of LED PSF module, except lenses, must be made of UL94VO flame-retardant material.

Color of "UPRAISED HAND" symbol must be portland orange.

Color of "WALKING PERSON" symbol must be lunar white.

Each symbol must not be less than 10 inches high and 6.5 inches wide. Uniformity ratio of illuminated symbols must not exceed 4 to 1 between highest and lowest luminance areas. Symbols must comply with ITE publication, Equipment and Material Standards, Chapter 3, "Pedestrian Traffic Control Signal Indications," and the "California MUTCD."

LED PSF module must maintain an average luminance value over 48 months of continuous use in signal operation for a temperature range of -40 to +74 $^{\circ}$ C. In addition, LED PSF modules must meet or exceed the following luminance values upon initial testing at 25 $^{\circ}$ C.

Luminance Values

PSF module	Luminance
UPRAISED HAND	1,094 FL
WALKING PERSON	1,547 FL

Color output of LED PSF module must comply with chromaticity requirements in Section 5.3 of ITE publication, Equipment and Material Standards, Chapter 3, "Pedestrian Traffic Control Signal Indications."

Measured chromaticity coordinates of LED PSF module must comply with the following chromaticity requirements for 48 months when operating over a temperature range of -40 to +74 °C.

Chromaticity Standards (CIE Chart)

UPRAISED HAND	Not greater then 0.390, nor less than 0.331, nor
(portland orange)	less than 0.997-X
	X: not less than 0.280, nor greater than 0.320
WALKING PERSON	Y: not less than 1.055*X - 0.0128, nor greater
(lunar white)	than $1.055*X + 0.0072$

LED PSF module maximum power consumption must not exceed the following values:

Power Consumption Requirements

PSF module	Power Consumption @ 24 °C	Power Consumption @ 74 °C
UPRAISED HAND	10.0 W	12.0 W
WALKING PERSON	9.0 W	12.0 W

Wiring and terminal block must comply with Section 13.02 of ITE publication, Equipment and Material Standards, Chapter 2, "Vehicle Traffic Control Signal Heads." The LED PSF module must be supplied with spade lugs and 3 secured, color-coded, 3-foot long, 600 V(ac), 20 AWG minimum stranded jacketed copper wires. Wires must comply with NEC, rated for service at $+105 \, ^{\circ}\text{C}$.

LED PSF module must operate:

- 1. At a frequency of 60 ± 3 Hz over a voltage range from 95 to 135 V(ac) without perceptible flicker to the unaided eye. Fluctuations of line voltage must have no visible effect on luminous intensity of the indications. Rated voltage for measurements must be 120 V(ac).
- 2. Compatible with currently used State controller assemblies including solid state load switches, flashers, and conflict monitors. Comply with TEES Chapters 3 and 6. If a 20 ma alternating current or less is applied to the unit, the voltage read across the 2 leads must be 15 V(ac) or less.

LED PSF module on-board circuitry must:

- 1. Include voltage surge protection to withstand high-repetition noise transients. The voltage surge protection must comply with NEMA Standard TS2, Section 2.1.6.
- 2. Comply with FCC, Title 47, SubPart B, Section 15 regulations for Class A emission limits for electronic noise

LED PSF module must provide a power factor of 0.90 or greater.

Total harmonic distortion from current and voltage induced into an alternating current power line by LED PSF module must not exceed 20 percent at an operating temperature of 25 °C.

The LED PSF module circuitry must prevent perceptible light emission to the unaided eye when a voltage, 50 V(ac) or less is applied to the unit.

When power is applied to LED PSF module, light emission must occur within 90 ms.

The "UPRAISED HAND" and "WALKING PERSON" symbol indications must be electrically isolated from each other. Sharing a power supply or interconnect circuitry between the 2 indications is not allowed.

10-3.19 LIGHT EMITTING DIODE COUNTDOWN PEDESTRIAN SIGNAL MODULE GENERAL

This work includes furnishing and installing Light Emitting Diode (LED) countdown pedestrian signal module into standard Type A pedestrian signal housing as described in these special provisions and as shown on the plans. Comply with Section 86, "Signals, Lighting and Electrical Systems," of the Standard Specifications.

Contractor to supply the pedestrian signal indication of the module with a combination message "UPRAISED HAND" and "WALKING PERSON" symbol that complies with pedestrian traffic control signal indications (PTCSI) standard for these symbols for a message-bearing surface of the size specified. Signal indications must also include numerical countdown display numbers 00 to 99. The numerical countdown display must have 2 columns of LED's and a minimum height of 7 inches. The LED countdown pedestrian signal module must display a solid Portland orange hand and lunar white person. The countdown pedestrian signal must be located adjacent to the associated "UPRAISED HAND" pedestrian signal head indication. The numerical countdown display must have 2 digital rows of LED's and a minimum height of 7 inches. The digital illuminated timer will count down the time starting with the beginning of flashing don't walk interval. The timer will go to zero at the beginning of the yellow phase, and must be dark during the walk and additional clearance intervals prior to the conflicting vehicular phase and during any other phase sequence. If the pedestrian change interval is interrupted or shortened as part of transition into pre-emption sequence, the countdown pedestrian signal display must be discontinued and go dark immediately upon activation of the pre-emption transition. Outlined shapes will not be accepted. Circuit boards and power supplies must be contained inside the modules. Circuit boards must conform to the requirements in Chapter 1, Section 6 of the Transportation Electrical Equipment Specifications (TEES).

LED countdown pedestrian signal module must conform to the following:

- 1. Manual on Uniform Traffic Control Devices (MUTCD).
- 2. Applicable provisions of the current specification of the Institute of Transportation Engineering (ITE) standard titled Vehicle Traffic Control Signal Heads, and Pedestrian Traffic Control Signal Indications (PTCSI).
- 3. Section 86 specifications for LED Pedestrian signal modules.

CONSTRUCTION

The LED countdown combination pedestrian signal face module must be designed to mount behind or replace the existing face plate of existing Type A housing as specified by the requirements in the ITE Publication: Equipment and Material Standards, Chapter 3 (Pedestrian Traffic Control Signal Indications).

The LED countdown pedestrian signal module must be a single, self-contained device, not requiring on-site assembly for installation into Type A housing. The power supply for the module must be integral to the unit.

The circuit board and power supply must be contained inside the module.

The assembly and manufacturing process for the LED signal assembly must be designed to assure all internal components are adequately supported to withstand mechanical shock and vibration from high winds and other sources.

MATERIALS

Material used for the lens and signal module construction must conform to ASTM. specifications for the materials.

Enclosures containing either the power supply or electronic components of the signal module must be made of UL94VO flame retardant materials. The lens of the signal module is excluded from this requirement.

MODULE IDENTIFICATION

Each module must have the manufacturer's name, trademark, model number, serial number, date of manufacture (month-year), and lot number as identification permanently marked on the back of the module.

The following operating characteristics must be permanently marked on the back of the module: rated voltage and rated power in Watts and Volt-ampere.

Each module must have prominent and permanent marking(s) for correct indexing and orientation within a signal housing. The markings must consist of an up arrow, or the word "UP" or "TOP".

ELECTRICAL

Maximum power consumption requirements for the modules are as follows:

Power Consumption in Watts					
Hand Walking Person Count-Down Display					
25 °C	74 °C	25 °C	74 °C	25 °C	74 °C
10	12	9	12	6	8

LED countdown pedestrian signal modules must have Environmental Protection Agency (EPA) Energy Star compliance ratings.

The modules must operate at frequency of 60 ± 3 Hz over a voltage range from 95 to 135 V(ac). The fluctuations of line voltage must have no visible effect on the luminous intensity of the indications.

Operating voltage of the modules must be 120 V(ac). All parameters must be measured at this voltage.

The LED countdown pedestrian signal module must have a power factor of 0.90 or greater.

Total harmonic distortion (current and voltage) induced into an AC power line by a LED signal module must not exceed 20 percent.

The countdown pedestrian signal module on-board circuitry must include voltage surge protection to withstand high-repetition noise transients as stated in Section 2.1.6 of NEMA Standard TS-2.

The LED circuitry must prevent perceptible flicker to the unaided eye over the voltage range specified above.

All wiring and terminal blocks must meet the requirements of Section 13.02 of ITE Publication: Equipment and Material Standards, Chapter 2 (Vehicle Traffic Control Signal Heads).

The modules must be operationally compatible with currently used controller assemblies (solid state load switches, flashers, and conflict monitors). Refer to TEES Chapters 3 and 6 for specifications on these devices.

When an AC current of 20 mA (or less) is applied to the unit, the voltage read across the two leads must be 15 V(ac) or less.

The modules and associated on-board circuitry must meet Class A emission limits referred in Federal Communications Commission (FCC) Title 47, Subpart B, Section 15 regulations concerning the emission of electronic noise.

The LEDs must be wired in series parallel strings. The failure of any one LED, and its associated string of LEDs, must not cause the loss of more than 5 percent of the light output of the complete LED module.

Transient voltage suppression/protection must be provided internal to the LED module to minimize the possibility of damage due to extreme over voltage.

The LED countdown combination pedestrian signal module must be operationally compatible with current 170/2070 type controllers.

The LED module must be supplied with three conductors 3 feet in length for each connection to the terminal board of the traffic signal indication. Each conductor must be 600 Volt, stranded No. 20 AWG minimum copper wire, rated for service at +105 °C, capable of withstanding all adverse effects of moisture, corrosive atmosphere and temperatures associated with the operation of the signal head. Spade lugs must be on the ends of each conductor.

The LED module must be capable of automatically setting the countdown timer by summing flashing don't walk time received from the controller and the load switches.

The height of each symbol on the module must be not less than 10 inches and the width of each symbol on the module must not be less than 6.5 inches.

Upon request, one schematic wiring diagram and installation manual must be provided with each LED countdown pedestrian signal module.

ENVIRONMENTAL REQUIREMENTS

LEDs must utilize appropriate technology to achieve the required color and must be the ultra bright type rated for 100,000 hours of continuous operation from -40 to +74 °C.

Aluminum Indium Gallium Phosphorus (AlInGaP), Portland Orange (amber hand and countdown numbers) LEDs must be utilized. The substrate material may be transparent. The lunar white LEDs (walking person) must be InGaN (Indium Gallium Nitride) UV Stabilized polycarbonate outer shell. The LED pedestrian countdown signal modules, when properly installed with gasket, must be protected against dust and moisture intrusion per requirements of NEMA Standard 250, sections 4.7.2.1 and 4.7.3.2, for Type 4 enclosures to protect all internal LED, electronic, and electrical components.

LUMINOUS INTENSITY

LED countdown pedestrian signal modules must be designed to operate over the specified ambient temperature and voltage range, attract the attention of, and be readable by, a viewer (both day and night) at all distances from 10 feet to the full width of the area to be crossed.

The luminous intensity of the LED countdown pedestrian signal module must not vary more than ± 10 percent for voltage range from 95 to 135 V(ac).

PHOTOMETRIC REQUIREMENTS

Each module must provide an average luminous intensity of at least 348 candela/ft² for "Hand", 492 candela/ft² for "Walking Person" symbol. The "Countdown" symbol should be 2-rowed LED's. All symbols must maintain its intensity throughout the useful life over the operating temperature range.

The uniformity ratio of an illuminated symbol must not exceed 4 to 1, between the highest luminance area and the lowest luminance area in the module.

The color output of the module must conform to the requirements of Section 5.3 in the ITE Publication: Equipment and Material Standards, Chapter 3 (Pedestrian Traffic Control Signal Indications):

- 1. "Hand" must be Portland orange not greater than 0.390, nor less than 0.331, nor less than 0.997 x
- 2. "Walking person" must be lunar white. X: not less than 0.280, nor greater than 0.320. Y: not less than 1.055x 0.0128, nor greater than 1.055x + 0.0072
- 3. "Countdown" display must be Portland orange

FUNCTIONS

Basic Operation

The control and regulation module must be of the "smart" type in order for the countdown displays to be automatically adjusted with the programmed intervals of the traffic controller.

Operating Mode

Clearance Cycle Countdown Mode- The display of the number of remaining seconds must begin only at the beginning of the pedestrian change interval. The module will start counting when the flashing clearance signal turns on and will countdown to "0" and turn off when the steady "Don't Walk" signal turns on.

PRODUCTION QUALITY ASSURANCE TESTING

Production quality assurance testing must be performed on each LED countdown pedestrian signal module. Failure to conform to the requirements of a production quality test must be cause for rejection. The manufacturer must retain test results for five years for warranty purposes.

Specified parameters may be measured and used for quality comparison of production modules (rated power, etc.).

LED countdown pedestrian signal modules must be tested for specified initial intensity after burn-in. The burn-in period must consist of signal modules being energized at rated voltage for a 30 minutes stabilization period before the measurements are made. A single point measurement with a correlation to the minimum initial luminous intensity requirements in "Photometric Requirements" of these special provisions for circular modules may be used. The ambient temperature for this measurement must be +25°C.

LED countdown pedestrian signal modules must be tested for luminous intensity requirements in "Photometric Requirements" of these special provisions.

LED countdown pedestrian signal modules must be tested for required power factor after burn-in.

LED countdown pedestrian signal modules must be tested by measuring current flow in amperes after burn-in. The measured current values must be compared against current values resulting from design qualification measurements. The current flow must not exceed the specified value. The measured ampere values with rated voltage must be recorded as volt-ampere on the product labels.

LED countdown pedestrian signal modules must be visually inspected for exterior physical damage or assembly anomalies. The surface of the lens must be free of scratches, abrasions, cracks, chips, discoloration, or other defects. Defects will be cause for rejection.

CERTIFICATE OF COMPLIANCE

The Contractor must provide the Engineer a Certificate of Compliance from the manufacturer, in conformance with the provisions of Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The certificate must certify that the LED countdown pedestrian signal modules comply with the requirements of these specifications. The certificate must also include a copy of applicable test reports on the pedestrian signal modules.

QUALITY ASSURANCE TESTING

The State will test LED countdown pedestrian signal module shipments as specified in ANSI/ASQ Z1.4. Testing will be completed within 30 days of delivery to the Transportation Laboratory. LED countdown pedestrian signal modules tested or submitted for testing must be representative of typical production units. LED countdown pedestrian signal modules will be tested as specified in California Test 606. All parameters of the specification may be tested on the modules.

Delays resulting from submittal of non-compliant materials do not relieve you from executing the contract within the allotted time. Non-compliant materials will be rejected. You must resubmit new LED for retesting and pick up the failed units within 7 days of notification. You must provide new LED countdown pedestrian signal modules and allow a minimum of 30 days for the retest. The contractor must pay for all shipping and handling costs related to testing and retesting. Delays resulting from resubmittal and retesting are your responsibility and no extra time will be allowed.

After successful testing, the contractor must pick up the tested LED countdown pedestrian signal modules from the Transportation Laboratory and deliver to the job site.

WARRANTY

The manufacturer must provide a written warranty against defects in materials and workmanship for the LED countdown pedestrian signal modules for a period of 48 months after installation of the LED countdown pedestrian signal modules. Replacement LED countdown pedestrian signal modules must be provided within 15 days after receipt of the failed LED countdown pedestrian signal modules at no cost to the State or the City. The State shall pay for shipping the failed modules to the manufacturer. All warranty documentation must be given to the Engineer prior to installation. Replacement LED countdown pedestrian signal modules must be delivered to Caltrans Maintenance Electrical Shop at 1808 N. Batavia Street, Orange, CA 92665, Telephone (714) 974-3092.

10-3.20 DETECTORS

Loop detector sensor units will be State-furnished in conformance with the provisions in "Materials" of these special provisions.

Loop wire shall be Type 2.

Loop detector lead-in cable shall beType C.

Slots shall be filled with elastomeric sealant or hot-melt rubberized asphalt sealant.

For Type E detector loops, sides of the slot shall be vertical and the minimum radius of the slot entering and leaving the circular part of the loop shall be 1-1/2 inches. Slot width shall be a maximum of 5/8 inch. Loop wire for circular loops shall be Type 2. Slots of circular loops shall be filled with elastomeric sealant or hot melt rubberized asphalt sealant.

PREFORMED INDUCTIVE LOOPS

Preformed inductive loops shall be the type shown on the plans.

The loop shall be 6-foot square unless otherwise shown. The loop shall consist of 4 turns of No. 16, or larger, wire with Type THWN or TFFN insulation.

The loop wires shall be encased in 3/8 inch, minimum, Schedule 40 or Schedule 80 PVC or polypropylene conduit. The conduit shall be sealed to prevent the entrance of water and the movement of wires within the conduit.

The loop wires from the preformed loop to the adjacent pull box shall be twisted together into a pair (at least 2 turns per foot) and encased in Schedule 40 or Schedule 80 PVC or polypropylene conduit between the preformed loop and the adjacent pull box or detector handhole. The lead-in conduit shall be sealed to prevent the entrance of water at the pull box or handhole end.

In new reinforced concrete structure decks, the preformed loops shall be secured to the top of the uppermost layer of reinforcing steel using nylon wire ties. The loop shall be held parallel to the structure deck by using PVC or polypropylene spacers where necessary. Conduit for lead-in conductors shall be placed between the uppermost 2 layers of reinforcing steel.

Preformed inductive loops shall not be installed in existing structure decks.

10-3.21 VIDEO IMAGE VEHICLE DETECTION SYSTEM GENERAL

Summary

This work includes installing new or used video image vehicle detection system (VIVDS) for temporary signal and lighting.

Definitions

Video Detection Unit (VDU): Processor unit that converts the video image from the camera and provides vehicle detection in defined zones. Unit includes an image processor, extension module, and communication card.

Video Image Sensor Assembly (VIS): An enclosed and environmentally-protected camera assembly used to collect the video image.

Video Image Vehicle Detection System (VIVDS): A system that detects video images of vehicles in defined zones and provides video output.

Submittals

Submit proposed list of materials before starting work:

Submittals

Item	Description	
Site analysis report	Written analysis for each detection site, recommending the optimum video sensor placement approved by the manufacturer.	
Lane configuration	Shop drawing showing detection zone setback, detection zone size, camera elevation, selected lens viewing angle, illustration of detection zone mapping to reporting contact output, and illustration of output connector pin or wire terminal for lane assignment.	
Configuration record	Windows XP PC compatible CD containing the final zone designs and calibration settings to allow reinstallation.	
Mounting and wiring	Approved wiring and service connection diagrams wrapped in clear self-adhesive plastic,	
information	placed in a heavy duty plastic envelope, and secured to the inside of the cabinet door.	
Communication protocol	Industry standard available in public domain. Document defining message structure organization, data packet length, message usability, and necessary information to operate a system from a remote Windows based personal computer.	
Programming software	CD containing set up and calibration software that observes and detects the vehicular traffic, including bicycles, motorcycles, and sub-compact cars, with overlay of detection zones and allows adjustment of the detection sensitivity for a traffic signal application.	
Detector performance DVD recordings and analysis	Performance analysis based on 24-hour DVD recording of contiguous activity for each approach. Include 2 contiguous hours of sunny condition, with visible shadows projected a minimum of 6 feet into the adjacent lanes, and two 1-hour night periods with vehicle headlights present.	
Acceptance testing schedule	Submit schedule for approval 15 days before acceptance testing of VIVDS. Acceptance testing is separate from detector performance and analysis.	

MATERIALS

VIVDS must include:

- 1. VIS and mounting hardware. Use a clamping device as mounting hardware on a pole or mast-arm
- 2. VDU
- 3. Power supply
- 4. Surge suppression
- 5. Cables
- 6. Connectors
- 7. Wiring for connecting to the State-furnished Model 332L traffic controller cabinet
- 8. Communication card

VIVDS must include necessary firmware, hardware, and software for designing the detection patterns or zones at the intersection or approach. Detection zones must be created with a graphic user interface designed to allow to anyone trained in VIVDS system setup to configure and calibrate a lane in less than 15 minutes.

Functional Requirements

VIVDS must support normal operation of existing detection zones while a zone is being added or modified. Zone must flash or change color on a viewing monitor when vehicular traffic is detected. Length and width of each detection zone for each lane must be approved by the Engineer.

Software and firmware must detect vehicular traffic presence, provide vehicle counts, set up detection zones, test VIVDS performance, and allow video scene and system operation viewing from the local traffic management center/office. VIVDS must support a minimum of 2 separate detection patterns or zones that can be enacted by a remote operator at the signal controller cabinet.

VIVDS detection zone must detect vehicles by providing an output for presence and pulse. At least one detection output must be provided for each detection zone. One spare detection output must be provided for each approach. Detection performance must be achieved for each detection zone with a maximum of 8 user-defined zones for every camera's field of view.

VIVDS must detect the presence of vehicles under all types of adverse weather and environmental conditions, including snow, hail, fog, dirt, dust or contaminant buildup on the lens or faceplate, minor camera motion due to winds, and vibration. Under low visibility conditions, the VIVDS must respond by selecting a fail-safe default pattern, placing a constant call mode for all approaches. VIVDS outputs must assume a fail-safe "on" or "call" pattern for presence detection if video signal or power is not available and must recover from a power failure by restoring normal operations within 3 minutes without manual intervention. If powered off for more than 90 days, system must maintain the configuration and calibration information in memory.

Detection algorithm must be designed to accommodate naturally occurring lighting and environment changes, specifically the slow moving shadows cast by buildings, trees, and other objects. These changes must not result in a false detection or mask a true detection. VIVDS must not require manual interventions for day-night transition or for reflections from poles, vehicles or pavement during rain and weather changes. VIVDS must suppress blooming effects from vehicle headlights and bright objects at night.

Vehicle detection must call service to a phase only if a demand exists and extend green service to the phase until the demand is taken care of or until the flow rates have reduced to levels for phase termination. VIVDS must detect the presence of vehicular traffic at the detection zone positions and provide the call contact outputs to the Model 170E or Model 2070 controller assembly with the following performance:

Detector Performance

Requirements	Performance during AMBER and RED interval	Performance during GREEN interval
Average response time after vehicle enters 3 feet into detection zone or after departing 3 feet past detection zone	≤ 1 s	≤ 100 ms
Maximum number of MISSED CALLS in 24-hour duration, where MISSED CALLS are greater than 5 s during AMBER and RED intervals and greater than 1 s during GREEN intervals (upon entering 3 feet of detection zone or after departing 3 feet past detection zone).	0	10
Maximum number of FALSE CALLS in 24-hour duration (calls greater than 500 ms without a vehicle present)	20	20

VIVDS must be able to locally store, for each lane, vehicle count data in 5, 15, 30, and 60 minute intervals for a minimum period of 7 days and be remotely retrievable. VIVDS must count vehicular traffic in detection zone with a 95 percent accuracy or better for every hour counted over a morning or an evening peak hour. VIVDS detection zone tested must have a minimum range of 50 feet behind the limit line for each approach. Testing period will be pre-approved by the engineer 48 hours in advance.

Technical Requirements

All equipment, cables, and hardware must be part of an engineered system that is designed by the manufacturer to fully interoperate with all other system components. Mounting assemblies must be corrosion resistant. Connectors installed outside the cabinets and enclosures must be corrosion resistant, weather proof, and watertight. Exposed cables must be sunlight and weather resistant. Label cables with permanent cable labels at each end.

Camera and zoom lens assembly must be housed in an environmentally sealed enclosure that complies with NEMA 4 standards. Enclosure must be watertight and protected from dust. Enclosure must include a thermostat controlled heater to prevent condensation and to ensure proper lens operation at low temperatures. Adjustable sun shield that diverts water from the camera's field of view must be included. Connectors, cables and wiring must be enclosed and protected from weather.

Each camera and its mounting hardware must be less than 10 pounds and less than 1 square foot equivalent pressure area. Only one camera must be mounted on a traffic signal or luminaire arm. Top of camera must not be more than 12 inches above top of luminaire arm.

VIS must use a charge-coupled device (CCD) element, support National Television Standards Committee (NTSC) and RS170 video output formats, and have a horizontal resolution of at least 360 lines. VIS must include an auto gain control (AGC) circuit, have a minimum sensitivity to scene luminance from 0.1-lux to 10,000 lux, and produce a usable video image of vehicular traffic under all roadway lighting conditions regardless of the time of day. VIS must have a motorized lens with variable focus and zoom control with an aperture of f/1.4 or better. Focal length must allow \pm 50 percent adjustment of the viewed detection scene.

A flat panel video display with a minimum 8-inch screen and that supports NTSC video output must be enclosed in the Model 332L cabinet for viewing video detector images and for performing diagnostic testing. Display must be viewable in direct sunlight. Each VIVDS must have video system connections that support the NTSC video output format, can be seen in each camera's field of view, and have a program to allow the user to switch to any video signal at an intersection. System must allow independent viewing of a scene while video recording other scenes without interfering with the operation of the system's output.

VDU must operate between -37 to +74 °C and 0 to 95 percent relative humidity.

VDU front panel must have indicators for power, communication, presence of video input for each VIS, and a real time detector output operation. Hardware or software test switch must be included to allow the user to place either a constant or a momentary call for each approach. Indicators must be visible in daylight from 5 feet away.

VDU must have a serial communication port, EIA 232/USB 2.0 that supports sensor unit setup, diagnostics, and operation from a local PC compatible laptop with Windows XP or later version operating system. VIVDS must have an Ethernet communication environment, including Ethernet communication card. VIVDS must include central and field software to support remote real-time viewing and diagnostics for operational capabilities through wide area network (WAN) or wireless. Wireless networking standard must be IEEE 802.11g/n.

VDU, image processors, extension modules, and video output assemblies must be inserted into the controller input file slots using the edge connector to obtain limited 24 V(dc) power and to provide contact closure outputs. Cabling the output file to a "D" connector on the front of the VDU is acceptable. No rewiring to the standard Model 332L cabinet is allowed. Controller cabinet resident modules must comply with the requirements in Chapter 1 and Sections 5.2.8, 5.2.8.1, 5.2.8.2, 5.4.1, 5.4.5, 5.5.1, 5.5.5, and 5.5.6 of TEES.

VIVDS must operate between 90 to 135 V(ac) service as specified in NEMA TS-1. VIS, excluding the heater circuit, must draw less than 10 W of power. Power supply or transformer for the VIVDS must meet the following minimum requirements:

Minimum Requirements for Power Supply and Transformers

Item Power Supply		Transformer	
Power Cord	Standard 120 V(ac), 3 prong cord, 3 feet minimum length (may be added by	Standard 120 V(ac), 3 prong cord, 3 feet minimum length (may be added by	
	Contractor)	Contractor)	
Туре	Switching mode type	Class 2	
Rated Power	Two times (2x) full system load	Two times (2x) full system load	
Operating Temperature	-37 to 74 °C	-37 to 74 °C	
Operating Humidity Range	From 5 to 95 percent	From 5 to 95 percent	
Input Voltage	From 90 to 135 V(ac)	From 90 to 135 V(ac)	
Input Frequency	$60 \pm 3 \text{ Hz}$	$60 \pm 3 \text{ Hz}$	
Inrush Current	Cold start, 25 A Max at 115 V	N/A	
Output Voltage	As required by VIVDS	As required by VIVDS	
Overload Protection	From 105 to 150 percent in output pulsing mode	Power limited at >150 percent	
Over Voltage Protection	From 115 to 135 percent of rated output voltage	N/A	
Setup, Rise, Hold Up	800ms, 50ms,15ms at 115 V(ac)	N/A	
Withstand Voltage	I/P-0/P:3kV, I/P-FG:1.5kV, for 60 s.	I/P-0/P:3kV, I/P-FG:1.5kV, for 60 s	
Working Temperature	Not to exceed 70°C@30 percent load	Not to exceed 70 °C@ 30 percent load	
Safety Standards	UL 1012, TUV EN60950	UL 1585	
EMC Standards	EN55022 Class B, EN61000-4-2, 3, 4, 5	N/A	

Field terminated circuits must include transient protection as specified in IEEE Standard 587-1980, Category C. Video connections must be isolated from ground.

Wiring must be routed through end caps or existing holes. New holes for mounting or wiring must be shop-drilled.

VIVDS and support equipment required for acceptance testing could be new or used.

CONSTRUCTION

Install VDU in a State-furnished Model 170E or Model 2070 controller assembly. Install VIS power supply or transformer on a standard DIN rail using standard mounting hardware and power conductors wired to DIN rail mounted terminal blocks in the controller cabinet.

Wire each VIS to the controller cabinet with a wiring harness that includes all power, control wiring, and coaxial video cable. Attach harness with standard MIL type and rated plugs. Cable type and wire characteristics must comply with manufacturer's recommendations for the VIS to cabinet distance. Wiring and cables must be continuous, without splices, between the VIS and controller cabinet. For setup and diagnostic access, terminate serial data communication output conductors at TB-0 and continue for a minimum of 10 feet to a DB9F connector. Tape ends of unused and spare conductors to prevent accidental contact to other circuits. Label conductors inside the cabinet for the functions depicted the approved detailed diagrams.

Adjust the lens to view 110 percent of the largest detection area dimension. Zones or elements must be logically combined into reporting contact outputs that are equivalent to the detection loops and with the detection accuracy required.

Verify the performance of each unit, individually, and submit the recorded average and necessary material at the conclusion of the performance test. Determine and document the accuracy of each unit, individually, so that each unit may be approved or rejected separately. Failure to submit necessary material at the conclusion of testing invalidates the test. The recorded media serves as acceptance evidence and must not be use for calibration. Calibration must have been completed before testing and verification.

Verify the detection accuracy by observing the VIVDS performance and recorded video images for a contiguous 24-hour period. The recorded video images must show the viewed detection scene, the detector call operation, the signal phase status for each approach, the vehicular traffic count, and time-stamp to 1/100 of a second, all overlaid on the recorded video. Transfer the 24-hour analysis to DVD.

VIVDS must meet the detection acceptance criterion specified in table titled "Detector Performance."

Calculate the VIVDS's vehicular traffic count accuracy as 100[1-(|TC-DC|/TC)], where DC is the detector's vehicular traffic count and TC is the observed media-recorded vehicular traffic count and where the resulting fraction is expressed as an absolute value.

The Engineer will review the data findings and accept or reject the results within 7 days. Vehicle anomalies or unusual occurrences will be decided by the Engineer. Data or counts not agreed by the Engineer will be considered errors and count against the unit's calibration. If the Engineer determines that the VIVDS does not meet the performance requirements, you must re-calibrate and retest the unit, and resubmit new test data within 7 days. After 3 failed attempts, you must replace the VIVDS with a new unit.

Notify the Engineer 20 days before the unit is ready for acceptance testing. Acceptance testing must be scheduled to be completed before the end of a normal work shift. You must demonstrate that all VIS and VDUs satisfy the functional requirements.

Repair, replacement, and retesting of VIVDS components due to failure or rejection are the Contractor's expense.

PAYMENT

Full compensation for video image vehicle detection system shall be considered as included in the contract lump price paid for temporary signal and lighting and no separate payment will be made therefor.

10-3.22 EMERGENCY VEHICLE DETECTOR SYSTEM

Each traffic signal shall have an emergency vehicle detector system which shall conform to the details shown on the plans and these special provisions.

GENERAL

Each emergency vehicle detector system shall consist of an optical emitter assembly or assemblies located on the appropriate vehicle and an optical detector/discriminator assembly or assemblies located at the traffic signal.

Emitter assemblies are not required for this project except units for testing purposes to demonstrate that the systems perform as specified. Tests shall be conducted in the presence of the Engineer as described below under "System Operation" during the signal test period. The Engineer shall be given a minimum of 2 working days notice prior to performing the tests.

Each system shall permit detection of 2 classes of authorized vehicles. Class I (mass transit) vehicles shall be detected at ranges of up to 1,000 feet from the optical detector. Class II (emergency) vehicles shall be detected at ranges up to 1,800 feet from the optical detector.

Class I signals (those emitted by Class I vehicles) shall be distinguished from Class II signals (those emitted by Class II vehicles) on the basis of the modulation frequency of the light from the respective emitter. The modulation frequency for Class I signal emitters shall be 9.639 ± 0.110 Hz. The modulation frequency for Class II signal emitters shall be 14.035 ± 0.250 Hz.

A system shall establish a priority of Class II vehicle signals over Class I vehicle signals and shall conform to the requirements in Section 25352 of the California Vehicle Code.

EMITTER ASSEMBLY

Each emitter assembly, provided for testing purposes, shall consist of an emitter unit, an emitter control unit, and connecting cables.

General

Each emitter assembly, including lamp, shall operate over an ambient temperature range from -34 to +60 °C at both modulation frequencies and operate continuously at the higher frequency for a minimum of 3,000 hours at 25 °C ambient before failure of the lamp or other components.

Each emitter unit shall be controlled by a single, maintained-contact switch on the respective emitter control unit. The switch shall be located to be readily accessible to the vehicle driver. The control unit shall contain a pilot light to indicate that the emitter power circuit is energized and shall generate only one modulating code, either that for Class I vehicles or that for Class II vehicles.

Functional

Each emitter unit shall transmit optical energy in one direction only.

The signal from each Class I signal emitter unit shall be detectable at a distance of 1,000 feet when used with a standard optical detection/discriminator assembly and filter to eliminate visible light. Visible light shall be considered eliminated when the output of the emitter unit with the filter is less than an average of 0.0003-candela per energy pulse in the wavelength range from 380 to 750 nm when measured at a distance of 10 feet. A Certificate of Compliance, conforming to the requirements in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications shall be submitted to the Engineer with each Class I emitter unit.

The signal from each Class II signal emitter unit shall be detectable at a distance of 1,800 feet when used with a standard optical detection/discriminator assembly.

The standard optical detection/discriminator assembly to be used in making the range tests shall be available from the manufacturer of the system. A certified performance report shall be furnished with each assembly.

Electrical

Each emitter assembly shall provide full light output with input voltages from 12.5 and 17.5 V(dc). An emitter assembly shall not be damaged by input voltages up to 7.5 V(dc) above supply voltage. The emitter assembly shall not generate voltage transients, on the input supply, which exceed the supply voltage by more than 4 volts.

Each emitter assembly shall consume not more than 100 W at 17.5 V(dc) and shall have a power input circuit breaker rated at 10 A to 12 A, 12 V(dc).

The design and circuitry of each emitter shall permit its use on vehicles with either negative or positive ground without disassembling or rewiring of the unit.

Mechanical

Each emitter unit shall be housed in a weatherproof corrosion-resistant housing. The housing shall be provided with facilities to permit mounting on various types of vehicles and shall have provision for aligning the emitter unit properly and for locking the emitter unit into this alignment.

Each emitter control unit shall be provided with hardware to permit the unit to be mounted in or on an emergency vehicle or mass transit vehicle. Where required for certain emergency vehicles, the emitter control unit and exposed controls shall be weatherproof.

OPTICAL DETECTION/DISCRIMINATOR ASSEMBLY

General

Each optical detection/discriminator assembly shall consist of one or more optical detectors, connecting cable and a discriminator module.

Each assembly, when used with standard emitters, shall have a range of at least 1,000 feet for Class I signals and 1,800 feet for Class II signals. Standard emitters for both classes of signals shall be available from the manufacturer of the system. Range measurements shall be taken with all range adjustments on the discriminator module set to "maximum."

Optical Detector

Each optical detector shall be a waterproof unit capable of receiving optical energy from two separately aimable directions. The horizontal angle between the 2 directions shall be variable from 180 degrees to 5 degrees.

The reception angle for each photocell assembly shall be a maximum of 8 degrees in all directions about the aiming axis of the assembly. Measurements of reception angle will be taken at a range of 1,000 feet for a Type I emitter and at a range of 1,800 feet for a Type II emitter.

Internal circuitry shall be solid state and electrical power shall be provided by the associated discriminator module.

Each optical detector shall be contained in a housing, which shall include 2 rotatable photocell assemblies, an electronic assembly and a base. The base shall have an opening to permit mounting on a mast arm or a vertical pipe nipple, or suspension from a span wire. The mounting opening shall have female threads for 3/4 inch conduit. A cable entrance shall be provided which shall have male threads and gasketing to permit a waterproof cable connection. Each detector shall have weight of less than 2.5 pounds and shall present a maximum wind load area of 36 square inches. The housing shall be provided with weep holes to permit drainage of condensed moisture.

Each optical detector shall be installed, wired and aimed as specified by the manufacturer.

Cable

Optical detector cable (EV-C) shall meet the requirements of IPCEA-S-61-402/NEMA WC 5, Section 7.4, 600 V(ac) control cable, 75 °C, Type B, and the following:

- A. The cable shall contain 3 conductors, each of which shall be No. 20 (7 x 28) stranded, tinned copper with low-density polyethylene insulation. Minimum average insulation thickness shall be 25 mils. Insulation of individual conductors shall be color coded: 1-yellow, 1-blue, 1-orange.
- B. The shield shall be either tinned copper braid or aluminized polyester film with a nominal 20 percent overlap. Where film is used, a No. 20 (7 x 28) stranded, tinned, bare drain wire shall be placed between the insulated conductors and the shield and in contact with the conductive surface of the shield.
- C. The jacket shall be black polyvinyl chloride with minimum ratings of 600 V(ac) and 80 °C and a minimum average thickness of 43 mils. The jacket shall be marked as required by IPCEA/NEMA.
- D. The finished outside diameter of the cable shall not exceed 0.35-inch.
- E. The capacitance, as measured between any conductor and the other conductors and the shield, shall not exceed 48 pf per foot at 1000 Hz.
- F. The cable run between each detector and the controller cabinet shall be continuous without splices or shall be spliced only as directed by the detector manufacturer.

Discriminator Module

Each discriminator module shall be designed to be compatible and usable with a Model 170E controller unit and to be mounted in the input file of a Model 332L or Model 336L controller cabinet, and shall conform to the requirements of Chapter I of the State of California, Department of Transportation, "Traffic Signal Control Equipment Specifications."

Each discriminator module shall be capable of operating 2 channels, each of which shall provide an independent output for each separate input.

Each discriminator module, when used with its associated detectors, shall perform the following:

- A. Receive Class I signals at a range of up to 1,000 feet and Class II signals at a range of up to 1,800 feet.
- B. Decode the signals, on the basis of frequency, at 9.639 ± 0.119 Hz for Class I signals and 14.035 ± 0.255 Hz for Class II signals.
- C. Establish the validity of received signals on the basis of frequency and length of time received. A signal shall be considered valid only when received for more than 0.50-second. No combination of Class I signals shall be recognized as a Class II signal regardless of the number of signals being received, up to a maximum of 10 signals. Once a valid signal has been recognized, the effect shall be held by the module in the event of temporary loss of the signal for a period adjustable from 4.5 to 11 seconds in at least 2 steps at 5 ± 0.5 second and 10 ± 0.5 second.
- D. Provide an output for each channel that will result in a "low" or grounded condition of the appropriate input of a Model 170E controller unit. For Class I signals the output shall be a 6.25 Hz ± 0.1 percent, rectangular waveform with a 50 percent duty cycle. For Class II signals the output shall be steady.

Each discriminator module shall receive electric power from the controller cabinet at either 24 V(dc) or 120 V(ac).

Each channel together with the channel's associated detectors shall draw not more than 100 mA at 24 V(dc) or more than 100 mA at 120 V(ac). Electric power, one detector input for each channel and one output for each channel shall terminate at the printed circuit board edge connector pins listed below:

BOARD EDGE CONNECTOR PIN ASSIGNMENT

A	DC ground		
В	+24 V(dc)	P	(NC)
С	(NC)		
D	Detector input, Channel A	R	(NC)
E	+24 V(dc) to detectors	S	(NC)
F	Channel A output (C)	T	(NC)
		U	(NC)
Н	Channel A output (E)	V	(NC)
J	Detector input, Channel B	W	Channel B Output (C)
K	DC Ground to detectors	X	Channel B Output (E)
L	Chassis ground	Y	(NC)
M	AC-	Z	(NC)
N	AC+		

- (C) Collector, Slotted for Keying
- (E) Emitter, Slotted for Keying
- (NC) Not connected, cannot be used by manufacturer for any purpose.

Two auxiliary inputs for each channel shall enter each module through the front panel connector. Pin assignment for the connector shall be as follows:

- A. Auxiliary detector 1 input, Channel A
- B. Auxiliary detector 2 input, Channel A
- C Auxiliary detector 1 input, Channel B
- D. Auxiliary detector 2 input, Channel B

Each channel output shall be an optically isolated NPN open collector transistor capable of sinking 50 mA at 30 V(ac) and shall be compatible with the Model 170E controller unit inputs.

Each discriminator module shall be provided with means of preventing transients received by the detector from affecting the Model 170E controller assembly.

Each discriminator module shall have a single connector board and shall occupy one slot width of the input file. The front panel of each module shall have a handle to facilitate withdrawal and the following controls and indicators for each channel:

- A. Three separate range adjustments each for both Class I and Class II signals.
- B. A 3-position, center-off, momentary contact switch, one position (down) labeled for test operation of Class I signals, and one position (up) labeled for test operation of Class II signals.
- C. A "signal" indication and a "call" indication each for Class I and for Class II signals. The "signal" indication denotes that a signal above the threshold level has been received. A "call" indication denotes that a steady, validly coded signal has been received. These 2 indications may be accomplished with a single indication lamp; "signal" being denoted by a flashing indication and "call" with a steady indication.

In addition, the front panel shall be provided with a single circular, bayonet-captured, multi-pin connector for 2 auxiliary detector inputs for each channel. Connector shall be a mechanical configuration conforming to the requirements in Military Specification MIL-C-26482 with 10-4 insert arrangement, such as Burndy Trim Trio Bantamate Series, consisting of the following:

- A. Wall mounting receptacle, G0B10-4PNE with SM20M-1S6 gold plated pins.
- B. Plug, G6L10-4SNE with SC20M-1S6 gold plated sockets, cable clamp and strain relief that shall provide for a right angle turn within 2-1/2 inches maximum from the front panel surface of the discriminator module.

Cabinet Wiring

The Model 332L cabinet has provisions for connections between the optical detectors, the discriminator module and the Model 170E controller unit.

Wiring for a Model 332L cabinet shall conform to the following:

- A. Slots 12 and 13 of input file "J" have each been wired to accept a 2-channel module.
- B. Field wiring for the primary detectors, except 24 V(dc) power, shall terminate on either terminal board TB-9 in the controller cabinet or on the rear of input file "J," depending on cabinet configuration. Where TB-9 is used, position assignments shall be as follows:

Position	Assignment
4	Channel A detector input, 1st module (Slot J-12)
5	Channel B detector input, 1st module (Slot J-12)
7	Channel A detector input, 2nd module (Slot J-13)
8	Channel B detector input, 2nd module (Slot J-13)

The 24 V(dc) cabinet power will be available at Position 1 of terminal board TB-1 in the controller cabinet. Field wiring for the auxiliary detectors shall terminate on terminal board TB-O in the controller cabinet. Position assignments are as follows:

FOR MODULE 1 (J-12)		FOR MODULE 2 (J-13)	
Position	Assignment	Position	Assignment
1	+24 V(dc) from (J-12E)	7	+24 V(dc) from (J-13E)
2	Detector ground From (J-12K)	8	Detector ground from (J-13K)
3	Channel A auxiliary detector input 1	9	Channel A auxiliary detector input 1
4	Channel A auxiliary detector input 2	10	Channel A auxiliary detector input 2
5	Channel B auxiliary detector input 1	11	Channel B auxiliary detector input 1
6	Channel B auxiliary detector input 2	12	Channel B auxiliary detector input 2

SYSTEM OPERATION

The Contractor shall demonstrate that the components of each system are compatible and will perform satisfactorily as a system. Satisfactory performance shall be determined using the following test procedure during the functional test period:

- A. Each system to be used for testing shall consist of an optical emitter assembly, an optical detector, an optical detector cable and a discriminator module.
- B. The discriminator modules shall be installed in the proper input file slot of the Model 170E controller assembly.
- C. Two tests shall be conducted; one using a Class I signal emitter and a distance of 1,000 feet between the emitter and the detector, the other using a Class II signal emitter and a distance of 1,800 feet between the emitter and the detector. Range adjustments on the module shall be set to "Maximum" for each test.
- D. Each test shall be conducted for a period of one hour, during which the emitter shall be operated for 30 cycles, each consisting of a one minute "on" interval and a one minute "off" interval. During the total test period the emitter signal shall cause the proper response from the Model 170E controller unit during each "on" interval and there shall be no improper operation of either the Model 170E controller unit or the monitor during each "off" interval.

10-3.23 LUMINAIRES

Ballasts shall be the lag regulator type.

10-1.24 LIGHT EMITTING DIODE LUMINAIRE

GENERAL

Definitions

CALIPER: Commercially Available light emitting diode (LED) Product Evaluation and Reporting. A United States Department of Energy (US DOE) program for the testing and monitoring of commercially available LED luminaires and lights.

Correlated color temperature: The absolute temperature (in kelvin) of a blackbody whose chromaticity most nearly resembles that of the light source.

Houseside lumens: Lumens from luminaire directed to light up areas between fixture and the pole: e.g. as sidewalks at intersection, or areas off of the shoulders on freeways

IP Code: Enclosure protection rating that delineates the level at which foreign objects and water can intrude inside a device.

Junction temperature: The temperature of the electronic junction of the LED device. The junction temperature is critical in determining photometric performance, estimating operational life, and preventing catastrophic failure of the LED.

L70: The extrapolated life in hours of the luminaire when the luminous output depreciates 30 percent from initial values.

LM-79: A test method from the Illumination Engineering Society of North America (IESNA) specifying test conditions, measurements and report format for testing solid state lighting devices including LED luminaires

LM-80: A test method from the IESNAspecifying test conditions, measurements and report format for testing and estimating the long term performance of LEDs for general lighting purposes.

NVLAP: National Voluntary Laboratory Accreditation Program under the US DOE to accredit independent testing laboratories to qualify.

Power factor: Ratio of the real power component to the complex power component.

Streetside lumens: Lumens from luminaire directed to light up areas between fixture and the roadway: e.g. the traveled ways, freeway lanes.

Surge protection device (SPD): A subsystem or component that can protect the unit against short duration voltage and current surges.

Total harmonic distortion: The ratio of the root-mean-square (rms) value of the sum of the squared individual harmonic amplitudes to the rms value of the fundamental; frequency of a complex waveform.

Submittals

Submit sample luminaire for testing to the Transportation Laboratory after the manufacturer's testing is completed. Include the manufacturer's testing data.

Product submittals must include the following:

- 1. LED Luminaire Checklist
- 2. Product specification sheets:
 - 2.1. Maximum power in watts
 - 2.2. Maximum designed junction temperature
 - 2.3. Heat sink area in square inches
 - 2.4. Designed junction to ambient thermal resistance calculation with thermal resistance components clearly defined
 - 2.5. L70 in hours when extrapolated for the average nighttime operating temperature
- 3. IES LM-79 and IES LM-80 compliant test reports from a CALiPER-qualified or NVLAP-approved testing laboratory for the specific model submitted.
- 4. Photometric file (IES) based on LM-79 test report.
- 5. Initial and depreciated isofootcandle charts showing the specified minimum illuminance curve for that particular application. The charts must be calibrated to feet and show a 40 by 40 foot grid. The charts must be calibrated to the mounting height specified for that particular application. The depreciated isofootcandle curve must be calculated at the minimum operational life.
- 6. Test report showing surge protection device (SPD) performance as tested under ANSI/IEEE C62.41.2 and ANSI/IEEE C62.45.
- 7. Test report showing mechanical vibration test results as tested under California Test 611 or equal.

- 8. Datasheets from the LED manufacturer that includes information on life expectancy based on junction temperature.
- 9. Datasheets from power supply manufacturer that includes life expectancy information.

Quality Control and Assurance

Production quality assurance must be performed by the luminaire manufacturer and must include statistically-controlled routine tests to ensure minimum performance levels of the modules built to meet this specification and a documented process for resolving problems. The manufacturer must keep the process and test results documentation on file for a minimum of 7 years.

The Department may perform random sample testing on all shipments. Testing will be completed within 30 days after delivery to the Transportation Laboratory. Luminaires will be tested under California Test No. 678 and as specified. All parameters of the specification may be tested on the shipment sample. When testing is complete, you will be notified. You must pick up equipment from the test site and deliver to the job site.

One sample luminaire must be fitted with temperature sensor (either thermistor or thermo-couple). A temperature sensor must be mounted on the LED solder pad as close to the LED as possible. Another temperature sensor must be mounted on the power supply (driver) case. Light bar or modular systems must have one sensor for each module, mounted as close to the center of the module. Other configurations must have at least 5 sensors per luminaire. Contact the Department's Transportation Laboratory for advice on sensor location. Thermocouples must be either Type K or Type C. Thermistors must be negative temperature coefficient (NTC) type with a nominal resistance of $20~\mathrm{k}\Omega$. The appropriate thermocouple wire must be used. The leads must be a minimum of 6 ft. Documentation must accompany the test unit that details the type of sensor used.

The sample luminaires must be energized for a minimum of 24 hours, at 100 percent on-time duty cycle, at a temperature of +70 °F before performing any testing.

The luminaire lighting performance must be depreciated for the minimum operating life by using the LED manufacturer's data or the data from the LM-80 test report, whichever results in a higher lumen depreciation.

Failure of the luminaire that renders the unit non-compliant with the specification will be cause for rejection. If unit is rejected, you must allow 30 days for retesting. Retesting period starts when replacement luminaire is delivered to test site. You must pay for all retesting costs. Delays resulting from submittal of non-compliant materials do not relieve you from executing the contract within the allotted time.

If luminaire submitted for testing does not comply with specifications, remove the unit from the Transportation Laboratory within 5 business days after notification that it is rejected. If the unit is not removed within that period, it may be shipped to you at your expense.

You must pay for all shipping, handling, and transportation costs related with testing and retesting.

Warranty

Provide two years replacement warranty from the manufacturer of the luminaires from the date of installation against any defects or failures. Replacement luminaires must be provided within 10 days after receipt of failed luminaire at no cost to the Department. All warranty documentation must be given to the Engineer prior to installation. Replacement luminaires must be delivered to Department Maintenance Electrical Shop at 1808 N. Batavia Street, Orange, CA 92665, Telephone (714) 974-3092.

MATERIALS

General

The luminaire consists of an assembly that uses LEDs as the light source. In addition, a complete luminaire consists of a housing, an LED array, and an electronic driver (power supply). The luminaire must comply with the following requirements:

- 1. UL listed under UL 1598 for luminaires in wet locations or an equivalent standard from a recognized testing laboratory.
- 2. Have a minimum operational life of 63,000 hours.
- 3. Expected to operate at an average operating time of 11.5 hours per night.
- 4. Designed to operate at an average nighttime operating temperature of 70 °F.
- 5. Have an operating temperature range from -40° F to $+130^{\circ}$ F.
- 6. Defined by the following application:

Application	Typically Replaces
Roadway 1	200 Watt HPS mounted at 34 ft
Roadway 2	310 Watt HPS mounted at 40 ft.
Roadway 3	310 Watt HPS mounted at 40 ft. with back side control
Roadway 4	400 Watt HPS mounted at 40 ft.

The individual LEDs must be connected such that a catastrophic loss or a failure of one LED will not result in the loss of more than 20 percent of the luminous output of the luminaire.

Luminaire Identification

Each luminaire must have the following identification permanently marked inside the unit and outside of its packaging box:

- 1. Manufacturer's name
- 2. Trademark
- 3. Model number
- 4. Serial number
- 5. Date of manufacture (month-year)
- 6. Lot number
- 7. Project/Contract number
- 8. Rated voltage
- 9. Rated wattage
- 10. Rated power in VA

Electrical

The luminaire must operate from a 60 ± 3 Hz AC line over a minimum voltage range of 95 to 250 V(ac). The fluctuations of line voltage must have no visible effect on the luminous output. The standard operating voltages are 120 V(ac) and 240 V(ac). The power factor of the luminaire must be 0.90 or greater. Total harmonic distortion (current and voltage) induced into an AC power line by a luminaire must not exceed 20 percent. The maximum power consumption allowed for the luminaire depends on the application and is as shown in the following table:

Application	Max Wattage
Roadway 1	165
Roadway 2	235
Roadway 3	235
Roadway 4	300

Surge Suppression and Electromagnetic Interference

The luminaire on-board circuitry must include an SPD to withstand high repetition noise transients because of utility line switching, nearby lightning strikes, and other interference. The SPD must protect the luminaire from damage and failure for transient voltages and currents as defined in ANSI/IEEE C64.41.2 (Tables 1 and 4) for Location Category C-High. SPD must conform to UL 1449 depending on the components used in the design. SPD performance must be tested under ANSI/IEEE C62.45 based on ANSI/IEEE C62.41.2 definitions for standard and optional waveforms for Location Category C-High.

The luminaires and associated onboard circuitry must meet Class A emission limits under FCC Title 47, Subpart B, Section 15 regulations concerning the emission of electronic noise.

Compatibility

The luminaire must be operationally compatible with currently used lighting control systems and photoelectric controls.

Photometric Requirements

The luminaire must maintain a minimum illuminance level throughout the minimum operating life. The illuminance must not decrease by more than 30 percent over the minimum operating life or L70 must be at least the minimum operating life. The measurements must be calibrated to standard photopic calibrations. The minimum maintained illuminance is listed in the table below and is measured as a point:

Application	Application Mounting Minimum Height (ft) Illumin		Light Pattern Figure (iso-footcandle curve)		
	8 ()		(
Roadway 1	34	0.15	Pattern defined by ellipse with equation: $\frac{x^2}{(82)^2} + \frac{(y-20)^2}{(52)^2} = 1$ where: $x = \text{direction is longitudinal to the roadway,}$ $y = \text{direction is transverse to roadway,}$ luminaire is offset from center of pattern by 20 feet to the "houseside" of pattern.		
Roadway 2	40	0.2	Pattern defined by ellipse with equation: $\frac{x^2}{(82)^2} + \frac{(y-20)^2}{(52)^2} = 1$ where: $x = \text{direction is longitudinal to the roadway,}$ $y = \text{direction is transverse to roadway,}$ luminaire is offset from center of pattern by 20 feet to the "houseside" of pattern.		
Roadway 3	40	0.2	Pattern defined by ellipse with equation: $\frac{x^2}{(92)^2} + \frac{(y-23)^2}{(55)^2} = 1$ for $y \ge 0$ (street side) where: $x = \text{direction is longitudinal to the roadway}$ $y = \text{direction is transverse to roadway, luminaire is offset from center of pattern by 23 feet to the "houseside" of pattern.}$		
Roadway 4	40	0.2	Pattern defined by ellipse with equation: $\frac{x^2}{(92)^2} + \frac{(y-23)^2}{(55)^2} = 1$ where: $x = \text{direction is longitudinal to the roadway}$ $y = \text{direction is transverse to roadway, luminaire is offset from center of pattern by 23 feet to the "houseside" of pattern.}$		

The luminaire must have a correlated color temperature range from 3,500 to 6,500 K. The color rendering index must be 65 or greater.

The luminaire must not allow more than:

- 1. 10 percent of the rated lumens to project above 80 degrees from vertical
- 2. 2.5 percent of the rated lumens to project above 90 degrees from vertical

Thermal Management

The thermal management of the heat generated by the LEDs must be of sufficient capacity to assure proper operation of the luminaire over the minimum operation life. The LED manufacturer's maximum junction temperature for the minimum operation life must not be exceeded. The maximum allowed junction temperature is 221 °F.

The junction-to-ambient thermal resistance must be 95 °F per watt or less. Thermal management must be passive by design. The use of fans or other mechanical devices is not allowed. The heat sink material must be aluminum or other material of equal or lower thermal resistance.

The luminaire may contain circuitry that will automatically reduce the power to the LEDs to a level that will insure the maximum junction temperature is not exceeded, when the ambient outside air temperature is 100 °F or greater.

Physical and Mechanical Requirements

The luminaire must be a single, self-contained device, not requiring on-site assembly for installation. The power supply for the luminaire is integral to the unit. The maximum weight of the luminaire must be 35 lb. The maximum effective projected area when viewed from either side or either end must be 1.4 ft². The housing must be a light to medium gray color within the Federal Standard 595B ranges from 26250 to 26500 for semi-gloss sheen, or 36250 to 36500 for flat sheen.

The housing must be fabricated from materials that are designed to withstand a 3000-hour salt spray test under ASTM B 117. All aluminum used in housings and brackets must be a marine grade alloy with less than 0.2 percent copper. All exposed aluminum must be anodized.

Each refractor or lens must be made from UV-inhibited high impact plastic (such as acrylic or polycarbonate) or heat and impact resistant glass, and be resistant to scratching. Polymeric materials of enclosures containing either the power supply or electronic components of the luminaire must be made of UL94VO flame retardant materials. The lenses of the luminaire are excluded from this requirement. Paint or powder coating of the housing must conform to the requirements of the Department's Standard Specifications and the Contract's Bid Book. A chromate conversion undercoating must be used underneath a thermoplastic polyester powder coat.

Each housing must be provided with a slip fitter capable of mounting on a 2 inch pipe tenon. This slip fitter must fit on mast arms from 1-5/8 to 2-3/8 inch (O.D.). The slip fitter must be capable of being adjusted a minimum of ±5 degrees from the axis of the tenon in a minimum of five steps: +5, +2.5, 0, -2.5, -5. The clamping brackets of the slip fitter must not bottom out on the housing bosses when adjusted within the designed angular range. No part of the slip fitter mounting brackets on the luminaires must develop a permanent set in excess of 1/32 inch when the 2 or 4, 3/8 inch. diameter cap screws used for mounting are tightened to 10 ft-lb. Two sets of cap screws may be supplied to allow the slip fitter to be mounted on the pipe tenon in the acceptable range without the cap screws bottoming out in the threaded holes. The cap screws and the clamping brackets must be made of corrosion resistant materials or treated to prevent galvanic reactions, and be compatible with the luminaire housing and the mast-arm.

The assembly and manufacturing process for the LED luminaire must be designed to assure internal components are adequately supported to withstand mechanical shock and vibration from high winds and other sources. Luminaires to be mounted on horizontal mast arms, when tested under California Test 611 (as modified below) must be capable of withstanding the following cyclic loadings in units of acceleration of gravity(G):

- 1. Vertical plane at a minimum peak acceleration level of 3.0 G peak-to-peak sinusoidal loading (same as 1.5 G peak) with the power supply installed, for a minimum of 2 million cycles without failure of luminaire parts
- 2. Horizontal plane perpendicular to the direction of the mast arm at a minimum peak acceleration level of 1.5 G peak-to-peak sinusoidal loading (same as 0.75 G peak) with the power supply installed, for a minimum of 2 million cycles without failure of luminaire parts

The housing must be designed to prevent the buildup of water on the top of the housing. Exposed heat sink fins must be oriented to allow the water to freely run off the luminaire and carry dust and other accumulated debris away from the unit. The optical assembly of the luminaire must be protected against dust and moisture intrusion to at least IP-66. The power supply enclosure must be protected to at least IP-43.

Each mounted luminaire may be furnished with or without a photoelectric unit receptacle. If a photoelectric unit receptacle is included, a rain tight shorting cap must be provided and installed. The receptacle must comply with Section 86-6.08, "Types" of the Standard Specifications. If the luminaire housing is provided with a hole for the receptacle, the hole must be closed, covered, and permanently sealed with weatherproof material.

When the components are mounted on a down-opening door, the door must be hinged and secured to the luminaire housing separately from the refractor or flat lens frame. The door must be secured to the housing in a manner to prevent its accidental opening. A safety cable must mechanically connect the door to the housing.

Field wires connected to the luminaire must terminate on a barrier type terminal block secured to the housing. The terminal screws must be captive and equipped with wire grips for conductors up to No. 6. Each terminal position must be clearly identified.

The power supply must be rated for outdoor operation and have a minimum IP rating of IP65.

The power supply must be rated for a minimum operational life equal to the minimum operation life of the luminaire, or greater.

The power supply case temperature must have a self rise of 77 °F or less above ambient temperature in free air with no additional heat sinks.

Conductors and terminals must be identified.

10-3.25 INTERNALLY ILLUMINATED SIGNS

The "METER ON" sign shall be a Type A pedestrian signal modified so that the reflector shall be a single chamber with 2 incandescent lamps.

The message shall be white "METER ON" as shown on the plans. White color shall be in conformance with the provisions in Section 86-4.06, "Pedestrian Signal Faces," of the Standard Specifications.

Lenses shall be 3/16 inch, minimum thickness, clear acrylic or polycarbonate plastic or 1/8 inch nominal thickness glass fiber reinforced plastic, with molded, one piece, neoprene gasket. Message lettering for "METER" shall be "Series C," 4-1/2 inches high, with uniform 1/2 inch stroke, and for "ON" shall be "Series C," 6 inches high, with uniform one inch stroke. Letters shall be clear, transparent or translucent, with black opaque background silk screened on to the second surface of the lens.

10-3.26 INTERNALLY ILLUMINATED STREET NAME SIGNS

Internally illuminated street name signs shall be Type A.

10-3.27 PHOTOELECTRIC CONTROLS

Contactors shall be the mechanical armature type.

10-3.28 FIBER OPTIC CABLE

Fiber optic cable shall conform to the details shown on the plans and these special provisions.

FIBER OPTICS GLOSSARY

- A. **Active Component Link Loss Budget:** The active component link loss budget is the difference between the average transmitter launch power (in dBm) and the receiver maximum sensitivity (in dBm).
- B. **Backbone:** Fiber cable that provides connections between the TMC and hubs, as well as between equipment rooms or buildings, and between hubs. The term is used interchangeably with "trunk" cable.
- C. **Connector:** A mechanical device used to align and join two fibers together to provide a means for attaching to and decoupling from a transmitter, receiver, or another fiber (patch panel).
- D. Connectorized: The termination point of a fiber after connectors have been affixed.
- E. Connector Module Housing (CMH): A patch panel used to terminate singlemode fibers with most common connector types. It may include a jumper storage shelf and a hinged door.
- F. **Couplers:** Devices which mate fiber optic connectors to facilitate the transition of optical light signals from one connector into another. They are normally located within FDUs, mounted in panels. They may also be used unmounted, to join two simplex fiber runs.
- G. **Distribution Cable:** Fiber cable that provides connections between hubs. Drop cables are typically spliced into a distribution cable.
- H. **Drop Cable:** Fiber cable that provides connections between a distribution cable to a field element. Typically these run from a splice vault to a splice tray within a field cabinet. Drop cables are usually short in length (less than 65 feet) and are of the same construction as outside plant cable. The term "breakout cable" is used interchangeably with drop cable.
- I. **End-to-End Loss:** The maximum permissible end-to-end system attenuation is the total loss in a given link. This loss could be the actual measured loss, or calculated using typical (or specified) values. A designer should use typical values to calculate the end-to-end loss for a proposed link. This number will determine the amount of optical power (in dB) needed to meet the System Performance Margin.

- J. Fan Out Termination: Permits the branching of fibers contained in an optical cable into individual cables and can be done at field locations; thus, allowing the cables to be connectorized or terminated per system requirements. A kit provides pull-out protection for individual bare fibers to support termination. It provides three layers of protection consisting of a Teflon inner tube, a dielectric strength member, and an outer protective PVC jacket. Fan out terminations shall not be used for more than 6 fibers. Using a patch panel would be appropriate.
- K. Fiber Distribution Frame (FDF): A rack mounted system that consists of a standard equipment rack, fiber routing guides, horizontal jumper troughs and Fiber Distribution Units (FDU). The FDF serves as the termination and interconnection of passive fiber optic components from cable breakout, for connection by jumpers, to the equipment.
- L. **Fiber Distribution Unit (FDU):** An enclosure or rack mountable unit containing both a patch panel with couplers and splice tray(s). The unit's patch panel and splice trays may be integrated or separated by a partition.
- M. **F/O:** Fiber optic.
- N. FOIP: Fiber optic inside plant cable.
- O. **FOOP:** Fiber optic outside plant cable.
- P. **FOTP:** Fiber optic test procedure(s) as defined by EIA/TIA standards.
- Q. **Jumper:** A short cable, typically one meter or less, with connectors on each end, used to join two CMH couplers or a CMH to active electronic components.
- R. **Light Source:** Portable fiber optic test equipment that, when coupled with a power meter, is used to perform end-to-end attenuation testing. It contains a stabilized light source operating at the wavelength of the system under test.
- S. **Link:** A passive section of the system, the ends of which are connectorized. A link may include splices and couplers. For example, a video link may be from a F/O transmitter to a video multiplexer (MUX).
- T. **Loose Tube Cable:** Type of cable construction in which fibers are placed in buffer tubes to isolate them from outside forces (stress). A flooding compound or material is applied to the interstitial cable core to prevent water migration and penetration. This type of cable is primarily for outdoor applications.
- U. **Mid-span Access Method:** Description of a procedure in which fibers from a single buffer tube are accessed and spliced to an adjoining cable without cutting the unused fibers in the buffer tube, or disturbing the remaining buffer tubes in the cable.
- V. **MMFO:** Multimode Fiber Optic Cable.
- W. **Optical Time Domain Reflectometer (OTDR):** Fiber optic test equipment similar in appearance to an oscilloscope that is used to measure the total amount of power loss in a F/O cable between two points. It provides a visual and printed display of the losses associated with system components such as fiber, splices and connectors.
- X. Optical Attenuator: An optical element that reduces the intensity of a signal passing through it.
- Y. **Patchcord:** A term used interchangeably with "jumper".
- Z. Patch Panel: A precision drilled metal frame containing couplers used to mate two fiber optic connectors.
- AA. Pigtail: A short optical fiber permanently attached to a source, detector, or other fiber optic device.
- AB. **Power Meter:** Portable fiber optic test equipment that, when coupled with a light source, is used to perform end-to-end attenuation testing. It contains a detector that is sensitive to light at the designed wavelength of the system under test. Its display indicates the amount of optical power being received at the end of the link.
- AC. Riser Cable: NEC approved cable installed in a riser (a vertical shaft in a building connecting floors).
- AD. **Segment:** A section of F/O cable that is not connected to any active device and may or may not have splices per the design.
- AE. **SMFO:** Single Mode Fiber Optic Cable.
- AF. **Splice:** The permanent joining of two fiber ends using a fusion splicer.
- AG. **Splice Closure:** An environmentally sealed container used to organize and protect splice trays. The container allows splitting or routing of fiber cables from multiple locations. Normally installed in a splice vault.
- AH. **Splice Module Housing (SMH):** A unit that stores splice trays as well as pigtails and short cable lengths. The unit allows splitting or routing of fiber cables to or from multiple locations.
- AI. Splice Tray: A container used to organize and protect spliced fibers.
- AJ. Splice Vault: An underground container used to house excess cable and/or splice closures.
- AK. **System Performance Margin:** A calculation of the overall "End to End" permissible attenuation from the fiber optic transmitter (source) to the fiber optic receiver (detector). The system performance margin

- should be at least 6 dB. This includes the difference between the active component link loss budget, the passive cable attenuation (total fiber loss) and the total connector/splice loss.
- AL. **Tight Buffered, Non-Breakout Cable (Tight Buffer Cable):** Type of cable construction where each glass fiber is tightly buffered (directly coated) with a protective thermoplastic coating to 900 µm (compared to 250 µm for loose tube fibers).

FIBER OPTICS OUTSIDE PLANT CABLE

General

Each fiber optic outside plant cable (FOOP) for this project shall be all dielectric, gel filled or water blocking material, duct type, with loose buffer tube construction with a maximum outside diameter of 0.55 inches and shall conform to these special provisions. Cables shall contain singlemode (SM) dual-window (1310 nm and 1550 nm) fibers with the numbers described below and as shown on the plans:

Type A cable	36 SM fibers
Type B cable	72 SM fibers
Type D cable	12 SM fibers
TEMP CABLE 48 SMFO	48 SM fibers
TEMP CABLE 12 SMFO	12 SM fibers

The optical fibers shall be contained within loose buffer tubes. The loose buffer tubes shall be stranded around an all dielectric central member. Aramid yarn shall be used as a primary strength member, and a polyethylene outside jacket shall provide for overall protection.

All F/O cable of each specific type shall match the existing cable manufacturer.

The cable shall be qualified as compliant with RUS Federal Rule 7CFR1755.900.

Fiber Characteristics

Each optical fiber shall be glass and consist of a doped silica core surrounded by concentric silica cladding. All fibers in the buffer tube shall be usable fibers, and shall be sufficiently free of surface imperfections and inclusions to meet the optical, mechanical, and environmental requirements of these specifications. The required fiber grade shall reflect the maximum individual fiber attenuation, to guarantee the required performance of each and every fiber in the cable.

The coating shall be a dual layered, UV cured acrylate. The coating shall be mechanically strippable without damaging the fiber.

The cable shall comply with the optical and mechanical requirements over an operating temperature range of -40 to +70°C. The cable shall be tested in accordance with EIA-455-3A (FOTP-3), "Procedure to Measure Temperature Cycling Effects on Optical Fiber, Optical Cable, and Other Passive Fiber Optic Components." The change in attenuation at extreme operational temperatures (-40 to +70°C) for singlemode fiber shall not be greater than 0.20 dB/km, with 80 percent of the measured values no greater than 0.10 dB/km. The singlemode fiber attenuation shall be measured at 1550 nm.

For all fibers the attenuation specification shall be a maximum attenuation for each fiber over the entire operating temperature range of the cable.

Singlemode fibers within the finished cable shall meet the requirements in the following table:

Parameters	Characteristic		
Туре	Step Index		
Core diameter	8.3 µm (nominal)		
Cladding diameter	$125 \pm 1.0 \mu \text{m}$		
Core to Cladding Offset	≤1.0 µm		
Coating Diameter	$250 \pm 15 \mu m$		
Cladding Non-circularity			
defined as: [1-(Min cladding dia ÷Max cladding	≤2.0%		
dia)]x100			
Proof/Tensile Test	345 MPa, Min		
Attenuation:			
@1310 nm (SM)	≤0.4 dB/km		
@1550 nm	≤0.4 dB/km		
Attenuation at the Water Peak	≤2.1 dB/km @ 1383 ± 3 nm		
Chromatic Dispersion:			
Zero Dispersion Wavelength	1301.5 to 1321.5 nm		
Zero Dispersion Slope	$\leq 0.092 \text{ ps/(nm}^2 * \text{km})$		
Maximum Dispersion:	≤3.3 ps/(nm*km) for 1285 to 1330 nm		
	<18 ps/(nm*km) for 1550 nm		
Cut-Off Wavelength	<1250 nm		
Mode Field Diameter (Petermann II)	$9.3 \pm 0.5 \mu\text{m}$ at 1310 nm		
	$10.5 \pm 1.0 \mu\text{m}$ at 1550 nm		

Color Coding

In buffer tubes containing multiple fibers, each fiber shall be distinguishable from others in the same tube by means of color coding according to the following:

1. Blue (BL)	7. Red (RD)
2. Orange (OR)	8. Black (BK)
3. Green (GR)	9. Yellow (YL)
4. Brown (BR)	10. Violet (VL)
5. Slate (SL)	11. Rose (RS)
6. White (WT)	12. Aqua (AQ)

Buffer tubes containing fibers shall also be color coded with distinct and recognizable colors according to the same table listed above for fibers.

The colors shall be targeted in accordance with the Munsell color shades and shall meet EIA/TIA-598 "Color Coding of Fiber Optic Cables."

The color formulation shall be compatible with the fiber coating and the buffer tube filling compound, and be heat stable. It shall not fade or smear or be susceptible to migration and it shall not affect the transmission characteristics of the optical fibers and shall not cause fibers to stick together.

Cable Construction

General

The fiber optic cable samples of 10 feet length with part numbers, original catalogue and documents from manufactures shall be submitted to Resident Engineer.

The fiber optic cable shall consist of but not be limited to the following components:

- A. Buffer tubes
- B. Central member
- C. Filler rods
- D. Stranding

- E. Core and cable flooding
- F. Tensile strength member
- G. Ripcord
- H. Outer jacket
- I. Strand steel messenger (for temporary aerial fiber optic cable only)

Buffer tubes.--Clearance shall be provided in the loose buffer tubes between the fibers and the inside of the tube to allow for expansion without constraining the fiber. The fibers shall be loose or suspended within the tubes. The fibers shall not adhere to the inside of the buffer tube. Each buffer tube shall contain 1, 6 or a maximum of or 12 fibers.

The loose buffer tubes shall be extruded from a material having a coefficient of friction sufficiently low to allow free movement of the fibers. The material shall be tough and abrasion resistant to provide mechanical and environmental protection of the fibers, yet designed to permit safe intentional "scoring" and breakout, without damaging or degrading the internal fibers.

Buffer tube filling compound shall be a homogeneous hydrocarbon-based gel with anti-oxidant additives and is used to prevent water intrusion and migration. The filling compound shall be non-toxic and dermatologically safe to exposed skin. It shall be chemically and mechanically compatible with all cable components, non-nutritive to fungus, non-hygroscopic and electrically non-conductive. The filling compound shall be free from dirt and foreign matter and shall be readily removable with conventional nontoxic solvents.

Buffer tubes shall be stranded around a central member by a method that will prevent stress on the fibers when the cable jacket is placed under strain, such as the reverse oscillation stranding process.

Each buffer tube shall be distinguishable from other buffer tubes in the cable by the color coding specified for the fibers.

Central Member.--The central member which functions as an anti-buckling element shall be a glass reinforced plastic rod with similar expansion and contraction characteristics as the optical fibers and buffer tubes. A linear overcoat of Low Density Polyethylene shall be applied to the central member to achieve the optimum diameter to provide the proper spacing between buffer tubes during stranding.

Filler rods.--Fillers may be included in the cable to maintain the symmetry of the cable cross-section. Filler rods shall be solid medium or high density polyethylene. The diameter of filler rods shall be the same as the outer diameter of the buffer tubes.

Stranding.--Completed buffer tubes shall be stranded around the overcoated central member using stranding methods, lay lengths and positioning such that the cable shall meet mechanical, environmental and performance specifications. A polyester binding shall be applied over the stranded buffer tubes to hold them in place. Binders shall be applied with sufficient tension to secure the buffer tubes to the central member without crushing the buffer tubes. The binders shall be non-hygroscopic, non-wicking (or rendered so by the flooding compound), and dielectric with low shrinkage.

Core and Cable Flooding.--The cable core shall contain a water-blocking material or the cable core interstices shall be filled with a polyolefin based compound to prevent water ingress and migration. The water-blocking material or the flooding compound shall be homogeneous, non-hygroscopic, electrically non-conductive, and non-nutritive to fungus. The core shall be free from dirt and foreign matter and shall be readily removable with conventional nontoxic solvents. The compound shall also be nontoxic, dermatologically safe and compatible with all other cable components.

Tensile Strength Member.--Tensile strength shall be provided by high tensile strength aramid yarns and fiberglass which shall be helically stranded evenly around the cable core and shall not adhere to other cable components.

Ripcord.--The cable shall contain at least one ripcord under the jacket for easy sheath removal.

Outer jacket.--The jacket shall be free of holes, splits, and blisters and shall be medium or high density polyethylene (PE), or medium density cross-linked polyethylene with minimum nominal jacket thickness of $1000\pm76\,\mu m$. Jacketing material shall be applied directly over the tensile strength members and flooding compound and shall not adhere to the aramid strength material. The polyethylene shall contain carbon black to provide ultraviolet light protection and shall not promote the growth of fungus.

The jacket or sheath shall be marked with the manufacturer's name, the words "Optical Cable", the number of fibers, "SM", year of manufacture, and sequential measurement markings every foot. The actual length of the cable shall be within -0/+1 percent of the length marking. The marking shall be in a contrasting color to the cable jacket. The height of the marking shall be approximately 0.10 inch.

Strand steel messenger (for aerial fiber optic cable only).—The messenger shall be covered by a rugged, durable and easy to strip polyethylene jacket. The jacket shall be free of holes, splits, and blisters.

General Cable Performance Specifications

The fiber optic cables shall be fully compatible and interoperable with Caltrans District 12 existing fiber optic cable systems.

The Caltrans District 12 existing fiber optic cable system are Corning Cable Systems (Siecor), singlemode Altos type, part number:

```
012RW4-14101A20 for 12 SM fibers,
036RW4-14101A20 for 36 SM fibers,
072RW4-14101A20 for 72 SM fibers.
```

The F/O cable shall withstand water penetration when tested with a three-foot static head or equivalent continuous pressure applied at one end of a three-foot length of filled cable for one hour. No water shall leak through the open cable end. Testing shall be done in accordance with EIA-455-82 (FOTP-82), "Fluid Penetration Test for Fluid-Blocked Fiber Optic Cable."

A representative sample of cable shall be tested in accordance with EIA-455-81A, "Compound Flow (Drip) Test for Filled Fiber Optic Cable". The test sample shall be prepared in accordance with Method A. The cable shall exhibit no flow (drip or leak) at 176°F as defined in the test method.

Crush resistance of the finished F/O cables shall be 125 lbf/in applied uniformly over the length of the cable without showing evidence of cracking or splitting when tested in accordance with EIA-455-41 (FOTP-41), "Compressive Loading Resistance of Fiber Optic Cables". The average increase in attenuation for the fibers shall be ≤0.10 dB at 1550 nm for a cable subjected to this load. The cable shall not exhibit any measurable increase in attenuation after removal of load. Testing shall be in accordance with EIA-455-41 (FOTP-41), except that the load shall be applied at the rate of 0.12-inch to 0.74-inch per minute and maintained for 10 minutes.

The cable shall withstand 25 cycles of mechanical flexing at a rate of 30 ± 1 cycles/minute. The average increase in attenuation for the fibers shall be ≤ 0.20 dB at 1550 nm at the completion of the test. Outer cable jacket cracking or splitting observed under 10x magnification shall constitute failure. The test shall be conducted in accordance with EIA-455-104 (FOTP-104), "Fiber Optic Cable Cyclic Flexing Test," with the sheave diameter a maximum of 20 times the outside diameter of the cable. The cable shall be tested in accordance with Test Conditions I and II of (FOTP-104).

Impact testing shall be conducted in accordance with EIA-455-25 (FOTP-25) "Impact Testing of Fiber Optic Cables and Cable Assemblies." The cable shall withstand 20 impact cycles. The average increase in attenuation for the fibers shall be ≤ 0.20 dB at 1550 nm. The cable jacket shall not exhibit evidence of cracking or splitting.

For temporary aerial fiber optic cable, the nominal weight of cable shall not exceed 1,125 pounds per mile and the cable shall not be sagged more than 9 inches under a tension of 800 pounds.

Packaging and Shipping Requirements

The completed cable shall be packaged for shipment on reels. The cable shall be wrapped in a weather and temperature resistant covering. Both ends of the cable shall be sealed to prevent the ingress of moisture.

Each end of the cable shall be securely fastened to the reel to prevent the cable from coming loose during transit. Ten feet of cable length on each end of the cable shall be accessible for testing.

Each cable reel shall have a durable weatherproof label or tag showing the manufacturer's name, the cable type, the actual length of cable on the reel (in feet), the Contractor's name, the contract number, and the reel number. A shipping record shall also be included in a weatherproof envelope showing the above information and also include the date of manufacture, cable characteristics (size, attenuation, bandwidth, etc.), factory test results, cable identification number and any other pertinent information. The shipping records for the required optical fiber specifications shall be provided to the Engineer.

The cost of any damaged or broken optical fiber cable shall be borne by the Contractor.

The minimum hub diameter of the reel shall be at least thirty times the diameter of the cable. The F/O cable shall be in one continuous length per reel with no factory splices in the fiber. Each reel shall be marked to indicate the direction the reel should be rolled to prevent loosening of the cable.

Installation procedures and technical support information shall be furnished at the time of delivery.

CABLE INSTALLATION

There shall be no re-use fiber optic cable for the installation.

Installation procedures shall be in conformance with the procedures specified by the cable manufacturer for the specific cable being installed. The Contractor shall submit the manufacturer's recommended procedures for pulling fiber optic cable at least 20 working days prior to installing cable. Mechanical aids may be used, provided that a tension measuring device, and a break away swivel are placed in tension to the end of the cable. The tension in the cable shall not exceed 500 lbf or the manufacturer's recommended pulling tension, whichever is less.

During cable installation, the bend radius shall be maintained at a minimum of twenty times the outside diameter. The cable grips for installing the fiber optic cable shall have a ball bearing swivel to prevent the cable from twisting during installation.

F/O cable shall be installed using a cable pulling lubricant recommended by the F/O cable or the innerduct manufacturer, and a pull tape conforming to the provisions described under "Conduit" elsewhere in these special provisions. Contractor's personnel shall be stationed at each splice vault and pull box through which the cable is to be pulled to lubricate and prevent kinking or other damage.

F/O cable shall be installed without splices except where specifically allowed on the plans. If splice locations are not shown on the plans, splicing shall be limited to one cable splice every 20,000 feet. Any midspan access splice or FDU termination shall involve only those fibers being spliced as shown on the plans. Cable splices shall be located in splice closures, installed in splice vaults shown on the plans. A minimum of 65 feet of slack shall be provided for each F/O cable at each splice vault. Slack shall be divided equally on each side of the F/O splice closure.

Unless shown or provided otherwise, only F/O cable shall be installed in each innerduct. Pulling a separate F/O cable into a spare duct to replace damaged fiber will not be allowed.

At the Contractor's option, the fiber may be installed using the air blown method. If integral innerduct is used, the duct splice points or any temporary splices of innerduct used for installation must withstand a static air pressure of 110 psi.

The fiber installation equipment must incorporate a mechanical drive unit or pusher, which feeds cable into the pressurized innerduct to provide a sufficient push force on the cable, which is coupled with the drag force created by the high-speed airflow. The unit must be equipped with controls to regulate the flow rate of compressed air entering the duct and any hydraulic or pneumatic pressure applied to the cable. It must accommodate longitudinally ribbed, or smooth wall ducts from nominal 0.63 inches to 2.00 inches inner diameter. Mid assist or cascading of equipment must be for the installation of long cable runs. The equipment must incorporate safety shutoff valves to disable the system in the event of sudden changes in pneumatic or hydraulic pressure.

The equipment must not require the use of a piston or any other air capturing device to impose a pulling force at the front end of the cable, which also significantly restricts the free flow of air through the inner duct. It must incorporate the use of a counting device to determine the speed of the cable during installation and the length of the cable installed.

SPLICING

Field splices shall be done either in splice vaults or cabinets as shown on the plans. All splices in splice vaults shall be done in splice trays, housed in splice closures. All splices in cabinets shall be done in splice trays housed in EDLUs

Unless otherwise specified, fiber splices shall be the fusion type. The mean splice loss shall not exceed 0.07 dB per splice. The mean splice loss shall be obtained by measuring the loss through the splice in both directions and then averaging the resultant values.

The mid-span access method shall be used to access the individual fibers in a cable for splicing to another cable as shown on the plans. Cable manufacturers recommended procedures and approved tools shall be used when performing a mid-span access. Only the fibers to be spliced may be cut. All measures shall be taken to avoid damaging buffer tubes and individual fibers not being used in the mid-span access.

The individual fibers shall be looped one full turn within the splice tray to avoid micro bending. A 1.80 inches minimum bend radius shall be maintained during installation and after final assembly in the optical fiber splice tray. Each bare fiber shall be individually restrained in a splice tray. The optical fibers in buffer tubes and the placement of the bare optical fibers in the splice tray shall be such that there is no discernable tensile force on the optical fiber.

All splices shall be protected with a metal reinforced thermal shrink sleeve.

The Contractor will be allowed to splice a total of 2 fibers to repair any damage done during mid-span access splicing without penalty. The Contractor will be assessed a fine of \$300.00 for each additional and unplanned splice. Any single fiber may not have more than 3 unplanned splices. If any fiber requires more than 3 unplanned splices, the entire length of F/O cable must be replaced at the Contractor's expense.

SPLICE CLOSURES

The F/O field splices shall be enclosed in splice closures which shall be complete with splice organizer trays, brackets, clips, cable ties, seals and sealant, as needed. The splice closure shall be suitable for a direct burial or pull box application. Manufacturer's installation instructions shall be supplied to the Engineer prior to the installation of any splice closures. Location of the splice closures shall be where a splice is required as shown on the plans, designated by the Engineer, or described in these special provisions.

The fiber optic splice closure shall consist of an outer closure and splice trays, and shall conform to the following special provisions.

The fiber optic splice closure shall be suitable for a temperature range from 32 to 122 °F.

The size of the closure shall allow all the fibers of the largest fiber optic cable to be spliced to a second cable of the same size, plus 12 additional pigtails. The closure shall be not more than 36 inches in length and not more than 8 inches in diameter. Two outer closures shall fit into the fiber optic splice vault and shall leave sufficient space for routing of the fiber optic communication cables, without exceeding the minimum bending radius of any cable. The closures shall be designed for butt splicing.

The splice closure shall conform to the following specifications:

- A. Non-filled thermoplastic case.
- B. Rodent proof, water proof, re-enterable and moisture proof.
- C. Expandable from 2 cables per end to 8 cables per end by using adapter plates.
- D. Cable entry ports shall accommodate 0.4 inch to one inch diameter cables.
- E. Multiple grounding straps.
- F. Accommodate up to 8 splice trays.
- G. Suitable for "butt" cable entry configurations.
- H. Place no stress on finished splices within the splice trays.

All materials in the closures shall be nonreactive and shall not support galvanic cell action. The outer closure shall be compatible with the other closure components, the inner closure, splice trays, and cables.

The end plate shall consist of two sections and shall have capacity for two fiber optic trunk cables and 2 fiber optic branch cables.

The outer closure shall protect the splices from mechanical damage, shall provide strain relief for the cable, and shall be resistant to salt corrosion.

The outer closure shall be waterproof, re-enterable and shall be sealed with a gasket. The outer closure shall be flash-tested at 14.9 psi.

The inner closure shall be of metallic construction. The inner closure shall be compatible with the outer closure and the splice trays and shall allow access to and removal of individual splice trays. The splice trays shall be compatible with the inner closure and shall be constructed of rigid plastic or metal.

Adequate splice trays shall be provided to splice all fibers of the largest fiber optic cable, plus 12 pigtails.

Each splice shall be individually mounted and mechanically protected in the splice tray.

The Contractor shall install the fiber splice closure in the splice vaults where splicing is required. The fiber optic splice closures shall be securely fastened or bolted to the side wall of the splice vault using standard hardware found in communication manholes.

The Contractor shall provide all mounting hardware required to securely mount the closures to the splice vault.

The fiber splice closure shall be mounted horizontally in a manner that allows the cables to enter at the end of the closure. Not less than 27 feet of each cable shall be coiled in the vault to allow the fiber splice closure to be removed for future splicing.

The unprotected fibers exposed for splicing within the closure shall be protected from mechanical damage using the fiber support tube or tubes and shall be secured within the fiber splice closure.

Upon completion of the splices, the splice trays shall be secured to the inner closure.

The closure shall be sealed using a procedure recommended by the manufacturer that will provide a waterproof environment for the splices. Encapsulant shall be injected between the inner and outer closures.

Care shall be taken at the cable entry points to ensure a tight salt resistant and waterproof seal is made which will not leak upon aging. It is acceptable to have multiple pigtails enter the fiber splice closure through one hole as long as all spaces between the cables are adequately sealed.

The fiber optic splice closure model SCF-6 from Seicor, or model Fibrdome from 3M are recommended.

SPLICE TRAYS

Splice trays must accommodate a minimum of 12 fusion splices and must allow for a minimum bend radius of two inches. Individual fibers must be looped one full turn within the splice tray to allow for future splicing. No stress is to be applied on the fiber when it is located in its final position. Buffer tubes must be secured near the entrance of the splice tray to reduce the chance that an inadvertent tug on the pigtail will damage the fiber. The splice tray cover may be transparent.

Splice trays in the splice closure shall conform to the following:

- 1. Accommodate up to 24 fusion splices.
- 2. Place no stress on completed within the tray.
- 3. Stackable with a snap-on hinge cover.
- 4. Buffer tubes securable with channel straps.
- 5. Must be able to accommodate a fusion splice with the addition of an alternative splice holder.
- 6. Must be labeled after splicing is completed.

Only one single splice tray may be secured by a bolt through the center of the tray in the fiber termination unit. Multiple trays must be securely held in place as per the manufacturer's recommendation.

PASSIVE CABLE ASSEMBLIES AND COMPONENTS

The F/O assemblies and components shall be compatible components, designed for the purpose intended, and manufactured by a company regularly engaged in the production of material for the fiber optic industry. All components or assemblies shall be best quality, non-corroding, with a design life of at least 20 years.

The cable assemblies and components manufacturer shall be ISO9001 registered.

FIBER OPTIC CABLE LABELING

General

The Contractor shall label all fiber optic cabling in a permanent consistent manner. All tags shall be of a material designed for long term permanent labeling of fiber optic cables and shall be marked with permanent ink on non-metal types, or embossed lettering on metal tags. Metal tags shall be constructed of stainless steel. Non-metal label materials shall be approved by the Engineer. Labels shall be affixed to the cable per the manufacturer's recommendations and shall not be affixed in a manner which will cause damage to the fiber. Handwritten labels shall not be allowed.

Label Identification

Marking and labeling of fiber optic cable plant throughout this project shall be as follows:

Cable to Cable Splices.--The cable jackets labeled at entry to splice closure with cable ID and cable direction relative to the splice point (E, SW, etc.). In addition, the buffer tubes labeled at entry to splice trays with cable ID and cable direction, and the fibers labeled at splice with cable direction and fiber number.

Cable to Fiber Distribution Unit Splices.—The cable jackets labeled on the inside of the distribution panel with cable ID, and buffer tubes labeled at entry to splice tray with cable ID. In addition, fibers labeled at entry to splice with fiber number, pigtails labeled at connector with cable ID and fiber number, and front panels labeled at connector with cable ID and fiber number.

Jumpers.--The fibers labeled at each connector with FUNCTION of signal being carried. For example, "CM148 D4 OUT" or "CM14.8 Video IN", where CM is an abbreviation for the freeway or route segment (Costa Mesa) and 14.8 is a Post Mile reference.

Cables through pull boxes.--Cable jackets shall be labeled inside all pull boxes whether spliced or not at that location. Labels shall provide cable ID, cable direction relative to the cable ends and a number identifying the fiber count inside the cable.

For labeling purposes, IN shall be used to describe the segment of cable, buffer tube, or fiber which runs towards the hub. For labeling purposes, OUT shall be used to describe the segment of cable, buffer tube, or fiber which runs away from the hub towards the elements.

All labels shall be made from vinyl sleeving or tags permanently affixed to the jacket, buffer tube or fiber and shall be marked with permanent ink.

FIBER OPTIC CABLE TERMINATIONS

At the FDU, the cable jacket of the FOIP or outside plant cable, shall be removed exposing the aramid yarn, filler rods, and buffer tubes. The exposed length of the buffer tubes shall be at least the length recommended by the FDU manufacturer which allows the tubes to be secured to the splice trays.

Each buffer tube shall be secured to the splice tray in which it is to be spliced. The remainder of the tubes shall be removed to expose sufficient length of the fibers in order to properly install on the splice tray, as described in "Splicing," elsewhere in these special provisions.

The cable shall then be spliced and secured with tie wraps and routed to its appropriate fiber distribution frame/unit (FDF/U) as shown on the plans.

When applicable, moisture blocking gel shall be removed from the exposed buffer tubes and fibers. The transition from the buffer tube to the bundle of jacketed fibers shall be treated by an accepted procedure for sleeve tubing, shrink tube and silicone blocking of the transition to prevent future gel leak.

Manufacturer directions shall be followed to ensure that throughout the specified temperature range gel will not flow from the end of the buffer tube. The individual fibers shall be stripped and prepared for splicing.

Factory terminated pigtails shall then be spliced and placed in the splice tray.

A transition shall then be made, with flexible tubing, to isolate each fiber to protect the individual coated fibers. The final transition from bundle to individual fiber tube shall be secured with an adhesive heat shrink sleeve. Refer to Fan Out Termination, elsewhere in these special provisions.

Distribution Interconnect Package

Distribution involves connecting the fibers to locations shown on the plans. The distribution interconnect package consists of FDFs and FDUs with connector panels, connectors, splice trays, fiber optic pigtails, fiber optic jumpers, and cable assemblies with connectors.

The distribution interconnect package shall be assembled and tested by a company that is regularly engaged in the assembly of these packages. Attention is directed to "Fiber Optic Testing" elsewhere in these special provisions.

All distribution components shall be products of the same manufacturers, who are regularly engaged in the production of these components, and the respective manufacturers shall have quality assurance programs.

Fiber Optic Cable Assemblies and Pigtails

General

Cable assemblies (jumpers and pigtails) shall be products of the same manufacturer. The cable used for cable assemblies shall be made of fiber meeting the performance requirements of these special provisions for the F/O cable being connected.

2. Pigtails

Pigtails shall be of simplex (one fiber) construction, in $900 \,\mu m$ tight buffer form, surrounded by aramid for strength, with a PVC jacket with manufacturer identification information, and a nominal outer jacket diameter of 0.12 inch. Singlemode simplex cable jackets shall be yellow in color. All pigtails shall be factory terminated and tested and at least one meter in length.

3. Jumpers

Jumpers may be of simplex or duplex design. Duplex jumpers shall be of duplex round cable construction, and shall not have zipcord (siamese) construction. All jumpers shall be at least 6 feet in length, sufficient to avoid stress and allow orderly routing.

The outer jacket of duplex jumpers shall be colored according to the singlemode color (yellow) specified above. The two inner simplex jackets shall be contrasting colors to provide easy visual identification for polarity.

4. Connectors

Connectors shall be of the ceramic ferrule SC type for SM. Indoor SC connector body housings shall be either nickel plated zinc or glass reinforced polymer construction. Outdoor SC connector body housing shall be glass reinforced polymer.

The associated coupler shall be of the same material as the connector housing.

All F/O connectors shall be the 0.1 inch SC connector ferrule type with Zirconia Ceramic material with a PC (Physical Contact) pre-radiused tip.

The SC connector operating temperature range shall be from -40 to +158 °F. Insertion loss shall not exceed 0.4 dB for singlemode, and the return reflection loss on singlemode connectors shall be at least -55 dB. Connection durability shall be less than a 0.2 dB change per 500 mating cycles per EIA-455-21A (FOTP-21).

All terminations shall provide a minimum 50 lbs pull out strength. Factory test results shall be documented and submitted to the Engineer prior to installing any of the connectors. Singlemode connectors shall have a yellow color on the body or boot that renders them easily identifiable.

Field terminations shall be limited to splicing of adjoining cable ends and/or cables to SC pigtails.

Fiber Distribution Unit

The Contractor shall furnish and install all components to terminate the incoming fiber optic communication cables.

FDU Type	Accommodates Termination of
A	6 SMFO fibers
В	12 SMFO fibers
С	24 SMFO fibers
D	48 SMFO fibers
Е	60 SMFO fibers
F	72 SMFO fibers
G	144 SMFO fibers

The fiber distribution unit (FDU) shall include the following:

- 1. A patch panel to terminate the appropriate number of singlemode fibers with SC type connector feed through connectors.
- 2. Splice trays.
- 3. Storage for splice trays.
- 4. A slide out metal drawer for the storage of spare jumpers.

Strain relief shall be provided for the incoming fiber optic cable. Cable accesses shall have rubber grommets or similar material to prevent the cable from coming in contact with bear metal. All fibers shall be terminated and individually identified in the FDU and on the patch panel.

The patch panel shall be hinged or have coupler plates to provide easy access and maintenance. Brackets shall be provided to spool the incoming fiber a minimum of two turns, each turn shall not be less than 12 inches, before separating out individual fibers to the splice tray.

The FDU shall be 19-inch rack mountable.

The FDU shall not exceed 10 inches in height and 15 inches in depth.

Fan Out Termination

A Fan Out Termination may be used to directly terminate the incoming fiber optic cable when:

- 1. A Return Loss is no greater than -40 dB. For a return loss of -45 dB, -55 dB, -60 dB,-65 dB, etc., a fusion spliced factory made pigtail assembled in lab conditions is required. These return losses can only be obtained in lab conditions;
- Fiber optic connectors shall be made with fiber optic connectors consistent with the specifications and special provisions, and shall have a crimp sleeve to crimp the aramid yarn to the shell of the connectors for additional strength; and
- 3. Crowded cabinets, with little rack space available.

For fiber counts of less than 6 fibers, a fan out termination may be used to terminate the incoming fiber optic cable. The connector return loss shall be no greater than -40 dB.

The fan out termination shall consist of a splice connector and the appropriate number of fiber optic pigtails which will be fusion spliced to the incoming fibers.

The pigtail shall be contained in a housing that will provide strain relief between the incoming fiber optic cable plant jacket, buffer tubes, fibers and pigtail jacket material

Each fiber shall be spliced to a pigtail with a factory installed and polished SC connector, as specified elsewhere in these special provisions. The splices shall then be encapsulated in a weatherproof housing.

Each connector shall have a weatherproof cap to protect it from the elements. The pigtail shall be of simplex (one fiber) construction, in a 900 μ m tight buffer form, surrounded by Aramid yarn for strength. The buffer shall have a PVC jacket with manufacturer identification information, and a nominal outer jacket diameter of 0.12 inch. Single mode simplex cable jackets shall be yellow in color. All pigtails shall be at least 7 feet in length.

Each pigtail shall be labeled, as specified in these special provisions, and secured onto the cable using clear heat shrink tubing.

FIBER OPTIC CABLE TESTING

General.--Testing shall include the tests on elements of the passive fiber optic components: (1) at the factory, (2) after delivery to the project site but prior to installation, (3) after installation but prior to connection to any other portion of the system. The Contractor shall provide all personnel, equipment, instrumentation and materials necessary to perform all testing. The Engineer shall be notified two working days prior to all field tests. The notification shall include the exact location or portion of the system to be tested.

Documentation of all test results shall be provided to the Engineer within 2 working days after the test involved. A minimum of 15 working days prior to arrival of the cable at the site, the Contractor shall provide detailed test procedures for all field testing for the Engineer's review and approval. The procedures shall include the tests involved and how the tests are to be conducted. Included in the test procedures shall be the model, manufacturer, configuration, calibration and alignment procedures for all proposed test equipment.

Factory Testing.--Documentation of compliance with the fiber specifications as listed in the Fiber Characteristics Table shall be supplied by the original equipment manufacturer. Before shipment but while on the shipping reel, 100 percent of all fibers shall be tested for attenuation. Copies of the results shall be (1) maintained on file by the manufacturer with a file identification number for a minimum of seven years, (2) attached to the cable reel in a waterproof pouch, and (3) submitted to the Contractor and to the Engineer.

Arrival On Site.--After arrival at the Contractor's facility, the fiber optic cable and reel shall be physically inspected for damage. The attenuation shall be measured on 100 percent on all fibers and every reel. The attenuation shall be measured with an Optical Time Domain (OTDR) at 1310 nm and 1550 nm.

The test results shall be recorded, dated, and compared with the shipping records from the manufacture. Attenuation deviations from the shipping records of greater than 5 percent shall be brought to the attention of the Engineer. The result shall be filled with the copy accompanying the shipping reel in a weather proof envelope.

The cable shall not be installed until completion of this test sequence and the Engineer provides written approval. If the fiber optic cable test results are unsatisfactory, which are based upon these special provisions, the reel of cable shall be considered unacceptable, and shall be rejected, and all records corresponding to that reel of cable shall be marked accordingly.

The unsatisfactory reel of cable shall be replaced with a new reel of cable at the Contractor's expense. The new reel of cable shall be tested as in the above procedures. Copies of the test results shall be submitted to the Engineer.

After Cable Installation.--After the fiber optic cable has been pulled but before breakout and termination, 100 percent of all the fibers shall be tested with an OTDR for attenuation.

Test results shall be recorded, dated, compared and filed with the previous copies of these tests. Copies of traces and test results shall be submitted to the Engineer for approval.

If the OTDR test results are unsatisfactory, the F/O cable shall be replaced at the Contractor's expense.

The new segment of cable then shall be tested to demonstrate acceptability.

Copies of the test results shall be submitted to the Engineer for review and approval.

The OTDR shall have a printer capable of producing a verifying test trace with fiber identification as shown in Appendix A "Link Loss Budget Work Sheet", numerical loss values, the date and the operator's name. It shall also have a DOS based 3.5-inch disk or compact disk recording capability that has associated software to do comparisons and reproductions on 8.5-inch x 11-inch paper, via a personal computer.

Outdoor Splices.--At the conclusion of all outdoor splices at one location, and before they are enclosed and sealed, all splices shall be tested with the OTDR, in both directions. Splices in singlemode segments shall be tested at 1310 nm and at 1550 nm.

Individual fusion splice losses shall not exceed 0.07 dB. Measurement results shall be recorded, dated, validated by the OTDR trace printout and filed with the records of the respective cable runs. Copies of traces and test results shall be submitted to the Engineer.

If the OTDR test results are unsatisfactory, the splice shall be unacceptable. The unsatisfactory splice shall be replaced at the Contractor's expense. The new splice shall then be tested to demonstrate acceptability. Copies of the test results shall be submitted to the Engineer.

Distribution Interconnect Package Testing and Documentation.-All the components of the passive interconnect package (FDUs, pigtails, jumpers, couplers and splice trays) shall comprise a unit from a manufacturer who is regularly engaged in the production of the fiber optic components described.

In developing the distribution interconnect package, each SC termination (pigtail or jumper) shall be tested for insertion attenuation loss with the use of an optical power meter and source. In addition, all singlemode terminations shall be tested for return reflection loss. These values shall meet the loss requirements specified earlier and shall be recorded on a tag attached to the pigtail or jumper.

The final test results shall be recorded, along with previous individual component values, on a special form assigned to each FDU. The completed form shall be dated and signed by the Manufacturer's Quality Control supervisor. One copy of this form will be attached in a plastic envelope to the assembled FDU unit. Copies will be provided separately to the Contractor and to the Engineer, and shall be also be maintained on file by the manufacturer or supplier.

The assembled and completed FDU unit shall then be protectively packaged for shipment to the Contractor for installation.

Fiber Optic System Gain Margin.-The installed system gain margin shall be at least 6 dB for each and every link. If the design system gain margin is less than 6 dB, the Engineer shall be notified and informed of the Contractor's plan to meet that requirement.

Active Component Testing.--The transmitters and receivers shall be tested with a power meter and light source, to record the transmitter average output power (dBm) and receiver sensitivity (dBm). These values shall be recorded in the Link Loss Budget Worksheet shown in Appendix A.

System Verification at Completion.--The Contractor shall test all fiber optic cables as shown on the Plans between Hub No. 3 (NB-5/Avery Parkway) and CCTV 206 (NB-5/Christianitos).

1. Power Meter and Light Source

At the conclusion of the OTDR testing, 100 percent of the fiber links shall be tested end to end with a power meter and light source, in accordance with EIA Optical Test Procedure 171 and in the same wavelengths specified for the OTDR tests. These tests shall be conducted in one direction. As shown in Appendix A, the Insertion Loss (1C) shall be calculated.

Test results shall be recorded, compared, and filed with the other recordings of the same links. Test results shall be submitted to the Engineer. These values shall be recorded in the Cable Verification Worksheet in Appendix A.

2. OTDR Testing

Once the passive cabling system has been installed and is ready for activation, 100 percent of the fibers shall be tested with the OTDR for attenuation at wavelengths of both 1310 nm and 1550 nm. OTDR testing shall be performed in both directions (bi-directional), on all fibers. Test results shall be generated from software of the test equipment, recorded, dated, compared and filed with previous copies. A hard copy printout and an electronic copy of the traces and test results along with a licensed copy of the associated OTDR trace analysis software on a CD-R shall be submitted to the Engineer. The directories and files shall be organized to facilitate the location of the trace files by test, retest (if any), location, wavelength, and fiber tested. The average of the two losses shall be calculated, and recorded in the Cable Verification Worksheet in Appendix A. The OTDR shall be capable of recording and displaying anomalies of at least 0.02 dB. All connector losses must be displayed on the OTDR traces.

3. Cable Verification Worksheet

The Cable Verification Worksheet shown in Appendix A shall be completed for all links in the fiber optic system, using the data gathered during cable verification. The completed worksheets shall be included as part of the system documentation.

Passive Component Package Testing And Document.--In developing the passive component package, each connector termination (pigtail, or jumper) shall be tested for insertion attenuation loss using an optical power meter and source. In addition, all singlemode terminations shall be tested for return reflection loss. These values shall meet the loss requirements specified earlier and shall be recorded on a tag attached to the pigtail or jumper.

Once an assembly is complete, the manufacturer shall visually verify all tagging of loss values is complete. As a final quality control measure, the manufacturer shall do an "end to end" optical power meter/light source test from pigtail end to end to the terminating point assure continuity and overall attenuation loss valued.

The final test results shall be recorded, along with previous individual component values, on a special form assigned to each FDU. The completed form shall be dated and signed by the Manufacturer's Quality Control supervisor. One copy of this form will be attached in a plastic envelope to the assembled FDU unit. Copies will be provided separately to the Contractor and to the Engineer, and shall also be maintained on file by the manufacturer or supplier.

The assembled and completed FDU unit shall then be protectively packaged for shipment to the Contractor for installation.

APPENDIX A

Cable Verification Worksheet

End-to-End Attenuation (Power Meter and Light Source) Testing and OTDR Testing

Contract No	Contractor:		<u></u>	
Operator:	Date:			
Link Number: Fiber Number:				
Test Wavelength (Circle one): 1	310 nm 15:	50 nm		
Expected Location of fiber ends	End 1:	End 2:		
Power Meter and Light Source Tes Power In: Output Power: Insertion Loss [1A – 1B]:	Results:			1A 1B 1C
OTDR Test Results: Forward Loss: Reverse Loss: Average Loss [(2A + 2B)/2]:				 2A 2B 2C
To Be Completed by Caltrans: Resident Engineer's Signature: Cable Link Accepted:				

INNERDUCT

Innerduct shall be installed wherever fiber optic (F/O) cable is installed in conduit. Four innerducts shall be installed in one each Size 4 inch conduit. Each fiber optic cable shall be installed in its own innerduct.

Copper cable shall not be mixed with F/O cable within the same innerduct.

Innerduct shall consist of an extruded flexible, smooth corrugated or ribbed high density high density polyethylene (HDPE) tubing installed inside electrical conduit. The fiber optic cable shall be installed in the tubing. Innerduct within a conduit run shall be continuous without splices or joints.

Unless otherwise shown on the plans, innerduct for new conduit shall be nominal 1.0 inch inside diameter with wall thickness of 0.0906 ± 0.003 inch, and shall meet the following requirements:

- A. Polyethylene for innerduct shall have a density of 59.6187 lb/ft3 ± 0.3121 lb/in3 (ASTM Designation: D 1505) and shall conform to the applicable requirements of ASTM Designation: D 3485, D 3035, D 2239, and D 2447, and the applicable requirements of NEMA TC7 and TC2. Tensile yield strength shall be 3300 psi minimum in accordance with the requirements in ASTM Designation: D 638.
- B. The polyethylene forming each innerduct shall be color coded in accordance with the cable type that it contains as follows:
 - 1. Type A black
 - 2. Type B orange
 - 3. Type C yellow
 - 4. Type D blue

The innerducts shall be shipped on reels marked with the manufacturer, the contract number, and the size and length of the innerduct. The product on reels shall be covered with aluminized material to protect colors from UV deterioration during shipment and storage.

Installation procedures shall conform to the procedures specified by the innerduct manufacturer.

CONDUIT SEALING PLUGS

Except as otherwise noted, all conduits shall have their ends sealed with commercial preformed plugs which prevent the passage of gas, dust and water into these conduits and their included innerducts. Sealing plugs shall be installed within each splice vault, pull box, cabinet, or building.

Sealing plugs shall be removable and reusable. Plugs sealing, conductor or cable shall be the split type that permits installation or removal without removing conductors or cables.

Sealing plugs that seal between the 4 inch fiber optic conduit shall seal the conduit simultaneously with one self contained assembly having an adjustable resilient filler of polyurethane elastomer clamped between backing ends and compressed with stainless steel hardware. Sealing plugs shall be capable of withstanding a pressure of 5 psi.

To provide suitable sealing between the varying size cables and the plugs, split polyurethane elastomer adapting sleeves, used singularly or in multiples, shall be inserted within the body of the plugs.

A sealing plug that seals an empty conduit shall have an eye or other type of capturing device (on the side of the plug that enters the conduit) to attach onto the pull tape, so the pull tape will be easily accessible when the plug is removed.

WARNING TAPE

Warning tape shall be furnished, installed and placed in the trench over conduits to receive communication fiber optic cable, as shown on the plans.

The warning tape shall have:

DESCRIPTION	PARAMETERS
Thickness	not be less than 4 mil thick
Width	4 inch
Material	pigmented polyolefin film
Tensile strength	minimum of 2800 psi
Elongation	minimum of 500 percent elongation before breakage
Printed Text height	0.75 inch
Message background color	bright orange color background
Message statement	CAUTION: BURIED FIBER OPTIC CABLE - CALTRANS (949) 936-3400
Message spacing intervals	approximately 36 inch

The printed warning must not be removed by the normal handling and burial of the tape and shall be rated to last the service life of the tape.

The construction of the warning tape shall be such that it will not delaminate when it is wet. It must be resistant to insects, acid, alkaline and other corrosive elements in the soil.

Warning tape shall be manufactured by Condux International, Inc.; Allen System, Inc.; Reef Industries, Inc. or equal.

COLORED CONCRETE BACKFILL

Concrete backfill for the installation of conduits that will contain F/O cable shall be a medium to dark, red color to clearly distinguish the concrete backfill from other concrete and soil. The concrete shall be pigmented by the addition of commercial quality cement pigment to the concrete mix. Red concrete pigment shall be manufactured by LM Scofield Company; Orange Chromix Colorant; Davis Colors; or equal. The concrete shall conform to the provisions in Section 90-10; "Minor Concrete," of the Standard Specifications.

For trenches in pavement areas, only the top 4 inches of concrete backfill will be required to be pigmented concrete. At the option of the Contractor, the full depth may have the pigment.

The size of the aggregate shall not be larger than 0.375 inch.

TRACER WIRE

Tracer wire shall be provided and placed in the trench over PVC conduits containing fiber optic cable. The wire shall be placed 2 inches above the uppermost conduit in the trench or secured to the top of the uppermost conduit in the trench.

Tracer wire shall be No. 8 stranded, minimum, copper conductor with type TW, THW, RHW, or USE insulation. The tracer wire shall form a mechanically and electrically continuous line throughout the length of the trench. Where trenched communication conduit joins metal conduit that has been jacked or drilled, the tracer wire must be bonded to the metal conduit with a brass grounding clamp.

A minimum of 5 feet of slack shall be extended into each pull box and splice vault from each direction. The wires shall be carefully placed so as not to be damaged by backfilling operations.

Conduit entering or exiting a reinforced concrete structure will not require tracer wire to the first pull box or fiber optic splice box. Tracer wire may be spliced at intervals of not less than 500 feet and in pull boxes. Splices shall conform to the provisions in Section 86-2.09, "Wiring," of the Standard Specifications.

SPLICE VAULT

Splice vaults shall be 60 inch (L) x 30 inch (W) x 30 inch (D) nominal inside dimensions and shall conform to the provisions in Section 86-2.06, "Pull Boxes," of the Standard Specifications and these special provisions. Covers shall be in two-piece torsion assisted section. Hold down bolts or cap screws and nuts shall be brass, stainless steel or other non-corroding metal. Cover portions shall have inset lifting pull slots. Cover markings shall be "TOS COMMUNICATION" on individual cover section. Enclosures, covers and extensions shall be concrete gray color. Vault and covers may be constructed of reinforced portland cement concrete or of non-PCC material.

Non-PCC vault and covers shall be of sufficient rigidity that when a 100 lbf concentrated force is applied perpendicularly to the midpoint of one of the long sides at the top, while the opposite long side is supported by a rigid surface, it shall be possible to remove the cover without the use of tools. When a vertical force of 1500 lbf is applied, through a 0.5 inch by 3 inch by 6 inch steel plate, to a non-PCC cover in place on a splice vault, the cover shall not fail and shall not deflect more than 0.25 inch.

Splice vaults shall be installed as detailed and where shown on the plans. Splice vaults and covers shall have an AASHTO HS 20-44 rating where shown on the plans, except in areas protected from vehicular traffic, may be rated for AASHTO H5 loads (25 percent of HS 20-44).

Splice vaults shall be installed one inch above grade in unpaved areas.

Splice vaults shown on the plans in shoulders are shown for general location. Exact locations will be determined by the Engineer.

Metallic or non-metallic cable racks shall be installed on the interior of both sides of splice vaults. Racks shall be capable of supporting a load of 100 lbf, minimum, per rack arm. Racks shall be supplied in lengths appropriate to boxes in which they will be placed. Rack arms shall not be less than 6 inches in length. Metallic cable racks shall be fabricated from ASTM Designation: A 36 steel plate and shall be hot-dip galvanized after fabrication. Steel plate, hardware, and galvanizing shall conform to the requirements in Section 75, "Miscellaneous Metal," of the Standard Specifications. Metallic cable racks shall be bonded and grounded.

PAYMENT

Full compensation for fiber optic cable (including and not limited to fiber optic outside plant cable, conduit, warning tape, color concrete backfill, tracer wire, splicing, splice closure, splice tray, splice vault, passive cable assemblies and components, fiber optic cable terminations, labeling and testing) shall be considered as included in the contract lump sum price paid for communication system and no separate payment will be made therefor.

10-3.29 COMMUNICATION SYSTEM

GENERAL

Communication system will include furnishing, installation complete in place, the following communication equipment:

- 1. Fiber Optic Cable (as described elsewhere in these special provisions)
- 2. Fiber Optic Splice Vault (as described elsewhere in these special provisions)
- 3. 170/2070 controller Interface equipment (for Traffic Signal and Ramp Metering system) listed below excluding Department Furnished items:
 - A. Fiber Distribution Unit (FDU) (as described elsewhere in these special provisions)
 - B. Fiber Optic Modem (FODM)

FIBER OPTIC DATA MODEM (FODM)

The fiber optic data modems (FODMs) shall be fully compatible and interoperable with Caltrans District 12 existing FODMs that are IFS, part number: D9130SC (stand-alone model in the field).

Contractor shall install one new FODM for each traffic element (TS, and RMS).

The FODMs shall operate in either a master or slave configuration as defined by the externally mounted selector switch. Master FODMs shall send polls to and receive replies from up to 15 slaves FODMs connected in daisy chain configurations as shown on the plans. Slave FODMs shall accept polls from and send replies to two masters as shown on the plans. The FODM shall be used as an asynchronous EIA-232C interface between field elements and TDMs via singlemode fiber optic links. The FODMs at each field element shall be stand-alone type and shall be securely fastened. An LED indicator shall be provided for transmitter status (on/off) and use in determining received optical power above the receiver sensitivity.

The modem shall meet the following requirements:

Electrical Signaling:	Per EIA-232 with full handshake control signals
Electrical Power:	Stand-alone version: $115 \text{ V(ac)} \pm 10\%$, 60 Hz .
Bit Error Rate:	1 in 10 ⁹ within optical budget.
Operating Mode:	Asychronous, simplex or full duplex.
Input/Output Logic Level:	I: +3.75 to +12 V.
	O: -3.75 to -12 V.
Input/Output Impedance:	Per EIA-232
System Bandwidth:	DC to 19.2 kbps
Optical Wavelength:	1310 nm.
Loss Budget:	Singlemode: 15 dB
Connectors Optical:	SC
Connectors Electrical (Data):	DB25 female
Mechanical Size:	3.74 (W) x 2.76 (D) x 1.1 (H) inch for module
Temperature Range:	-4 to +158 °F
Storage Temperature:	-40 to +185 °F

The FODMs shall be tested as follows:

- 1. Each optical modem shall be functionally tested by looping back the optical transmit connector to the optical receive connector using a variable optical attenuator with measured optical loss of 15 dB at 1300 nm. A test set shall be connected to the modem and set for EIA-232 communication testing. A fifteen-minute test after burn-in shall be error free.
- 2. After performing the fifteen minute bit error rate test (BERT), at least two modems shall be tested for receiver dynamic range. To do this the optical attenuation shall be increased to the point at which the data test just begins to register bit errors. The optical receive power into the modem shall be measured and recorded. The optical attenuation shall be then decreased until the data test once again registers errors. At no time shall the optical power into the receiver exceed the manufacturer's specified saturation level. The optical receive level shall once again be measured and recorded. These minimum and maximum receive levels define the modem receiver's dynamic range and shall meet or exceed manufacturers specifications.
- 3. One pair of modems shall be interconnected using optical patchcords and attenuators with a loss of 15 dB in each direction. The EIA-232 interface shall be looped back on one modem and a test set connected to the EIA-232 interface of the other modem. A bit error rate of less than one in 10⁹ shall be demonstrated.

10-3.30 SYSTEM TESTING AND DOCUMENTATION

GENERAL

This work shall consist of system testing as part of the communication system routing, as shown on the plans and in accordance to these special provisions.

System testing and documentation must cover Factory testing, sub-system testing, data link testing, acceptance testing, physical inspection, functional testing, performance testing, final acceptance and system documentation required to validate the operational performance of communications systems as described elsewhere in these special provisions.

The Contractor shall supply all test equipment and software for testing at project site.

TEST PLAN

The Contractor shall develop and submit, within 14 working days, to the Engineer an installation and test plan for approval, which details the method of installation and testing for material, equipment, and cables and the associated schedule of activities, based on these special provisions, plans, the manufacturer's recommended test procedures, and industry standard practices.

Five copies of the test plan shall be submitted to the Engineer for approval. The Engineer will review the test plan and approve or disapprove it within 2 weeks. If the Engineer rejects the test plan the Contractor shall submit a revised test plan within 20 working days for review and approval by the Engineer. No testing shall be performed until the Engineer has approved the Contractor's test plan. Tests must demonstrate that design and production of material and equipment meet the requirements of these special provisions. Test results, including results of failed test or re-tests, must be submitted to the Engineer and a copy placed with the equipment at the site. The Contractor shall supply test equipment.

The Contractor must notify the Engineer of intent to proceed with functional and sub-system testing 48 hours prior to commencement of tests. Full environmental conditions must be tested as part of the functional tests for field equipment. Sub-system testing and inspections must include visual inspection for damage in correct installation, adjustments and alignment, and measurement of parameters and operating conditions.

Factory Testing

Documentation for testing conducted at the manufacturer's premises and/or an independent laboratory must be submitted to the Engineer when the equipment is delivered to the site.

Subsystem Testing

Sub-system testing shall encompass testing of material, equipment and cables after installation, but prior to acceptance tests. Tests shall be in accordance with the performance testing called under each individual item in these special provisions.

Materials, equipment and cables shall be tested after installation at the site. Sub-system testing and inspections shall include visual inspection for damaged or incorrect installation, adjustments and alignment, and measurement of parameters and operating conditions. The Contractor shall notify the Engineer of intent to proceed with sub-system testing 48 hours prior to commencement of individual test.

Installation documentation and test results shall be provided for materials, equipment and cables prior to commencement of acceptance tests. Installation documentation shall be in accordance with these special provisions and shall include the following as appropriate:

- 1. Model, part number and serial number for material and equipment.
- 2. Test equipment model number, serial number, settings, and date of last calibration.
- 3. Strap and switch settings.
- 4. Record of adjustments and levels.
- 5. Alignment measurements.
- 6. Identification of interconnections.
- 7. Factory, laboratory and site test results.

Data Link Testing

Data link testing for the alignment of data systems must be conducted after you submit a test plan and receive approval from the Engineer. The activities must include verification of data circuits in the low speed data links, high speed data ring network and in the integrated data system. Adjust levels required for the data system to operate.

The Contractor shall test the following data links for temporary and permanent systems:

- 1. Between Data Node 8 (NB 5 at El Camino Real) and the corresponding field elements as shown on the Plans.
- 2. Between Hub 3 (NB 5 at Avery Parkway) and the corresponding field elements as shown on the Plans.

Records of tests shall be delivered to the Engineer. End-to-end bit error rate tests (BERTS) shall be conducted employing two FODMs on the link at the bit rate to be employed. The BERTS shall be with the modem at the equipment sites configured in a loop back with the test setup at the respective cabinets, and Hub or Data Node as described above. BERT tests shall be a minimum of 3 hours for individual circuit configured for operation in accordance with these special provisions and the Plans including required bridges.

The bit error rate in both directions must be less than 1×10^{-6} at 9600 bps for all circuits.

Acceptance Testing

Acceptance testing must be conducted in accordance with the approved test plan.

Acceptance testing must include the preparation of an acceptance test plan, conducting acceptance tests and subsequent retests, and documentation of the results.

Final acceptance tests must be conducted after the site test results have been reviewed and accepted by the Engineer. These tests include the complete system in normal operations.

The Contractor must submit five copies of the acceptance test plan to the Engineer for approval prior to commencement of acceptance testing. The acceptance test plan must address the full testing requirements of the specifications. The acceptance test plan must detail all tests to be performed, the test results which are expected and the test schedule. The acceptance test plan must include the following major test and acceptance categories:

Physical inspection Performance tests Functional tests

The Contractor shall test the communication system according to the approved acceptance test plan and shall provide all test equipment, labor and ancillary items required to perform the testing. The test equipment shall be certified to be calibrated to the manufacturers' specifications. The model and part numbers and date of last calibration of all test equipment shall be included with the test results.

Acceptance testing shall not commence until all material required by the Contract is delivered, installed, and aligned and all production test and site test documentation and results have been approved by the Engineer.

All acceptance test results shall be fully documented and the documentation be provided to the Engineer as a condition of acceptance.

Physical Inspection

The Contractor shall provide documentation to prove delivery of all material, equipment, cable and documentation. If any material or documentation is outstanding or has been replaced under pre-acceptance warranty a physical inspection and documentation shall be provided for this material. The physical inspection shall consist of inspecting all installed material to ensure workmanship satisfies the specified requirements.

Performance Test

Data tests shall be performed on all operational and voice data circuits. The central computer and the controller in the fi

eld shall be temporarily disconnected from the circuit under test for the connection of appropriate test equipment for the measurements.

Data test set shall be used at the remote modems to insert an asynchronous pseudo-random pattern using 8 data bits, 1 start bit, 1 stop bit and even parity. The data test set at the remote modem must hold RTS high for the duration of the data test. The data rate of the test sets shall be set to the rate used in the system.

The Contractor shall conduct operational performance tests as follows:

- A. A 15 minute test on each drop of each multipoint circuit and it shall be error free in both directions.
- B. One drop of each circuit, as chosen by the Engineer, shall be tested for 48 hours. The average bit error rate in both directions shall be less than 5 x 10-8.
- C. The round-trip propagation delay for each Model 170 controller circuit shall be measured by using a loopback connector on the slave modem furthest from the master. The loopback connector shall connect pin 2 to 3, 8 to 4, and 6 to 20 of the DB-25 connector. A data test set capable of measuring delay shall be used at the different toll plazas. The test shall be repeated 3 times and the average value calculated.
- D. Pulse-width distortion between the data pulse width into a data channel port at the different toll plaza port and the pulse width out of the EIA-232C port of an interconnected drop modem.
- E. Distortion shall be tested between the different toll plaza and the selected field modem for each data circuit. The signal shall not have a gross start-stop distortion greater than 20 percent at any data interface, measured as per EIA-404-A.

If any circuit or element fails to satisfy the specified performance requirements, the Contractor shall determine the cause and remedy the failure to the satisfaction of the Engineer. The full performance tests shall be repeated under operating conditions as determined by the Engineer.

Functional Test

Functional tests must be performed in accordance with an approved test plan.

The Contractor shall test in the presence of the Engineer all integrated system functions to demonstrate that all circuits, and all equipment satisfies the functional requirements of the specifications. All functional test results must be documented.

In the event that any aspect of the functional tests is determined by the Engineer to have failed, the Contractor shall cease all acceptance testing and determine the cause of the failure. If the failure is due to a defect within the Contractor furnished portion of the system, the Contractor shall make repairs to the satisfaction of the Engineer. Acceptance testing shall, at the discretion of the Engineer, be repeated from the start of functional tests.

Final Acceptance

The system will not be accepted until all of the following conditions have been met:

- 1. Physical, performance, and functional acceptance tests have been completed and the results are approved by the Engineer.
- 2. Documentation has been completed and submitted to the Engineer.
- Connections that were changed to perform acceptance tests are restored and tested.

Upon completion of acceptance tests the Contractor shall connect all equipment to form a fully operational system.

SYSTEM DOCUMENTATION

Submit draft documentation 8 week prior to the start of installation. The Engineer will review and approve or reject the draft documentation within 2 weeks of receipt. Draft documentation must show the general approach in preparing final manuals.

Submit a draft copy of documentation for review and approval prior to production of documentation. The Engineer will review and approve or reject the draft documentation within 4 weeks of receipt.

Modify documentation, if required, must be resubmitted to the Engineer as a provisional documentation. The Engineer will approve or reject the draft provisional documentation within 2 weeks 3 weeks of receipt. Arrange for re-submission within 2 weeks if the documents are rejected.

Draft documentation must be submitted 8 weeks prior to the start of installation. Draft documentation must show the general approach in preparing final manuals.

Upon approval of draft documentation, provisional documentation must be supplied 3 weeks prior to starting site testing. Provisional documentation must be the same format as final manuals but with temporary insertion for items which cannot be finalized until the system is completely tested and accepted.

Final documentation must be approved prior to its production. The approved final documentation must be submitted no later than 4 weeks after completion of the acceptance tests and must incorporate comments made during approval stages. You are responsible for delay caused by non-compliance to requirements.

Ten copies of final documents must be delivered. The copies must be 8.5 inch x 11 inch paper and bound in 3-ring hard-covered binders complete with dividers.

System documentation must be arranged in an operation and maintenance (O & M) manual format providing information necessary to operate, maintain and repair equipment and cables to the lowest module or component level.

Operations and maintenance manuals must as a minimum, consist of the following sub-sections:

- 1. Master Items Index. This must be the first section of the O & M manual. The section must describe the purpose of individual manual and brief description to the directory of the manual. It must reference equipment manuals as required for additional and support material. Accurate Block Diagrams must be included.
- 2. System Description and Technical Data. This section must contain an overall description of the system and associated equipment and cables with illustrative block diagrams. This section must identify equipment and cables in the system stating the exact module and option number that are employed in the system. Technical data specification and settings for every type of equipment or cable must be provided. Modifications to equipment must be clearly described.
- Theory of Operation. The manual must contain a functional description of elements of the system, explaining how an individual function is achieved separately and how elements work together to form the complete system.

- 4. Software Documentation. Proper documentation for software must be provided. Software documentation must include a clear description of the system's functionality and specifications. Description on individual software modules and programs must be provided. Supply related programming and system user manuals, application and utilities software use manual and associated proprietary software manuals. Software listing of custom programs must be provided, as well as a copy of software source code.
- 5. Operations. The manual must describe how to operate the system and a particular type of equipment. Equipment layout, layout of controls, displays, and other information required to correctly operate the system and each functional unit must be provided. Procedures must be provided for initial tune-up of the system and adjustment and checkout required to ensure that the system is functioning within the performance requirements. Warning of special and turn-on procedures must be included. The functions and setting of parameters must be explained.
- 6. Corrective Maintenance. The manual must include fault diagnostic and repair procedures to permit the location and correction of faults to the level of each replaceable module. Procedures must include alignment and testing of the equipment following repair, the test equipment, tools, diagnostic software required and the test set up.
- 7. Preventative Maintenance. The manual must include procedures for preventative maintenance in order to maintain the performance parameters of the system, equipment and cables within the requirements of the specifications.
- 8. Parts List. The manual must include a list of replaceable parts with exact parts description and number and a directory of recommended suppliers with correspondence address, telephone and fax numbers.
- Test Results. This section must include a copy of the results for the tests that have been conducted for the contract.

Manuals

Twelve complete sets of operation and maintenance manuals must be provided. The manuals must, as a minimum, include the following:

- 1. Complete and accurate block diagrams.
- 2. Complete installation and turn-on procedures.
- 3. Complete performance specifications (functional, electrical, mechanical, and environmental) identified by a universal part number such as JEDEC, RETMA, or EIA.
- 4. Complete stage-by-stage explanation and trouble-shooting procedures.
- 5. Complete stage-by-stage explanation of operation.

Provide system schematic drawings to identify the type of equipment at individual location. Drawings must show how systems are interconnected. A list of cabling and wiring must be provided to identify the interconnection and labeling of equipment in the field.

PAYMENT

Full compensation for system testing and documentation including all labor, materials, tools, equipment and incidentals for performing all the work involved shall be considered as included in the contract lump sum price paid for communication system and no separate payment will be made therefor.

10-3.31 TRAINING

DESCRIPTION

Training will include providing training course and training manuals described below:

A training manual for operation and maintenance shall be developed by the Contractor and presented to the Engineer. A training area will be provided at the District Maintenance Yard or TMC in Irvine, California. The Contractor at his option may provide the training at his plant or office if it is located within reasonable travel distance (approximately not more than one hour travel time) from the district office.

The Contractor shall provide the training for Department technical personnel, and shall follow a training outline prepared by the Contractor. The Contractor shall provide all operations and maintenance materials as well as the instructors for the training course. The course shall not be less than two eight-hour (excluding lunch and breaks) day in duration.

No more than ten Department employees with technical backgrounds will attend this course. Each person shall receive a training manual. The remaining manuals shall be given to the Engineer for redistribution to other employees.

The training manual (operations and maintenance) shall be written especially for any devices furnished and installed by the Contractor.

Contractor shall provide complete procedures for operating, maintaining, and trouble-shooting the cable plant, equipment installed at traffic site.

The maintenance section of the training manual shall cover preventive, routine and emergency maintenance procedures, list of emergency repair kits and spare parts.

The training manuals shall be separated into appropriately titled sections such as:

- A. Hardware
- B. Operation
- C. Maintenance

One copy of the manual for this course shall be delivered to the Engineer for approval at least 4 weeks prior to the scheduled class time. Course documentation shall be delivered to the Engineer one week before the scheduled start date of the class. The training course shall be completed prior to the acceptance of the contract.

PAYMENT

Full compensation for Training shall be consider as included in the contract prices paid for the various items of work requiring Communication System and no additional compensation will be allowed therefor.

10-3.32 PAYMENT

The contract lump sum prices paid for signal and lighting shall include highway lighting at intersections in connection with signals only.

Other roadway lighting on the project shall be considered as included in the contract lump sum price paid for lighting and sign illumination, and lighting (City Street).

If any of the fabrication sites for the materials listed are located more than 300 air line miles from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impractical and difficult to determine the actual increase in these expenses, it is agreed that payment to the Contractor for furnishing these listed materials from each fabrication site located more than 300 air line miles from both Sacramento and Los Angeles will be reduced \$2,000:

1. Service equipment enclosures

The contract lump sum paid for signal and lighting (City) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in signal and lighting (City), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract lump sum paid for temporary signal and lighting (City) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in temporary signal and lighting (City), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract lump sum paid for lighting (City Street) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in lighting (City Street), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract lump sum paid for electric service (irrigation) (City) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing electric service (irrigation) for irrigation controllers, complete in place, including conductors, conduit and pull boxes to the pull box adjacent to irrigation controller enclosure cabinets and irrigation controllers, as shown on the plans, as specified in these special provisions, and as directed by the Engineer.

The contract lump sum paid for closed circuit television system (City) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in closed circuit television system (City), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract lump sum paid for communication system (temporary) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in communication system (temporary), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

The contract lump sum price paid for communication system shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, for doing all the work involved in communication system, complete in place, including wiring, jumpers, FDU, FODM, and interface cables as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

AMENDMENTS TO THE STANDARD SPECIFICATIONS DATED MAY 2006

Contract No. 12-0E3104

AMENDMENTS ISSUE DATE: 04-20-12

SECTION 0 GLOBAL REVISIONS (Issued 01-20-12)

Global revisions are changes to contract documents not specific to a section of the Standard Specifications. In each contract document at each occurrence, interpret the following terms as shown:

Term	Interpretation	Conditions
AC	HMA	1. Where AC means
		asphalt concrete
		2. Except where existing
		AC is described
Asphalt concrete	Hot mix asphalt	Except where existing
	_	asphalt concrete is
		described
Class 1 concrete	Concrete containing not less	
	than 675 pounds of cementitious	
	material per cubic yard	
Class 2 concrete	Concrete containing not less	
	than 590 pounds of cementitious	
	material per cubic yard	
Class 3 concrete	Concrete containing not less	
	than 505 pounds of cementitious	
	material per cubic yard	
Class 4 concrete	Concrete containing not less	
	than 420 pounds of cementitious	
	material per cubic yard	
Clause providing an option to use either a class	Use minor concrete	
concrete or minor concrete		
Clause referring to a delay as a right-of-way	Delay under Section 8-1.09,	
delay	"Delays"	
Contact joint	Construction joint	
Controlling operation	Controlling activity	
Engineer's Estimate	Verified Bid Item List	
Engineering fabrics	Geosynthetics	
Notice to Contractors	Notice to Bidders	
Partial payments	Progress payments	Except in Section 9-
		1.07D, "Mobilization"
PCC pavement	Concrete pavement	Except where existing
	_	PCC pavement is
		described
Portland cement concrete pavement	Concrete pavement	Except where existing
		portland cement concrete
		pavement is described
Project information	Supplemental project	Except in "Contract
-	information	Project Information Signs"
Reference to a working day or non-working day	Working day as defined in	
under Section 8-1.06, "Time of Completion"	Section 1-4.02, "Glossary"	
Section 9-1.015	Section 9-1.01C	
Section 86, "Signal, Lighting and Electrical	Section 86, "Electrical Systems"	
Systems"		
Section 86-2.08, "Conductors"	Section 86-2.08, "Conductors	
	and Cables"	

Section 86-5.01A(5), "Installation Details"	Section 86-5.01A(4),	
	"Installation Details"	
Section 86-6.05, "Sign Lighting Fixtures—	Section 86-6.05, "Induction Sign	
Mercury"	Lighting Fixtures"	
Time extension due to an unanticipated event	Non-working day	
not caused by either party or an issue involving		
a third party under Section 8-1.07, "Liquidated		
Damages"		
Time extension due to an act of the Engineer or	Time adjustment under Section	
of the Department not contemplated by the	8-1.09B, "Time Adjustments"	
contract		
Weakened plane joint	Contraction joint	

^^^^^^

SECTION 1 DEFINITIONS AND TERMS

(Issued 04-20-12)

Replace Section 1 with: SECTION 1 GENERAL 1-1 GENERAL

1-1.01 GENERAL

Section 1 includes general rules of interpretation.

The Department is gradually standardizing the style and language of the specifications. The new style and language includes:

1. Use of:

- 1.1. Imperative mood
- 1.2. Introductory modifiers
- 1.3. Conditional clauses

2. Elimination of:

- 2.1. Language variations
- 2.2. Definitions for industry-standard terms
- 2.3. Redundant specifications
- 2.4. Needless cross-references

The use of this new style does not change the meaning of a specification not yet using this style.

Sections 1 through 9 include general specifications applicable to every contract unless specified as applicable under certain conditions.

Sections 10 through 15 include specifications for general construction applicable to every contract unless specified as applicable under certain conditions.

The specifications are written to the Bidder before award and the Contractor after. Before award, interpret sentences written in the imperative mood as starting with "The Bidder must" and interpret "you" as "the Bidder" and "your" as "the Bidder's." After award, interpret sentences written in the imperative mood as starting with "The Contractor must" and interpret "you" as "the Contractor" and "your" as "the Contractor's."

Omission of "a," "an," and "the" is intentional. These articles have been omitted in some specifications for streamlining purposes.

Unless an object or activity is specified to be less than the total, the quantity or amount is all of the object or activity.

A plural term includes the singular.

All items in a list apply unless the items are specified as choices.

Headings are included for the purposes of organization and referencing. Inclusion of a heading with no related content, "Reserved," or "Not Used" does not indicate that no specification exists for that subject; applicable specifications may be covered in a general or referenced specification.

1-2 REFERENCES

1-2.01 REFERENCES

Where Standard Specifications refer to the special provisions to describe the work, interpret the reference as a reference to the Bid Item List, the special provisions, or both.

Interpret a reference to a section of the Standard Specifications as a reference to the Standard Specifications as revised by any amendment, special provision, or both.

A reference within parentheses to a law or regulation is included in the contract for convenience only and is not a comprehensive listing of related laws and regulations. Lack of a reference does not indicate no related laws or regulations exist.

Where the version of a referenced document is not specified, use the current version in effect on the date of Notice to Bidders.

A reference to a subsection includes the section's general specifications of which the subsection is a part.

A code not specified as a Federal code is a California code.

Contract No. 12-0E3104

1-3 ABBREVIATIONS AND MEASUREMENT UNITS

1-3.01 ABBREVIATIONS

Abbreviations

Abbreviation	Addreviations Meaning
AAN	American Association of Nurserymen
AASHTO	American Association of Natsetymen American Association of State Highway and Transportation
AASIIIO	Officials
AISC	American Institute of Steel Construction
AISI	American Iron and Steel Institute
AMA	archaeological monitoring area
ANSI	American National Standards Institute
APHA	American Public Health Association
API	American Petroleum Institute
AREMA	American Railway Engineering and Maintenance-of-Way
AKLWA	Association
ASME	American Society of Mechanical Engineers
ASTM	American Society for Testing and Materials
AWG	American Wire Gage
AWPA	American Wood-Preservers' Association
AWS	American Welding Society
AWWA	American Water Works Association
CIH	Certified Industrial Hygienist
DBE	Disadvantaged Business Enterprise
DVBE	Disabled Veteran Business Enterprise
EIA	Electronic Industries Alliance
ESA	environmentally sensitive area
ETL	Electrical Testing Laboratories
(F)	final pay item
FHWA	Federal Highway Administration
IEEE	Institute of Electrical and Electronics Engineers
ITE	Institute of Transportation Engineers
NEC	National Electrical Code
NETA	National Electrical Testing Association, Inc.
NEMA	National Electrical Manufacturers Association
PLAC	permit, license, agreement, certification, or any combination of
	these
RFI	request for information
SSPC	The Society for Protective Coatings
TIA	time impact analysis
UL	Underwriters' Laboratories Inc.

1-3.02 MEASUREMENT UNITS

Measurement Units

Symbols as used in	Symbols as used in	
in		
	the	Meaning
the specifications	Bid Item List	
A	_	amperes
	ACRE	acre
	CF	cubic foot
	CY	cubic yard
	EA	each
g		gram
ksi		kips per square inch
	GAL	gallon
h	Н	hour
	LB	pound
	LS	lump sum
	LF	linear foot
	LNMI	lane mile
	MFBM	thousand foot board measure
	MI	mile
	MSYD	thousand station yard
Ω		ohm
pcf		pounds per cubic foot
S		second
	STA	100 feet
	SQFT	square foot
	SQYD	square yard
	TAB	tablet
ton	TON	2,000 pounds
V		volt
W		watt
	WDAY	working day

1-4 DEFINITIONS

1-4.01 GENERAL

Interpret terms as defined in the contract documents. A construction-industry term not defined in the contract documents has the meaning defined in Means Illustrated Construction Dictionary, Condensed Version, Second Edition.

1-4.02 GLOSSARY

aerially deposited lead: Lead primarily from vehicle emissions deposited within unpaved areas or formerly unpaved areas.

archaeological monitoring area: Area within, near, or straddling the project limits where access is allowed, but work is subject to archaeological monitoring.

archaeological resources: Remains of past human activity, including historic and prehistoric material (e.g., tools and tool fragments, hearth and food remains, structural remains, and human remains).

acceptance: Formal written acceptance by the Director of an entire contract that has been completed in all respects in accordance with the plans and specifications and any modifications to them previously approved.

base: Layer of specified material of planned thickness placed immediately below the pavement or surfacing. **basement material:** Material in excavation or embankments underlying the lowest layer of subbase, base, pavement, surfacing, or other specified layer to be placed.

bid item: Specific work unit for which the bidder provides a price.

Bid Item List: List of bid items and the associated quantities.

Bid Item List, verified: Bid Item List with verified prices. The Contract Proposal of Low Bidder at the Department's Web site is the verified Bid Item List.

bridge: Structure, with a bridge number, that carries a utility facility, or railroad, highway, pedestrian or other traffic, over a water course or over or under or around any obstruction.

building-construction contract: Contract that has "building construction" on the cover of the Notice to Bidders and Special Provisions.

business day: Day on the calendar except Saturday or holiday.

California Manual on Uniform Traffic Control Devices: The California Manual on Uniform Traffic Control Devices for Streets and Highways (California MUTCD) is issued by the Department of Transportation and is the Federal Highway Administration's MUTCD 2003 Edition, as amended for use in California.

Certified Industrial Hygienist: Industrial hygienist certified in comprehensive practice by the American Board of Industrial Hygiene.

conduit: Pipe or tube in which smaller pipes, tubes, or electrical conductors are inserted or are to be inserted.

contract: Written and executed contract between the Department and the Contractor.

contract bonds: Security for the payment of workers and suppliers furnishing materials, labor, and services and for guaranteeing the Contractor's work performance.

contract item: Bid item.

Contractor: Person or business or its legal representative entering into a contract with the Department for performance of the work.

culvert: Structure, other than a bridge, that provides an opening under a roadway for drainage or other purposes.

day: 24 consecutive hours running from midnight to midnight; calendar day.

deduction: Amount of money permanently taken from progress payment and final payment. Deductions are not retentions under Pub Cont Code § 7107.

Department: Department of Transportation as defined in St & Hwy Code § 20 and authorized in St & Hwy Code § 90; its authorized representatives.

detour: Temporary route for traffic around a closed road part. A passageway through a job site is not a detour.

Director: Department's Director.

Disabled Veteran Business Enterprise: Business certified as a DVBE by the Office of Small Business and DVBE Services, Department of General Services.

divided highway: Highway with separated traveled ways for traffic, generally in opposite directions.

Engineer: Department's Chief Engineer acting either directly or through properly authorized agents; the agents acting within the scope of the particular duties delegated to them.

environmentally sensitive area: Area within, near, or straddling the project limits where access is prohibited or limited to protect environmental resources.

Federal-aid contract: Contract that has a Federal-aid project number on the cover of the Notice to Bidders and Special Provisions.

fixed costs: Labor, material, or equipment cost directly incurred by the Contractor as a result of performing or supplying a particular bid item that remains constant regardless of the item's quantity.

frontage road: Local street or road auxiliary to and located generally on the side of an arterial highway for service to abutting property and adjacent areas and for control of access.

grading plane: Basement material surface on which the lowest layer of subbase, base, pavement, surfacing, or other specified layer is placed.

highway: Whole right of way or area that is reserved for and secured for use in constructing the roadway and its appurtenances.

holiday:

- 1. Every Sunday
- 2. January 1st, New Year's Day
- 3. 3rd Monday in January, Birthday of Martin Luther King, Jr.
- 4. February 12th, Lincoln's Birthday
- 5. 3rd Monday in February, Washington's Birthday
- 6. March 31st, Cesar Chavez Day
- 7. Last Monday in May, Memorial Day
- 8. July 4th, Independence Day
- 9. 1st Monday in September, Labor Day
- 10. 2nd Monday in October, Columbus Day
- 11. November 11th, Veterans Day
- 12. 4th Thursday in November, Thanksgiving Day

- 13. Day after Thanksgiving Day
- 14. December 25th, Christmas Day

If January 1st, February 12th, March 31st, July 4th, November 11th, or December 25th falls on a Sunday, the Monday following is a holiday. If November 11th falls on a Saturday, the preceding Friday is a holiday. Interpret "legal holiday" as "holiday."

idle equipment: Equipment:

- 1. On the job site at the start of a delay
- 2. Idled because of the delay
- 3. Not operated during the delay

informal-bid contract: Contract that has "Informal Bid Authorized by Pub Cont Code §10122" on the cover of the Notice to Bidders and Special Provisions.

Information Handout: Supplemental project information furnished to bidders as a handout.

laboratory: Laboratory authorized by the Department to test materials.

liquidated damages: Amount prescribed in the specifications, pursuant to the authority of Pub Cont Code § 10226, to be paid to the State or to be deducted for each day's delay in completing the whole or any specified portion of the work beyond the time allowed in the specifications.

listed species: Any species listed as threatened or endangered under (1) Federal Endangered Species Act of 1973, 16 USC §1531 et seq., (2) California Endangered Species Act, Fish & Game Code §§ 2050–2115.5, (3) or both.

material shortage: Shortage of raw or produced material that is area-wide and caused by an unusual market condition, except if any of the following occurs:

- 1. Shortage relates to a produced, nonstandard material
- 2. Supplier's and the Contractor's priority for filling an order differs
- 3. Event outside the U.S. for a material produced outside the U.S.

median: Portion of a divided highway separating the traveled ways for traffic in opposite directions including inside shoulders.

mobilization: Preparatory work that must be performed or costs incurred before starting work on the various items on the job site (Pub Cont Code § 10104).

Notice to Bidders: Document that provides a general work description, bidder and bid specifications, and the time and location the Department receives bids.

paleontological resources: Fossils and the deposits they are found in. Fossils are evidence of ancient life preserved in sediments and rock. Examples of paleontological resources are remains of (1) animals, (2) animal tracks, (3) plants, and (4) other organisms. Archaeological resources are not paleontological and fossils found within an archaeological resource are generally considered archaeological resources, not paleontological resources.

pavement: Uppermost layer of material placed on the traveled way or shoulders. This term is used interchangeably with surfacing.

permitted biological activities: Monitoring, surveying, or other practices that require a take permit and project specific permission from U.S. Fish and Wildlife Service or NOAA Fisheries or a take permit or Memorandum of Understanding with Department of Fish and Game.

plans: Official project plans and Standard Plans, profiles, typical cross sections, working drawings and supplemental drawings, or reproductions thereof, approved by the Engineer, which show the location, character, dimensions and details of the work to be performed. These documents are to be considered as a part of the plans.

In the above definition, the following terms are defined as follows:

Standard Plans: Standard Plans issued by the Department.

project plans: Specific details and dimensions peculiar to the work supplemented by the Standard Plans insofar as the same may apply.

protective radius: Minimum distance between construction activities and regulated species.

regulated species: Any species protected by one or any combination of the following:

- 1. Federal Endangered Species Act of 1973, 16 USC §1531 et seq.
- 2. California Endangered Species Act, Fish & Game Code §\$2050–2115.5
- 3. Fish & Game Code §§1600-1616
- 4. National Environmental Policy Act, 42 USC §4321 et seg.

- 5. California Environmental Quality Act, Pub Res Code § 21000 et.seq.
- 6. Other law or regulation that governs activities that affect species or their habitats.
- **roadbed:** Area between the intersection of the upper surface of the roadway and the side slopes or curb lines. The roadbed rises in elevation as each increment or layer of subbase, base, surfacing or pavement is placed. Where the medians are so wide as to include areas of undisturbed land, a divided highway is considered as including 2 separate roadbeds.
- **roadway:** Highway portion included between the outside lines of sidewalks, or curbs, slopes, ditches, channels, waterways, and including all the appertaining structures, and other features necessary to proper drainage and protection.
- **routine biological activities:** Biological monitoring, surveying, or other activity that does not require a take permit from the U.S. Fish and Wildlife Service or NOAA Fisheries or a take permit or Memorandum of Understanding with Department of Fish and Game.
- **service-approved biologist:** Biologist whose activities must be approved by a state or federal agency as provided in PLACs.
- **shoulder:** Roadway portion contiguous with the traveled way for accommodation of stopped vehicles, for emergency use, and for lateral support of base and surface courses.
- **small tool:** Tool or piece of equipment not listed in Labor Surcharge and Equipment Rental Rates that has a replacement value of \$500 or less.
- **special provisions:** Specific clauses setting forth conditions or requirements peculiar to the work and supplementary to these Standard Specifications. The Department's publication titled "Labor Surcharge And Equipment Rental Rates" is part of the special provisions.
- **specifications:** Directions, provisions, and requirements contained in these Standard Specifications, Amendments to the Standard Specifications, and the special provisions. Where the term "these specifications" or "these Standard Specifications" is used in this book, it means the provisions set forth in this book.
- **State:** State of California, including its agencies, departments, or divisions, whose conduct or action is related to the work.

Structure Design: Offices of Structure Design of the Department.

subbase: Layer of specified material of planned thickness between a base and the basement material.

subgrade: Roadbed portion on which pavement, surfacing, base, subbase, or a layer of any other material is placed.

substructure: Bridge portions below the bridge seats, tops of piers, haunches of rigid frames, or below the spring lines of arches. Backwalls and parapets of abutments and wingwalls of bridges are portions of the substructure.

superstructure: Bridge portion except the bridge substructure.

supplemental project information: Information relevant to the project, specified as supplemental project information, and made available to bidders.

surfacing: Uppermost layer of material placed on the traveled way, or shoulders. This term is used interchangeably with pavement.

take: Legal definition regarding harm to listed species as defined in 16 USC §1532 and Fish & Game Code § 86.

take permit: Permit granted by the US Fish and Wildlife Service or by the NOAA Fisheries that allows take of federal listed species under 16 USC §1539 or by the Department of Fish & Game that allows take of state listed species under to Fish & Game Code § 2081.

traffic lane: Portion of a traveled way for the movement of a single line of vehicles.

traveled way: Portion of the roadway for the movement of vehicles, exclusive of shoulders.

total bid: Sum of the item totals as verified by the Department; original contract price.

withhold: Money temporarily or permanently taken from progress payment. Withholds are not retentions under Pub Cont Code § 7107.

work: All the work specified, indicated, shown or contemplated in the contract to construct the improvement, including all alterations, amendments, or extensions to it made by contract change order or other written orders of the Engineer.

working day: Time measure unit for work progress. A working day is any day except:

- 1. Saturdays and holidays
- 2. A day when you cannot perform work on the controlling activity for at least 50 percent of the day with at least 50 percent of the normal labor and equipment due to any of the following:

- 2.1. Adverse weather-related conditions that cause you to dismiss the crew
- 2.2. Maintaining traffic under the contract
- 2.3. The Engineer's direction to suspend the controlling activities for reasons unrelated to your performance
- 2.4. An unanticipated event not caused by either party such as:
 - 2.4.1. Act of God (Pub Cont Code § 7105)
 - 2.4.2. Act of a public enemy
 - 2.4.3. Epidemic
 - 2.4.4. Fire
 - 2.4.5. Flood
 - 2.4.6. Governor-declared state of emergency
 - 2.4.7. Landslide
 - 2.4.8. Quarantine restriction
- 2.5. An issue involving a third-party, including:
 - 2.5.1. Industry or area-wide labor strike
 - 2.5.2. Material shortage
 - 2.5.3. Freight embargo
 - 2.5.4. Jurisdictional requirement of a law enforcement agency
 - 2.5.5. Workforce labor dispute of a utility or non-highway facility owner resulting in a utility or non-highway facility reconstruction not described and not solely for the Contractor's convenience

1-5 DISTRICTS

District Composition and Office Addresses

District	Counties	Location Address	Mailing Address
1	Del Norte (DN), Humboldt (Hum),	1656 UNION ST	PO BOX 3700
_	Lake (Lak), Mendocino (Men)	EUREKA, CA	EUREKA CA 95502
2	Lassen (Las), Modoc (Mod), Plumas	1657 RIVERSIDE DR	PO BOX 496073
_	(Plu), Shasta (Sha), Siskiyou (Sis),	REDDING, CA	REDDING CA 96049-6073
	Tehama (Teh), Trinity (Tri)	, -	
3	Butte (But), Colusa (Col), El Dorado	703 B ST	703 B ST
	(ED), Glenn (Gle), Nevada (Nev),	MARYSVILLE, CA	MARYSVILLE CA 95901
	Placer (Pla), Sacramento (Sac),		
	Sierra (Sie), Sutter (Sut), Yolo (Yol),		
	Yuba (Yub)		
4	Alameda (Ala), Contra Costa (CC),	111 GRAND AVE	PO BOX 23660
	Marin (Mrn), Napa (Nap), San	OAKLAND, CA	OAKLAND CA 94623-0660
	Francisco (SF), San Mateo (SM),		
	Santa Clara (SCl), Solano (Sol),		
	Sonoma (Son)		
5	Monterey (Mon), San Benito (SBt),	50 HIGUERA ST	50 HIGUERA ST
	San Luis Obispo (SLO), Santa	SAN LUIS OBISPO, CA	SAN LUIS OBISPO CA 93401-
	Barbara (SB), Santa Cruz (SCr)		5415
6	Fresno (Fre), Kern (Ker), Kings	1352 W. OLIVE AVE	PO BOX 12616
	(Kin), Madera (Mad), Tulare (Tul)	FRESNO, CA	FRESNO CA 93728-2616
7	Los Angeles (LA), Ventura (Ven)	100 S. MAIN ST	100 S MAIN ST
		LOS ANGELES	LOS ANGELES CA 90012
8	Riverside (Riv), San Bernardino	464 W 4TH ST	464 W 4TH ST
	(SBd)	SAN BERNARDINO, CA	SAN BERNARDINO CA
		700 G 164 D 4 GT	92401-1400
9	Inyo (Iny), Mono (Mno)	500 S MAIN ST	500 S MAIN ST
1.0		BISHOP, CA	BISHOP CA 93514-3423
10	Alpine (Alp), Amador (Ama),	1976 E CHARTER WAY	PO BOX 2048
	Calaveras (Cal), Mariposa (Mpa),	STOCKTON, CA	STOCKTON CA 95201
	Merced (Mer), San Joaquin (SJ),		
1.1	Stanislaus (Sta), Tuolumne (Tuo)	4050 FAVI OF SE	4050 TANK OD CT
11	Imperial (Imp), San Diego (SD)	4050 TAYLOR ST	4050 TAYLOR ST
		SAN DIEGO, CA	SAN DIEGO CA 92110-2737
12	Orange (Ora)	3347 MICHELSON DR	3347 MICHELSON DR STE 100
		STE 100	IRVINE CA 92612-0661
		IRVINE, CA	

A project with work in District 1, 2, or 3 is a North Region project. For Districts 1, 2, and 3, interpret each reference to the district office as the North Region office. The North Region office address is the District 3 address.

1-6 WEB SITES, ADDRESSES, AND TELEPHONE NUMBERS

Web Sites, Addresses, and Telephone Numbers

		esses, and Telephone Numbers	
Agency, Department Unit, or Reference	Web Site	Address	Telephone No.
Bidders' Exchange	www.dot.ca.gov/hq/es c/oe/bidex	MSC 26 BIDDERS' EXCHANGE DEPARTMENT OF TRANSPORTATION 1727 30TH ST SACRAMENTO CA 95816-7005	(916) 227-6259
Department	www.dot.ca.gov		
Department of General Services, Office of Small Business and DVBE Services	www.pd.dgs.ca.gov/s mbus/default.htm	OFFICE OF SMALL BUSINESS AND DVBE SERVICES DEPARTMENT OF GENERAL SERVICES 707 3RD ST WEST SACRAMENTO CA 95605- 2811	(800) 559-5529 (916) 375-4940
Department of Industrial Relations	www.dir.ca.gov		
Department of Industrial Relations, Division of Apprenticeship Standards		455 GOLDEN GATE AVENUE SAN FRANCISCO, CA 94102	
Division of Accounting, Office of External Accounts Payable	http://www.dot.ca.gov/hq/asc/oap/payments/contact.htm#conpets1	MAJOR CONSTRUCTION PAYMENT AND INFORMATION UNIT OFFICE OF EXTERNAL ACCOUNTS PAYABLE DIVISION OF ACCOUNTING DEPARTMENT OF TRANSPORTATION P.O. BOX 168043 SACRAMENTO, CA 95816-8043	(916) 227-9013
Office Engineer		MSC 43 OFFICE ENGINEER DEPARTMENT OF TRANSPORTATION 1727 30TH ST SACRAMENTO CA 95816-7005	
Office Engineer–All Projects Currently Advertised	http://www.dot.ca.gov/ hq/esc/oe/weekly_ads/ all_advertised.php		
Offices of Structure Design, Documents Unit		MSC 9-4/4I DOCUMENTS UNIT OFFICES OF STRUCTURE DESIGN DEPARTMENT OF TRANSPORTATION 1801 30TH ST SACRAMENTO CA 95816-7006	(916) 227-0716
Publication Distribution Unit		PUBLICATION UNIT DEPARTMENT OF TRANSPORTATION 1900 ROYAL OAKS DRIVE SACRAMENTO CA 95815-3800	

Contract No. 12-0E3104 11 of 297

Transportation		MATERIALS AND ENGINEERING	(916) 227-7000
Laboratory		TESTING SERVICES AND	
-		GEOTECHNICAL SERVICES	
		DEPARTMENT OF	
		TRANSPORTATION	
		5900 FOLSOM BLVD	
		SACRAMENTO CA 95819-4612	
Department's Pre-	http://www.dot.ca.gov/		
Qualified Products	hq/esc/approved_prod		
List	ucts_list		

^^^^^^

SECTION 2 PROPOSAL REQUIREMENTS AND CONDITIONS (Issued 01-20-12)

Replace Section 2 with: SECTION 2 BIDDING

2-1.01 GENERAL

Section 2, "Bidding," includes specifications related to bid eligibility and the bidding process.

2-1.02 BID INELIGIBILITY

A firm that has provided architectural or engineering services to the Department for this contract before bid submittal for this contract is prohibited from any of the following:

- 1. Submit a bid
- 2. Subcontract for a part of the work
- 3. Supply materials

2-1.03 BID DOCUMENTS

2-1.03A General

Standard Specifications and Standard Plans may be viewed at the Department's Web site and may be purchased at the Publication Distribution Unit.

Special provisions, Amendments to the Standard Specifications, and project plans may be viewed at the Bidders' Exchange. To obtain bid books, submit a request to the Bidders' Exchange. For an informal-bid contract, you may also obtain special provisions, Amendments to the Standard Specifications, and project plans at the Bidders' Exchange.

2-1.03B Supplemental Project Information

Logs of test borings attached to the project plans are supplemental project information. The Department makes other supplemental information available as specified in the special provisions.

If an Information Handout or cross sections are available:

- 1. You may view them at the Office Engineer-All Projects Currently Advertised Web site
- 2. For an informal-bid contract, you may obtain them at the Bidders' Exchange street address

If rock cores are available for inspection, you may view them by sending a request to Coreroom@dot.ca.gov. If other supplemental project information is available for inspection, you may view it by phoning in a request. Make your request at least 7 days before viewing. Include in your request:

- 1. District-County-Route
- 2. Contract number
- 3. Viewing date

4. Contact information, including telephone number.

For rock cores, also include the bridge number in your request.

If bridge as-built drawings are available:

- 1. For a project in District 1 through 6 or 10, you may request them from the Office of Structure Maintenance and Investigations, fax (916) 227-8357
- 2. For a project in District 7, 8, 9, 11, or 12, you may request them from the Office of Structure Maintenance and Investigations, fax (916) 227-8357, and they are available at the Office of Structure Maintenance and Investigations, Los Angeles, CA, telephone (213) 897-0877

As-built drawings may not show existing dimensions and conditions. Where new construction dimensions are dependent on existing bridge dimensions, verify the field dimensions and adjust dimensions of the work to fit existing conditions.

2-1.04-2-1.10 RESERVED

2-1.11 JOB SITE AND DOCUMENT EXAMINATION

Examine the job site and bid documents.

Bid submission is your acknowledgment that you have examined the job site and bid documents and are satisfied with:

- 1. General and local conditions to be encountered
- 2. Character, quality, and scope of work to be performed
- 3. Quantities of materials to be furnished
- 4. Character, quality, and quantity of surface and subsurface materials or obstacles
- 5. Requirements of the contract

2-1.12 BID DOCUMENT COMPLETION

2-1.12A General

Complete forms in the Bid book.

Except for the bid item number and the percentage of each item subcontracted, do not fax submittals.

2-1.12B Bid Item List and Bid Comparison

Submit a bid based on the work item quantities the Department shows in the Bid Item List.

For a lump sum based bid, the Department compares bids based on the total price.

For a unit price based bid, the Department compares bids based on the sum of the item totals.

For a cost plus time based bid, the Department compares bids based on the sum of the item totals and the total bid for time. If your bid for time exceeds the number of working days described in the Notice to Bidders, your bid is nonresponsive.

2-1.12C Subcontractor List

In the Subcontractor List, list each subcontractor to perform work in an amount in excess of 1/2 of 1 percent of the total bid or \$10,000, whichever is greater (Pub Cont Code § 4100 et seq.)

The Subcontractor List must show the name, address, and work portions to be performed by each subcontractor listed. Show work portion by bid item number, description, and percentage of each bid item subcontracted.

On the Subcontractor List you may either submit each subcontracted bid item number and corresponding percentage with your bid or fax these numbers and percentages to (916) 227-6282 within 24 hours after bid opening. Failure to do so results in a nonresponsive bid.

2-1.13 BIDDER'S SECURITY

Submit your bid with one of the following forms of bidder's security equal to at least 10 percent of the bid:

- 1. Cash
- 2. Cashier's check
- 3. Certified check

4. Bidder's bond signed by a surety insurer who is licensed in California

Make checks and bonds payable to the Department of Transportation.

If using a bidder's bond, you may use the form in the Bid book. If you do not use the form in the Bid book, use a form containing the same information.

2-1.14 BID SUBMITTAL

Submit your bid:

- 1. Under sealed cover
- 2. Marked as a bid
- 3. Identifying the contract number and the bid opening date

If an agent other than the authorized corporation officer or a partnership member signs the bid, file a Power of Attorney with the Department either before opening bids or with the bid. Otherwise, the bid may be nonresponsive.

2-1.15 BID WITHDRAWAL

An authorized agent may withdraw a bid before the bid opening date and time by submitting a written bid withdrawal request at the location where the bid was submitted. Withdrawing a bid does not prevent you from submitting a new bid.

After the bid opening time, you cannot withdraw a bid.

2-1.16 BID OPENING

The Department publicly opens and reads bids at the time and place described in the Notice to Bidders.

2-1.17 BID REJECTION

The Department may reject:

- 1. All bids
- 2. A nonresponsive bid

2-1.18 BID RELIEF

The Department may grant bid relief under Pub Cont Code § 5100 et seq. Submit any request for bid relief to the Office Engineer. For Relief of Bid Request form, go to:

http://www.dot.ca.gov/hq/esc/oe/contractor_info/relief.pdf

2-1.19 SUBMITTAL FAILURE HISTORY

The Department considers a bidder's past failure to submit documents required after bid opening in determining a bidder's responsibility.

2-1.20 BID RIGGING

Section 2-1.20, "Bid Rigging," applies to a Federal-aid contract.

The U.S. Department of Transportation (DOT) provides a toll-free hotline to report bid rigging activities. Use the hotline to report bid rigging, bidder collusion, and other fraudulent activities. The hotline number is (800) 424-9071. The service is available Monday through Friday between 11:00 a.m. and 8:00 p.m. and is confidential and anonymous. The hotline is part of the DOT's effort to identify and investigate highway construction contract fraud and abuse and is operated under the direction of the DOT Inspector General.

^^^^^

SECTION 3 AWARD AND EXECUTION OF CONTRACT (Issued 11-15-10)

Replace Section 3 with: SECTION 3 CONTRACT AWARD AND EXECUTION

3-1.01 SCOPE

Section 3, "Contract Award and Execution," includes specifications related to contract award and execution.

3-1.02 CONTRACT AWARD

Submit any bid protest to the Office Engineer.

If the Department awards the contract, the award is made to the lowest responsible bidder within the number of days shown in the following table:

Contract Award Period

Days (after bid opening)	Project Estimated Cost shown in the Notice to Bidders
30	< \$200 million
60	≥ \$200 million

The Department may extend the specified award period if the bidder agrees.

3-1.03 CONTRACT BONDS (PUB CONT CODE §§ 10221 AND 10222)

The successful bidder must furnish:

- 1. Payment bond to secure the claim payments of laborers, workers, mechanics, or materialmen providing goods, labor, or services under the contract. This bond must be equal to at least 100 percent of the total bid.
- 2. Performance bond to guarantee the faithful performance of the contract. This bond must be equal to at least 50 percent of the total bid.

The Department furnishes the successful bidder with the bond forms.

3-1.04 CONTRACTOR LICENSE

For a Federal-aid contract, the Bidder must be properly licensed (Pub Cont Code § 10164) from contract award through contract acceptance.

For a non-Federal-aid contract:

- 1. The Bidder must be properly licensed from bid opening through contract acceptance (Bus & Prof Code § 7028.15)
- 2. Joint venture bidders must obtain a joint venture license before contract award (Bus & Prof Code § 7029.1)

3-1.05 INSURANCE POLICIES

The successful bidder must submit:

- 1. Copy of its commercial general liability policy and its excess policy or binder until such time as a policy is available, including the declarations page, applicable endorsements, riders, and other modifications in effect at the time of contract execution. Standard ISO form No. CG 0001 or similar exclusions are allowed if not inconsistent with Section 7-1.12, "Indemnification and Insurance." Allowance of additional exclusions is at the discretion of the Department.
- 2. Certificate of insurance showing all other required coverages. Certificates of insurance, as evidence of required insurance for the auto liability and any other required policy, shall set forth deductible amounts applicable to each policy and all exclusions that are added by endorsement to each policy. The evidence of insurance shall provide that no cancellation, lapse, or reduction of coverage will occur without 10 days prior written notice to the Department.
- 3. A declaration under the penalty of perjury by a CPA certifying the accountant has applied GAAP guidelines confirming the successful bidder has sufficient funds and resources to cover any self-insured retentions if the self-insured retention is over \$50,000.

If the successful bidder uses any form of self-insurance for workers compensation in lieu of an insurance policy, it shall submit a certificate of consent to self-insure under Labor Code § 3700.

3-1.06-3-1.08 RESERVED

3-1.09 CONTRACT EXECUTION

The successful bidder must sign the contract and return it to the Office Engineer along with:

- 1. Contract bonds
- 2. Documents identified in Section 3-1.05, "Insurance Policies"

For an informal-bid contract, the Office Engineer must receive these documents before the 5th business day after the bidder receives the contract. For all other contracts, the Office Engineer must receive these documents before the 10th business day after the bidder receives the contract.

The bidder's security may be forfeited for failure to execute the contract within the time specified (Pub Cont Code §§ 10181, 10182, and 10183).

The following is a copy of the Contract form:

CONTRACT

DES-OE-0103A (REV 03/2010)

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION CONTRACT NO.

This contract is entered into between the State of California's Department of Transportation and the Contractor named below:

CONTRACTOR'S NAME	
The parties agree to comply with the terms of made a part of this contract.	the following exhibits that are by this reference
Exhibit A - Bid book dated	
Exhibit B - Notice to Bidders and Special Prov	isions dated
Exhibit C - Project Plans approved	
Exhibit D - Standard Specifications dated	
Exhibit E - Standard Plans dated	
Exhibit F - Addenda	
	tilled with the same contract number as this contract
nis contract has been executed by the followi	
CONT	ing parties: FRACTOR
	FRACTOR
CONT	ing parties: FRACTOR
CONT	ing parties: FRACTOR poration, partnership, etc.)
CONT NTRACTOR'S NAME (if other than an individual, state whether a co (Authorized Signature)	ing parties: FRACTOR poration, partnership, etc.)
CONT NTRACTOR'S NAME (if other than an individual, state whether a co (Authorized Signature) INTED NAME AND TITLE OF PERSON SIGNING DERAL EMPLOYER IDENTIFICATION NUMBER	Ing parties: FRACTOR Imporation, partnership, etc.) DATE SIGNED (Do not type)
CONT NTRACTOR'S NAME (if other than an individual, state whether a co (Authorized Signature) INTED NAME AND TITLE OF PERSON SIGNING DERAL EMPLOYER IDENTIFICATION NUMBER	Ing parties: FRACTOR Imporation, partnership, etc.) DATE SIGNED (Do not type) LICENSE NUMBER
CONT NTRACTOR'S NAME (if other than an individual, state whether a co (Authorized Signature) INTED NAME AND TITLE OF PERSON SIGNING DERAL EMPLOYER IDENTIFICATION NUMBER DEPARTMENT O	Ing parties: FRACTOR Imporation, partnership, etc.) DATE SIGNED (Do not type) LICENSE NUMBER F TRANSPORTATION
CONT NTRACTOR'S NAME (if other than an individual, state whether a co (Authorized Signature) INTED NAME AND TITLE OF PERSON SIGNING DERAL EMPLOYER IDENTIFICATION NUMBER DEPARTMENT OF Authorized Signature)	Ing parties: FRACTOR Inporation, partnership, etc.) DATE SIGNED (Do not type) LICENSE NUMBER F TRANSPORTATION DATE SIGNED (Do not type)

ADA Notice For individuals with sensory disabilities, this document is available in alternate formats. For information call (916) 654-6410 or TDD (916) 654-3880 or write Records and Forms Management, 1120 N Street, MS-89, Sacramento, CA 95814.

3-1.10 BIDDERS' SECURITIES

The Department keeps the securities of the 1st, 2nd, and 3rd low bidders until the contract has been executed. The other bidders' securities, other than bidders' bonds, are returned upon determination of the 1st, 2nd, and 3rd low bidders, and their bidders' bonds are of no further effect (Pub Cont Code § 10184).

^^^^^^

SECTION 4 SCOPE OF WORK (Issued 06-05-09)

Add to Section 4-1.01:

Nothing in the specifications voids the Contractor's public safety responsibilities.

Add:

4-1.015 PROJECT DESCRIPTION

Construct the work described in the special provisions and on project plans and by the bid items. The special provisions, project plans, and bid item descriptions set forth the specifications that apply.

Replace Section 4-1.03 with:

4-1.03 CHANGES

4-1.03A General

The Department may make changes within the scope of work and add extra work. The Engineer describes the changes and extra work, the payment basis, and any time adjustment in a Contract Change Order.

A Contract Change Order is approved when the Department signs the Contract Change Order.

Submit detailed cost data for a payment adjustment for:

- 1. Request for a payment adjustment for a bid item
- 2. Payment adjustment resulting from a change of more than 25 percent in the bid item's quantity if requested

If ordered, start the work before receipt of an approved Contract Change Order.

You may protest a Contract Change Order.

4-1.03B Increased or Decreased Quantities

The Department adjusts payment for changed quantities and eliminated items under Section 9-1.05, "Changed Quantity Payment Adjustments."

4-1.03C Changes in Character of Work

The Department adjusts payment for an item if:

- 1. An ordered plan or specification change materially changes the character of a work item from that on which the bid price was based
- 2. The unit cost of the changed item differs when compared to the unit cost of that item under the original plans and specifications
- 3. No approved Contract Change Order addresses the payment

The Department adjusts the payment under Section 9-1.06, "Work-Character Changes."

4-1.03D Extra Work

The Department classes new and unforeseen work as extra work if the Engineer determines that the work is not covered by any of the various items for which there is a bid price or by combinations of those items. If portions of this work are covered by some of the various items for which there is a bid price or combinations of those items, the

remaining portion of the work will be classed as extra work. Extra work also includes work specifically designated as extra work in the plans or specifications.

Add:

4-1.035 VALUE ENGINEERING

4-1.035A General

Reserved

4-1.035B Value Engineering Change Proposal

You may submit a VECP to reduce any of the following:

- 1. Total cost of construction
- 2. Construction activity duration
- 3. Traffic congestion

Before preparing a VECP, meet with the Engineer to discuss:

- 1. Proposal concept
- 2. Permit issues
- 3. Impact on other projects
- 4. Project impacts, including traffic, schedule, and later stages
- 5. Peer reviews
- 6. Overall proposal merits
- 7. Review times required by the Department and other agencies

The VECP must not impair the project's essential functions or characteristics, such as:

- 1. Service life
- 2. Operation economy
- 3. Maintenance ease
- 4. Desired appearance
- 5. Design and safety

The VECP must include:

- Description of the contract specifications and drawing details for performing the work and the proposed changes.
- 2. Itemization of contract specifications and drawing details that would be changed.
- 3. Detailed cost estimate for performing the work under the existing contract and under the proposed change. Determine the estimates under Section 9-1.03, "Force Account Payment."
- 4. Deadline for the Engineer to decide on the changes.
- 5. Bid items affected and resulting quantity changes.

The Department is not required to consider a VECP. If a VECP is similar to a change in the plans or specifications being considered by the Department at the time the proposal is submitted or if the proposal is based on or similar to drawings or specifications adopted by the Department before Contract award, the Department does not accept the VECP and may make these changes without VECP payments.

Until the Department approves a change order incorporating the VECP or parts of it, continue to perform the work under the contract. If the Department does not approve a change order before the deadline stated in the VECP or other date you subsequently stated in writing, the VECP is rejected. The Department does not adjust time or payment for a rejected VECP.

The Department decides whether to accept a VECP and the estimated net construction-cost savings from adopting the VECP or parts of it.

The Department may require you to accept a share of the investigation cost as a condition of reviewing a VECP. After written acceptance, the Department considers the VECP and deducts the agreed cost.

If the Department accepts the VECP or parts of it, the Department issues a change order that:

- 1. Incorporates changes in the contract necessary to implement the VECP or the parts adopted
- 2. Includes the Department's acceptance conditions
- 3. States the estimated net construction-cost savings resulting from the VECP
- 4. Obligates the Department to pay you 50 percent of the estimated net savings

In determining the estimated net construction-cost savings, the Department excludes your VECP preparation cost and the Department's VECP investigation cost, including parts paid by you.

If a VECP providing for a reduction in working days is accepted by the Department, 50 percent of the reduction is deducted from contract time.

If a VECP providing for a reduction in traffic congestion or avoiding traffic congestion is accepted by the Department, the Department pays 60 percent of the estimated net savings in construction costs attributable to the VECP. Submit detailed traffic handling comparisons between the existing contract and the proposed change, including estimates of the traffic volumes and congestion.

The Department may apply an accepted VECP for general use on other contracts.

If an accepted VECP is adopted for general use, the Department pays only the contractor who first submitted the VECP and only to the contracts awarded to that contractor before the submission of the accepted VECP.

If the Department does not adopt a general-use VECP, an identical or similar submitted proposal is eligible for acceptance.

4-1.035C Value Analysis Workshop

Section 4-1.035C, "Value Analysis Workshop," applies to a non-building-work contract with a total bid of over \$5 million.

You may request a value analysis workshop by submitting a request after contract approval.

The Department offers a value analysis workshop to:

- 1. Identify value enhancing opportunities
- Consider changes to the contract that will reduce the total cost of construction, construction activity duration, or traffic congestion without impairing the essential functions specified for a VECP in Section 4-1.035B, "Value Engineering Change Proposal."

If the request is authorized, you and the Engineer:

- 1. Schedule a value analysis workshop
- 2. Select a facilitator and workshop site
- 3. Agree to other workshop administrative details

The workshop must be conducted under the methods described in the Department's Value Analysis Team Guide available at:

http://www.dot.ca.gov/hq/oppd/value/

The facilitator must be a certified value specialist as recognized by the Society of American Value Engineers.

The Department reimburses you for 1/2 of the workshop cost. The workshop cost is the sum of the workshop-facilitator cost and the workshop-site cost. The Department determines the workshop cost based on the facilitator and workshop-site invoice prices minus any available or offered discounts. The Department does not pay you for any other associated costs.

^^^^^^

SECTION 5 CONTROL OF WORK
(Issued 06-01-11)

Add:

5-1.005 GENERAL

Failure to comply with any specification part is a waiver of your right to an adjustment of time and payment related to that part.

After contract approval, submit documents and direct questions to the Engineer. Orders, approvals, authorizations, and requests to the Contractor are by the Engineer.

The Engineer furnishes the following in writing:

- 1. Approvals
- 2. Authorizations
- 3. Certifications
- 4. Decisions
- 5. Notifications
- 6. Orders
- 7. Responses

The Contractor must furnish the following in writing:

- 1. Assignments
- 2. Notifications
- 3. Proposals
- 4. Reports
- 5. Requests, including RFIs, sequentially numbered
- 6. Subcontracts
- 7. Test results

The Department rejects a form if it has any error or any omission.

Convert foreign language documents to English.

Use contract administration forms available at the Department's Web site.

If the last day for submitting a document falls on a Saturday or holiday, it may be submitted on the next business day with the same effect as if it had been submitted on the day specified.

Add to 5-1.01:

Failure to enforce a contract provision does not waive enforcement of any contract provision.

Add:

5-1.011 PROTESTS

You may protest an Engineer's decision by submitting an RFI under Section 5-1.145, "Requests for Information."

Add:

5-1.012 PARTNERING

5-1.012A General

The Department strives to work cooperatively with all contractors; partnering is our way of doing business. The Department encourages project partnering among the project team, made up of significant contributors from the Department and the Contractor, and their invited stakeholders.

For a project with a total bid greater than \$1 million, professionally facilitated project partnering is encouraged. For a project with a total bid greater than \$10 million, professionally facilitated project partnering is required. In implementing project partnering, you and the Engineer manage the contract by:

- 1. Using early and regular communication with involved parties
- 2. Establishing and maintaining a relationship of shared trust, equity, and commitment
- 3. Identifying, quantifying, and supporting attainment of mutual goals

- 4. Developing strategies for using risk management concepts
- 5. Implementing timely communication and decision making
- 6. Resolving potential problems at the lowest possible level to avoid negative impacts
- 7. Holding periodic partnering meetings and workshops as appropriate to maintain partnering relationships and benefits throughout the life of the project
- 8. Establishing periodic joint evaluations of the partnering process and attainment of mutual goals

Partnering does not void any contract part.

The Department's "Field Guide to Partnering on Caltrans Construction Projects" current at the time of bid is available to the project team as reference. This guide provides structure, context, and clarity to the partnering process requirements. This guide is available at the Department's Partnering Program website:

http://www.dot.ca.gov/hq/construc/partnering.html

In implementing project partnering, the project team must:

- 1. Create a partnering charter that includes:
 - 1.1. Mutual goals, including core project goals and may also include project-specific goals and mutually supported individual goals.
 - 1.2. Partnering maintenance and close-out plan.
 - 1.3. Dispute resolution plan that includes a dispute resolution ladder and may also include use of facilitated dispute resolution sessions.
 - 1.4. Team commitment statement and signatures.
- 2. Participate in monthly partnering evaluation surveys to measure progress on mutual goals and may also measure short-term key issues as they arise.
- 3. Evaluate the partnering facilitator on Forms CEM-5501 and CEM-5502. The Engineer provides the evaluation forms to the project team and collects the results. The Department makes evaluation results available upon request. Facilitator evaluations must be completed:
 - 3.1. At the end of the initial partnering workshop on Form CEM-5501.
 - 3.2. At the end of the project close-out partnering workshop on Form CEM-5502.
- 4. Conduct a project close-out partnering workshop.
- 5. Document lessons learned before contract acceptance.

5-1.012B Partnering Facilitator, Workshops, and Monthly Evaluation Surveys

The Engineer sends you a written invitation to enter into a partnering relationship after contract approval. Respond within 15 days to accept the invitation and request the initial and additional partnering workshops. After the Engineer receives the request, you and the Engineer cooperatively:

- 1. Select a partnering facilitator that offers the service of a monthly partnering evaluation survey with a 5-point rating and agrees to follow the Department's "Partnering Facilitator Standards and Expectations" available at the Department's Partnering Program website
- 2. Schedule initial partnering workshop
- 3. Determine initial workshop site and duration
- 4. Agree to other workshop administrative details

Additional partnering workshops and sessions are encouraged throughout the life of the project as determined necessary by you and the Engineer, recommended quarterly.

5-1.012C Training in Partnering Skills Development

For a project with a total bid of \$25 million or greater, training in partnering skills development is required. For a project with a total bid between \$10 million and \$25 million, training in partnering skills is optional.

You and the Engineer cooperatively schedule the training session and select a professional trainer, training site, and 1 to 4 topics from the following list to be covered in the training:

Contract No. 12-0E3104

- 1. Active Listening
- 2. Building Teams
- 3. Change Management
- 4. Communication
- 5. Conflict Resolution
- 6. Cultural Diversity
- 7. Dealing with Difficult People
- 8. Decision Making
- 9. Effective Escalation Ladders
- 10. Emotional Intelligence
- 11. Empathy
- 12. Ethics
- 13. Facilitation Skills
- 14. Leadership
- 15. Partnering Process and Concepts
- 16. Project Management
- 17. Project Organization
- 18. Problem Solving
- 19. Running Effective Meetings
- 20. Time Management
- 21. Win-Win Negotiation

Before the initial partnering workshop, the trainer conducts a 1-day training session in partnering skills development for the Contractor's and the Engineer's representatives. This training session must be a separate session from the initial partnering workshop and must be conducted locally. The training session must be consistent with the partnering principles under the Department's "Field Guide to Partnering on Caltrans Construction Projects."

Send at least 2 representatives to the training session. One of these must be your assigned representative as specified in Section 5-1.06, "Superintendence," of the Standard Specifications.

5-1.012D Payment

The Department pays you for:

- 1. 1/2 of partnering workshops and sessions based on facilitator and workshop site cost
- 2. 1/2 of monthly partnering evaluation survey service cost
- 3. Partnering skills development trainer and training site cost

The Department determines the costs based on invoice prices minus any available or offered discounts. The Department does not pay markups on these costs.

The Department does not pay for wages, travel expenses, or other costs associated with the partnering workshops and sessions, monthly partnering evaluation surveys, and training in partnering skills development.

Add:

5-1.015 RECORDS

5-1.015A General

Reserved

5-1.015B Record Retention

Retain project records from bid preparation through:

- 1. Final payment
- 2. Resolution of claims, if any

For at least 3 years after the later of these, retain cost records, including records of:

1. Bid preparation

- 2. Overhead
- 3. Payrolls
- 4. Payments to suppliers and subcontractors
- 5. Cost accounting

Maintain the records in an organized way in the original format, electronic and hard copy, conducive to professional review and audit.

5-1.015C Record Inspection, Copying, and Auditing

Make your records available for inspection, copying, and auditing by State representatives for the same time frame specified under Section 5-1.015B, "Record Retention." The records of subcontractors and suppliers must be made available for inspection, copying, and auditing by State representatives for the same period. Before contract acceptance, the State representative notifies the Contractor, subcontractor, or supplier 5 business days before inspection, copying, or auditing.

If an audit is to start more than 30 days after contract acceptance, the State representative notifies the Contractor, subcontractor, or supplier when the audit is to start.

5-1.015D Cost Accounting Records

Maintain cost accounting records for the project distinguishing between the following work cost categories:

- 1. Work performed based on bid item prices
- 2. Work performed by change order other than extra work. Distinguish this work by:
 - 2.1. Bid item prices
 - 2.2. Force account
 - 2.3. Agreed price
- 3. Extra work. Distinguish extra work by:
 - 3.1. Bid item prices
 - 3.2. Force account
 - 3.3. Agreed price
 - 3.4. Specialist billing
- 4. Work performed under potential claim records
- 5. Overhead
- 6. Subcontractors, suppliers, owner-operators, and professional services

Cost accounting records must include:

- 1. Final cost code lists and definitions
- 2. Itemization of the materials used and corresponding vendor's invoice copies
- 3. Direct cost of labor
- 4. Equipment rental charges
- 5. Workers' certified payrolls
- 6. Equipment:
 - 6.1. Size
 - 6.2. Type
 - 6.3. Identification number
 - 6.4. Hours operated

5-1.015E Extra Work Bills

Maintain separate records for costs of work performed by change order.

Within 7 days after performing the work, submit extra work bills using the Department's Internet extra work billing system.

The Contractor submitting and the Engineer approving an extra work bill using the Internet force account work billing system is the same as each party signing the bill.

The Department provides billing system:

- 1. Training within 30 days of your written request
- 2. Accounts and user identification to your assigned representatives after a representative has received training

Each representative must maintain a unique password.

Replace Section 5-1.04 with:

5-1.04 CONTRACT COMPONENTS

A component in one contract part applies as if appearing in each. The parts are complementary and describe and provide for a complete work.

If a discrepancy exists:

- 1. The governing ranking of contract parts in descending order is:
 - 1.1. Special provisions
 - 1.2. Project plans
 - 1.3. Revised Standard Plans
 - 1.4. Standard Plans
 - 1.5. Amendments to the Standard Specifications
 - 1.6. Standard Specifications
 - 1.7. Supplemental project information
- 2. Written numbers and notes on a drawing govern over graphics
- 3. A detail drawing governs over a general drawing
- 4. A detail specification governs over a general specification
- 5. A specification in a section governs over a specification referenced by that section

If a discrepancy is found or confusion arises, request correction or clarification.

Add:

5-1.055 SUBCONTRACTING

5-1.055A General

No subcontract releases you from the contract or relieves you of your responsibility for a subcontractor's work.

If you violate Pub Cont Code § 4100 et seq., the Department may exercise the remedies provided under Pub Cont Code § 4110. The Department may refer the violation to the Contractors State License Board as provided under Pub Cont Code § 4111.

Except for a building-construction non-federal-aid contract, perform work equaling at least 30 percent of the value of the original total bid with your employees and with equipment owned or rented by you, with or without operators.

Each subcontract must comply with the contract.

The Department encourages you to include a dispute resolution process in each subcontract.

Each subcontractor must have an active and valid State contractor's license with a classification appropriate for the work to be performed (Bus & Prof Code, § 7000 et seq.).

Submit copies of subcontracts upon request.

Before subcontracted work starts, submit a Subcontracting Request form.

Do not use a debarred contractor; a current list of debarred contractors is available at the Department of Industrial Relations' Web site.

Upon request, immediately remove and not again use a subcontractor who fails to prosecute the work satisfactorily.

Replace Section 5-1.07 with:

5-1.07 LINES AND GRADES

The Engineer places stakes and marks under Chapter 12, "Construction Surveys," of the Department's Surveys Manual.

Submit your request for Department-furnished stakes:

- 1. On a Request for Construction Stakes form. Ensure:
 - 1.1. Requested staking area is ready for stakes
 - 1.2. You use the stakes in a reasonable time
- 2. A reasonable time before starting an activity using the stakes

Establish priorities for stakes and note priorities on the request.

Preserve stakes and marks placed by the Engineer. If the stakes or marks are destroyed, the Engineer replaces them at the Engineer's earliest convenience and deducts the cost.

Replace Section 5-1.10 with:

5-1.10 EQUIPMENT

Clearly stencil or stamp at a clearly visible location on each piece of equipment except hand tools an identifying number and:

- 1. On compacting equipment, its make, model number, and empty gross weight that is either the producer's rated weight or the scale weight
- 2. On meters and on the load-receiving element and indicators of each scale, the make, model, serial number, and producer's rated capacity

Submit a list:

- 1. Describing each piece of equipment
- 2. Showing its identifying number

Upon request, submit producer's information that designates portable vehicle scale capacities.

For proportioning materials, use measuring devices, material plant controllers, and undersupports complying with Section 9-1.01B, "Weighing Equipment and Procedures."

Measuring devices must be tested and approved under California Test 109 in the Department's presence by any of the following:

- 1. County Sealer of Weights and Measures
- 2. Scale Service Agency
- 3. Division of Measurement Standards Official

The indicator over-travel must be at least 1/3 of the loading travel. The indicators must be enclosed against moisture and dust.

Group measuring system dials such that the smallest increment for each indicator can be read from the location at which proportioning is controlled.

Replace Section 5-1.116 with:

5-1.116 DIFFERING SITE CONDITIONS (23 CFR 635.109)

5-1.116A Contractor's Notification

Promptly notify the Engineer if you find either of the following:

1. Physical conditions differing materially from either of the following:

- 1.1. Contract documents
- 1.2. Job site examination
- 2. Physical conditions of an unusual nature, differing materially from those ordinarily encountered and generally recognized as inherent in the work provided for in the contract

Include details explaining the information you relied on and the material differences you discovered.

If you fail to notify the Engineer promptly, you waive the differing site condition claim for the period between your discovery of the differing site condition and your notification to the Engineer.

If you disturb the site after discovery and before the Engineer's investigation, you waive the differing site condition claim.

5-1.116B Engineer's Investigation and Decision

Upon your notification, the Engineer investigates job site conditions and:

- 1. Notifies you whether to resume affected work
- 2. Decides whether the condition differs materially and is cause for an adjustment of time, payment, or both

You may protest the Engineer's decision.

Replace Section 5-1.14 with:

5-1.14 COST REDUCTION INCENTIVE

Comply with Section 4-1.035B, "Value Engineering Change Proposal."

Add:

5-1.145 REQUESTS FOR INFORMATION

Submit an RFI upon recognition of any event or question of fact arising under the Contract.

The Engineer responds to the RFI within 5 days. Proceed with the work unless otherwise ordered. You may protest the Engineer's response by:

- 1. Submitting an Initial Potential Claim Record within 5 days after receipt of the Engineer's response
- 2. Complying with Section 5-1.146, "Potential Claims and Dispute Resolution"

Add:

5-1.146 POTENTIAL CLAIMS AND DISPUTE RESOLUTION

5-1.146A General

Minimize and mitigate impacts of potentially claimed work or event.

For each potential claim, assign an identification number determined by chronological sequencing and the 1st date of the potential claim.

Use the identification number for each potential claim on the:

- 1. Initial Potential Claim Record
- 2. Supplemental Potential Claim Record
- 3. Full and Final Potential Claim Record

Failure to comply with this procedure is:

- 1. Waiver of the potential claim and a waiver of the right to a corresponding claim for the disputed work in the administrative claim procedure
- 2. Bar to arbitration (Pub Cont Code § 10240.2)

Contract No. 12-0E3104 27 of 297

5-1.146B Initial Potential Claim Record

Submit an Initial Potential Claim Record within 5 days of the Engineer's response to the RFI or within 5 days from the date when a dispute arises due to an act or failure to act by the Engineer. The Initial Potential Claim Record establishes the claim nature and circumstances. The claim nature and circumstances must remain consistent.

The Engineer responds within 5 days of the date of the Initial Potential Claim Record. Proceed with the potentially claimed work unless ordered.

Within 20 days of a request, provide access to the project records determined necessary by the Engineer to evaluate the potential claim.

5-1.146C Supplemental Potential Claim Record

Within 15 days of submitting the Initial Potential Claim Record, submit a Supplemental Potential Claim Record including:

- 1. Complete nature and circumstances causing the potential claim or event
- 2. Contract specifications supporting the basis of a claim
- 3. Estimated claim cost and an itemized breakdown of individual costs stating how the estimate was determined
- 4. TIA

The Engineer evaluates the Supplemental Potential Claim Record and furnishes you a response within 20 days of submittal. If the estimated cost or effect on the scheduled completion date changes, update the Supplemental Potential Claim Record information as soon as the change is recognized and submit this information.

5-1.146D Full and Final Potential Claim Record

Notify the Engineer within 10 days of the completion date of the potentially claimed work. The Engineer approves this completion date or notifies you of a revised date.

Within 30 days of the completion of the potentially claimed work, submit a Full and Final Potential Claim Record including:

- 1. A detailed factual account of the events causing the potential claim, including:
 - 1.1. Necessary dates
 - 1.2. Locations
 - 1.3. Work items affected by the potential claim
- 2. The Contract documents supporting the potential claim and a statement of the reasons these parts support entitlement
- 3. If a payment adjustment is requested, an itemized cost breakdown. Segregate costs into the following categories:
 - 3.1. Labor, including:
 - 3.1.1. Individuals
 - 3.1.2. Classifications
 - 3.1.3. Regular and overtime hours worked
 - 3.1.4. Dates worked
 - 3.2. Materials, including:
 - 3.2.1. Invoices
 - 3.2.2. Purchase orders
 - 3.2.3. Location of materials either stored or incorporated into the work
 - 3.2.4. Dates materials were transported to the job site or incorporated into the work
 - 3.3. Equipment, including:
 - 3.3.1. Detailed descriptions, including make, model, and serial number

- 3.3.2. Hours of use
- 3.3.3. Dates of use
- 3.3.4. Equipment rates at the rental rate listed in Labor Surcharge and Equipment Rental Rates in effect when the affected work related to the claim was performed
- 4. If a time adjustment is requested:
 - 4.1. Dates for the requested time.
 - 4.2. Reasons for a time adjustment.
 - 4.3. Contract documentation supporting the requested time adjustment.
 - 4.4. TIA. The TIA must demonstrate entitlement to a time adjustment.
- 5. Identification and copies of your documents and copies of communications supporting the potential claim, including certified payrolls, bills, cancelled checks, job cost reports, payment records, and rental agreements
- 6. Relevant information, references, and arguments that support the potential claim

The Department does not consider a Full and Final Potential Claim Record that does not have the same nature, circumstances, and basis of claim as those specified on the Initial Potential Claim Record and Supplemental Potential Claim Record.

The Engineer evaluates the information presented in the Full and Final Potential Claim Record and furnishes you a response within 30 days of its receipt unless the Full and Final Potential Claim Record is submitted after Contract acceptance; in which case, a response may not be furnished. The Engineer's receipt of the Full and Final Potential Claim Record must be evidenced by postal return receipt or the Engineer's written receipt if delivered by hand.

5-1.146E Dispute Resolution

Comply with Section 5-1.15, "Dispute Resolution."

Add:

5-1.15 DISPUTE RESOLUTION

5-1.15A General

Section 5-1.15, "Dispute Resolution," applies to a contract with 100 or more working days.

The dispute resolution process is not a substitute for the submitting an RFI or a potential claim record.

5-1.15B Dispute Resolution Advisor

Section 5-1.15B, "Dispute Resolution Advisor," applies to a contract with a total bid from \$3 million to \$10 million.

A dispute resolution advisor, hereinafter referred to as "DRA," is chosen by the Department and the Contractor to assist in the resolution of disputes.

The DRA shall be established by the Department and the Contractor within 30 days of contract approval.

The Department and the Contractor shall each propose 3 potential DRA candidates. Each potential candidate shall provide the Department and the Contractor with their disclosure statement. The disclosure statement shall include a resume of the potential candidate's experience and a declaration statement describing past, present, anticipated, and planned relationships with all parties involved in this contract.

The Department and the Contractor shall select one of the 6 nominees to be the DRA. If the Department and the Contractor cannot agree on one candidate, the Department and the Contractor shall each choose one of the 3 nominated by the other. The final selection of the DRA will be decided by a coin toss between the two candidates.

The Department and the Contractor shall complete and adhere to the Dispute Resolution Advisor Agreement. No DRA meeting shall take place until the Dispute Resolution Advisor Agreement has been signed by all parties, unless all parties agree to sign it at the first meeting.

If DRA needs outside technical services, technical services shall be preapproved by both the Department and the Contractor.

DRA recommendations are nonbinding.

The Contractor shall not use the DRA for disputes between subcontractors or suppliers that have no grounds for a lawsuit against the Department.

DRA replacement is selected in the same manner as the original selection. The appointment of a replacement DRA will begin promptly upon determination of the need for replacement. The Dispute Resolution Advisor Agreement shall be amended to reflect the change of the DRA.

Failure of the Contractor to participate in selecting DRA will result in the withhold of 25 percent of the estimated value of all work performed during each estimate period that the Contractor fails to comply. DRA withholds will be released for payment on the next monthly progress payment following the date that the Contractor has provided assistance in choosing the DRA and no interest will be due the Contractor.

The State and the Contractor shall bear the costs and expenses of the DRA equally.

The DRA shall be compensated at an agreed rate of \$1,500 per day for time spent per meeting either at the start of the project or for a dispute. A member serving on more than one State DRA or Dispute Resolution Board, regardless the number of meetings per day shall not be paid more than the agreed rate per day. The agreed rate shall be considered full compensation for on-site time, travel expenses, transportation, lodging, time for travel, and incidentals for each day or portion thereof that the DRA is at an authorized DRA meeting.

No additional compensation will be made for time spent by the DRA to review and research activities outside the official DRA meetings unless that time, such as time spent evaluating and preparing recommendations on specific issues presented to the DRA, has been specifically agreed to in advance by the State and Contractor. Time away from the project that has been specifically agreed to in advance by the Department and the Contractor will be compensated at an agreed rate of \$150 per hour. The agreed amount of \$150 per hour shall include all incidentals including expenses for telephone, fax, and computer services.

The State will provide conference facilities for DRA meetings at no cost to the Contractor.

The Contractor shall make direct payments to the DRA for participation in authorized meetings and approved hourly rate charges from invoices submitted.

The State will reimburse the Contractor for the State's share of the costs.

There will be no markups applied to expenses associated with the DRA, either by the DRA or by the Contractor when requesting payment of the State's share of DRA expenses. Regardless of the DRA recommendation, neither party will be entitled to reimbursement of DRA costs from the other party.

The Contractor shall submit extra work bills and include invoices with original supporting documents for reimbursement of the State's share.

The cost of technical services will be borne equally by the State and Contractor. There will be no markups for these costs.

A copy of the "Dispute Resolution Advisor Agreement" to be executed by the Contractor, State and the DRA is as follows:

DISPUTE RESOLUTION ADVISOR AGREEMENT

(Contract Identification)	
Contract No	
THIS DISPUTE RESOLUTION ADVISOR AGREEMENT, hereinafter called "AGREEMENT entered into this day of,, between the State of California the California Department of Transportation and the Director of Transportation, hereinafter called the California Department of Transportation and the Director of Transportation, hereinafter called the California Department of Transportation and the Director of Transportation, hereinafter called the California Department of Transportation and the Director of Transportation, hereinafter called the California Department of Transportation and the Director of	a, acting through ed the "STATE,"
hereinafter called the "CONTRACTOR," and the Dispute Resolution Advisor, hereinafter called the "DRA."	,
WITNESSETH, that	
WHEREAS, the STATE and the CONTRACTOR, hereinafter called the "parties," are now	engaged in the

construction on the State Highway project referenced above; and

WHEREAS, the Standard Specifications for the above referenced contract provides for the establishment and operation of the DRA to assist in resolving disputes; and

WHEREAS, the DRA is composed of one person, chosen by the CONTRACTOR and the STATE;

NOW THEREFORE, in consideration of the terms, conditions, covenants, and performance contained herein, or attached and incorporated and made a part hereof, the STATE, the CONTRACTOR, and the DRA hereto agree as follows:

SECTION I DESCRIPTION OF WORK

To assist in the timely resolution of disputes between the parties, the contract provides for the establishment and the operation of the DRA. The DRA is to fairly and impartially consider disputes placed before it and provide recommendations for resolution of these disputes to the parties. The DRA shall provide recommendations based on the facts related to the dispute, the contract and applicable laws and regulations. The DRA shall perform the services necessary to participate in the DRA's actions as designated in Section III, Scope of Work.

SECTION II DRA QUALIFICATIONS

The DRA shall be knowledgeable in the type of construction and contract documents anticipated by the contract and shall have completed training through the Dispute Review Board Foundation. In addition, it is desirable for the DRA to have served on several State Dispute Resolution Boards (DRB).

No DRA shall have prior direct involvement in this contract. No DRA shall have a financial interest in this contract or parties thereto, including but not limited to the CONTRACTOR, subcontractors, suppliers, consultants, and legal and business services, within a period 6 months prior to award and during this contract. Exceptions to above are compensation for services on this or other DRAs and DRBs or retirement payments or pensions received from a party that are not tied to, dependent on or affected by the net worth of the party.

The DRA shall fully disclose all direct or indirect professional or personal relationships with all key members of the contract.

SECTION III SCOPE OF WORK

The Scope of Work of the DRA includes, but is not limited to, the following:

A. PROCEDURES

The DRA shall meet with the parties at the start of the project to establish procedures that will govern the conduct of its business and reporting procedures in conformance with the requirements of the contract and the terms of this AGREEMENT. The DRA established procedures shall only be implemented upon approval by the parties. Subsequent meetings shall be held only to hear disputes between the parties.

The DRA shall not meet with, or discuss contract issues with individual parties.

The State shall provide the DRA with the contract and all written correspondence regarding the dispute between the parties and, if available, the Contractor's supplemental potential claim record, and the Engineer's response to the supplemental potential claim record.

The parties shall not call the DRA who served on this contract as a witness in arbitration proceedings, which may arise from this contract.

The DRA shall have no claim against the STATE or the CONTRACTOR, or both, from claimed harm arising out of the parties' evaluations of the DRA's opinions.

B. DISPUTE MEETING

The term "dispute meeting" as used in this subsection shall refer to both the informal and traditional dispute meeting processes, unless otherwise noted.

If the CONTRACTOR requests a dispute meeting with the DRA, the Contractor must simultaneously notify the STATE. Upon being notified of the need for a dispute meeting, the DRA shall review and consider the dispute. The DRA shall determine the time and location of the dispute meeting with due consideration for the needs and preferences of the parties, while recognizing the importance of a speedy resolution to the dispute.

Dispute meetings shall be conducted at any location that would be convenient and provide required facilities and access to necessary documentation.

Only the STATE's Area Construction Engineer, Resident Engineer, and Structure Representative and the CONTRACTOR's or subcontractor's, Superintendent or Project Manager may present information at a dispute meeting. There shall be no participation of persons who are not directly involved in the contract or who do not have direct knowledge of the dispute. The exception to this is technical services, as described below:

The DRA, with approval of the parties, may obtain technical services necessary to adequately review the disputes presented, including audit, geotechnical, schedule analysis and other services. The parties' technical staff may supply those services as appropriate. The cost of technical services, as agreed to by the parties, shall be borne equally by the two parties as specified in an approved contract change order. The CONTRACTOR shall not be entitled to markups for the payments made for these services.

At the dispute meeting the DRA may ask questions, seek clarification, and request further clarification of data presented by either of the parties as may be necessary to assist in making a fully informed recommendation. However, the DRA shall refrain from expressing opinions on the merits of statements on matters under dispute during the parties' presentations. Each party will be given ample time to fully present its position, make rebuttals, provide relevant documents, and respond to DRA questions and requests.

There shall be no testimony under oath or cross-examination, during DRA dispute meetings. There shall be no reporting of the procedures by a shorthand reporter or by electronic means. Documents and verbal statements shall be received by the DRA in conformance with the rules and regulations established at the first meeting between the DRA and parties. These established rules and regulations need not comply with prescribed legal laws of evidence.

Failure to attend a dispute meeting by either of the parties shall be conclusively considered by the DRA as indication that the non-attending party considers all written documents and correspondence submitted as their entire and complete argument. The claimant shall discuss the dispute, followed by the other party. Each party shall then be allowed one or more rebuttals at the meeting until all aspects of the dispute are thoroughly covered.

1. TRADITIONAL DISPUTE MEETING:

The following procedure shall be used for the traditional dispute meeting:

- a. Within 5 days after receiving the STATE's written response to the CONTRACTOR's supplemental potential claim record, the CONTRACTOR shall refer the dispute to the DRA, if the CONTRACTOR wishes to further pursue the dispute. The CONTRACTOR shall make the referral in writing to the DRA, simultaneously copied to the STATE. The written dispute referral shall describe the disputed matter in individual discrete segments, so that it will be clear to both parties and the DRA what discrete elements of the dispute have been resolved, and which remain unresolved, and shall include an estimate of the cost of the affected work and impacts, if any, on project completion.
- b. The parties shall each be afforded an opportunity to be present and to be heard by the DRA, and to offer evidence. Either party furnishing written evidence or documentation to the DRA must furnish copies of such information to the other party a minimum of 10 days prior to the date the DRA is scheduled to convene the meeting for the dispute. Either party shall produce such additional evidence as the DRA may deem necessary to reach an understanding and a determination of the dispute. The

- party furnishing additional evidence shall furnish copies of such additional evidence to the other party at the same time the evidence is provided to the DRA. The DRA shall not consider evidence not furnished in conformance with the terms specified herein.
- c. Upon receipt by the DRA of a written referral of a dispute, the DRA shall convene to review and consider the dispute. The dispute meeting shall be held no later than 25 days after receipt of the written referral unless otherwise agreed to by all parties.
- d. The DRA shall furnish a written report to both parties. The DRA may request clarifying information of either party within 5 days after the DRA dispute meeting. Requested information shall be submitted to the DRA within 5 days of the DRA request. The DRA shall complete its report and submit it to the parties within 10 days of the DRA dispute meeting, except that time extensions may be granted at the request of the DRA with the written concurrence of both parties. The report shall summarize the facts considered, the contract language, law or regulation viewed by the DRA as pertinent to the dispute, and the DRA's interpretation and philosophy in arriving at its conclusions and recommendations and, if appropriate, recommends guidelines for determining compensation. The DRA's written opinion shall stand on its own, without attachments or appendices.
- e. Within 10 days after receiving the DRA's report, both parties shall respond to the DRA in writing signifying that the dispute is either resolved or remains unresolved. Failure to provide the written response within the time specified, or a written rejection of the DRA's recommendation or response to a request for reconsideration presented in the report by either party, shall conclusively indicate that the party(s) failing to respond accepts the DRA recommendation. Immediately after responses have been received from both parties, the DRA shall provide copies of both responses to the parties simultaneously. Either party may request clarification of elements of the DRA's report from the DRA prior to responding to the report. The DRA shall consider any clarification request only if submitted within 5 days of receipt of the DRA's report, and if submitted simultaneously in writing to both the DRA and the other party. Each party may submit only one request for clarification for any individual DRA report. The DRA shall respond, in writing, to requests for clarification within 5 days of receipt of such requests.
- f. Either party may seek a reconsideration of the DRA's recommendation. The DRA shall only grant reconsideration based upon submission of new evidence and if the request is submitted within the 10 day time limit specified for response to the DRA's written report. Each party may submit only one request for reconsideration regarding an individual DRA recommendation.
- g. If the parties are able to settle their dispute with the aid of the DRA's report, the STATE and CONTRACTOR shall promptly accept and implement the settlement of the parties. If the parties cannot agree on compensation within 30 days of the acceptance by both parties of the settlement, either party may request the DRA to make a recommendation regarding compensation.

2. INFORMAL DISPUTE MEETING

An informal dispute meeting shall be convened, only if, the parties and the DRA agree that this dispute resolution process is appropriate to settle the dispute.

The following procedure shall be used for the informal dispute meeting:

- a. The parties shall furnish the DRA with one copy of pertinent documents requested by the DRA that are or may become necessary for the DRA to perform its function. The party furnishing documents shall furnish such documents to the other party at the same time the document is provided to the DRA.
- b. After the dispute meeting has concluded, the DRA shall deliberate in private the same day, until a response to the parties is reached or as otherwise agreed to by the parties.
- c. The DRA then verbally delivers its recommendation with findings to the parties.
- d. After the recommendation is presented, the parties may ask for clarifications.
- e. Occasionally the DRA, on complex issues, may be unable to formulate a recommendation based on the information given at a dispute meeting. However, the DRA may provide the parties with advice on strengths and weaknesses of their prospective positions, in the hope of the parties reaching settlement.
- f. If the parties are able to settle their dispute with the aid of the DRA's opinion, the STATE and CONTRACTOR shall promptly accept and implement the settlement of the parties.
- g. The DRA will not be bound by its oral recommendation in the event that a dispute is later heard by the DRA in a traditional dispute meeting.

Unless the dispute is settled, use of the informal dispute meeting does not relieve the parties of their responsibilities under Section 5-1.15B, "Dispute Resolution Advisor," of the Standard Specifications or

Subsection, "Traditional Dispute Meeting," of this AGREEMENT. There will be no extension of time allowed for the process to permit the use of the informal dispute meeting, unless otherwise agreed to by the parties.

SECTION IV TIME FOR BEGINNING AND COMPLETION

Once established, the DRA shall be in operation until the day the Director accepts the contract. The DRA shall not begin work under the terms of this AGREEMENT until authorized in writing by the STATE or as agreed to by the parties.

SECTION V PAYMENT

The DRA shall be compensated at an agreed rate of \$1,500 per day for time spent per meeting, either at the start of the project or for a dispute. A member serving on more than one State DRA or DRB, regardless the number of meetings per day, shall not be paid more than the agreed rate per day. The agreed rate shall be considered full compensation for onsite time, travel expenses, transportation, lodging, time for travel and incidentals for each day, or portion thereof that the DRA is at an authorized DRA meeting. No additional compensation will be made for time spent by the DRA to review and research activities outside the official DRA meetings unless that time, (such as time spent evaluating and preparing recommendations on specific issues presented to the DRA), has been specifically agreed to in advance by the parties. Time away from the project, which has been specifically agreed to in advance by the parties, will be compensated at an agreed rate of \$150 per hour. The agreed amount of \$150 per hour shall include all incidentals including expenses for telephone, fax, and computer services. The State will provide administrative services such as conference facilities to the DRA.

A. PAYMENT PROCESSING

The CONTRACTOR shall make direct payments to the DRA for their participation in authorized meetings and approved hourly rate charges, from invoices submitted by the DRA, and technical services.

The DRA may submit invoices to the CONTRACTOR for partial payment for work performed and services rendered for their participation in authorized meetings not more often than once per month during the progress of the work. The invoices shall be in a format approved by the parties and accompanied by a general description of activities performed during that billing period. Payment for hourly fees, at the agreed rate, shall not be paid to the DRA until the amount and extent of those fees are approved by the STATE and CONTRACTOR.

B. INSPECTION OF COSTS RECORDS

The DRA and the CONTRACTOR shall keep available for inspection by representatives of the STATE and the United States, for a period of 3 years after final payment, the cost records and accounts pertaining to this AGREEMENT. If any litigation, claim, or audit arising out of, in connection with, or related to this contract is initiated before the expiration of the 3-year period, the cost records and accounts shall be retained until such litigation, claim, or audit involving the records is completed.

SECTION VI ASSIGNMENT OF TASKS OF WORK

The DRA shall not assign the work of this AGREEMENT.

SECTION VII TERMINATION OF DRA

The DRA may resign after providing not less than 15 days written notice of the resignation to the STATE and CONTRACTOR. The DRA may be terminated, by either party, for failing to fully comply at all times with all required employment or financial disclosure conditions of DRA membership in conformance with the terms of the contract and this AGREEMENT. Each party shall document the need for replacement and substantiate the replacement request in writing to the other party and the DRA.

SECTION VIII LEGAL RELATIONS

The parties hereto mutually understand and agree that the DRA in the performance of duties is acting in the capacity of an independent agent and not as an employee of either party.

No party to this AGREEMENT shall bear a greater responsibility for damages or personal injury than is normally provided by Federal or State of California Law.

Notwithstanding the provisions of this contract that require the CONTRACTOR to indemnify and hold harmless the STATE, the parties shall jointly indemnify and hold harmless the DRA from and against all claims, damages, losses, and expenses, including but not limited to attorney's fees, arising out of and resulting from the findings and recommendations of the DRA.

SECTION IX CONFIDENTIALITY

The parties hereto mutually understand and agree that all documents and records provided by the parties in reference to issues brought before the DRA, which documents and records are marked "Confidential - for use by the DRA only," shall be kept in confidence and used only for the purpose of resolution of subject disputes, and for assisting in development of DRA findings and recommendations; that such documents and records will not be utilized or revealed to others, except to officials of the parties who are authorized to act on the subject disputes, for any purposes, during the life of this AGREEMENT. Upon termination of this AGREEMENT, said confidential documents and records, and all copies thereof, shall be returned to the parties who furnished them to the DRA. However, the parties understand that such documents may be subsequently discoverable and admissible in court or arbitration proceedings unless a protective order has been obtained by the party seeking further confidentiality.

SECTION X DISPUTES

Disputes between the parties arising out of the work or other terms of this AGREEMENT that cannot be resolved by negotiation and mutual concurrence between the parties or through the administrative process provided in the contract shall be resolved by arbitration as provided in Section 9-1.10, "Arbitration," of the Standard Specifications. Disputes between the DRA and the parties that cannot be resolved by negotiation and mutual concurrence shall be resolved in the appropriate forum.

SECTION XI VENUE, APPLICABLE LAW, AND PERSONAL JURISDICTION

In the event that any party, including the DRA, deems it necessary to institute arbitration proceedings to enforce any right or obligation under this AGREEMENT, the parties hereto agree that such action shall be initiated in the Office of Administrative Hearings of the State of California. The parties hereto agree that all questions shall be resolved by arbitration by application of California law and that the parties to such arbitration shall have the right of appeal from such decisions to the Superior Court in conformance with the laws of the State of California. Venue for the arbitration shall be Sacramento or any other location as agreed to by the parties.

SECTION XII FEDERAL REVIEW AND REQUIREMENTS

On Federal-Aid contracts, the Federal Highway Administration shall have the right to review the work of the DRA in progress, except for private meetings or deliberations of the DRA.

Other Federal requirements in this agreement shall only apply to Federal-Aid contracts.

SECTION XIII CERTIFICATION OF CONTRACTOR, DRA, AND STATE

IN WITNESS WHEREOF, the parties hereto have executed this AGREEMENT as of the day and year first above written.

DRA		
By:		
Title:		
CONTRACTOR		CALIFORNIA DEPARTMENT OF TRANSPORTATION
By:	Ву:	
Title:	Title:	

5-1.15C Dispute Resolution Board

Section 5-1.15C, "Dispute Resolution Board," applies to a contract with a total bid of over \$10 million.

The Dispute Resolution Board, hereinafter referred to as "DRB," is a three member board established by the Department and Contractor to assist in the resolution of disputes.

The DRB shall be established by the Department and the Contractor within 45 days after contract approval.

The DRB shall consist of one member selected by the Department and approved by the Contractor, one member selected by the Contractor and approved by the Department, and a third member selected by the first 2 members and approved by both the Department and the Contractor.

The Department and Contractor shall provide the other written notification for approval of the name of their DRB nominee along with the nominee's disclosure statement.

Disclosure statements shall include a resume of the nominee's experience and a declaration statement describing past, present, anticipated, and planned relationships with all parties involved in this contract. Objections to nominees shall be based on a specific breach or violation of nominee responsibilities or on nominee qualifications. The Department or the Contractor may, on a one-time basis, object to the other's nominee without specifying a reason and this person shall not be selected for the DRB. Another person shall then be nominated within 15 days.

The 2 DRB members shall proceed with the selection of the third DRB member immediately after receiving written notification from the Department of their selection. The 2 DRB members shall provide their recommendation simultaneously to the parties within 15 days. The third member shall provide disclosure statement to the first 2 DRB members, to the Department, and the Contractor. The professional experience of the third DRB member shall complement that of the first 2 DRB members. The third DRB member shall be subject to mutual approval of the Department and the Contractor. If the 2 DRB members cannot agree on the third nominee, they shall submit a list of nominees to the Department and the Contractor for final selection and approval.

If the Department and the Contractor cannot agree on the third DRB member, or if the first 2 DRB members are unable to agree upon a recommendation, the Department and the Contractor shall select 6 names from the current list of arbitrators certified by the Public Works Contract Arbitration Committee created by Article 7.2 of the State Contract Act. The 2 DRB members shall then select one of the 6 names by a blind draw.

The 3 DRB members shall appoint one member as a chairperson to provide leadership for the DRB's activities. The chairperson shall be approved by the Department and the Contractor. In the event of an impasse, the third DRB member shall become the chairperson.

The Department and Contractor shall complete and adhere to the Dispute Resolution Board Agreement. No DRB meeting shall take place until the Dispute Resolution Board Agreement has been signed by all parties, unless all parties agree to sign it at the first meeting.

If the DRB needs outside technical services, technical services shall be preapproved by both the Department and the Contractor.

DRB recommendations are nonbinding.

The Contractor shall not use the DRB for disputes between the subcontractors or suppliers that have no grounds for a lawsuit against the Department.

DRB member replacements are selected in the same manner as the original selection. The appointment of a replacement DRB member will begin promptly upon determination of the need for replacement. The Dispute Resolution Board Agreement shall be amended to reflect the change in the DRB.

Failure of the Contractor to participate in establishing the DRB will result in the withholding of 25 percent of the estimated value of all work performed during each estimate period that the Contractor fails to comply. DRB withholds will be released for payment on the next monthly progress payment following the date that the Contractor has provided assistance in establishing the DRB and no interest will be due the Contractor.

The Department and the Contractor shall bear the costs and expenses of the DRB equally.

Each DRB member shall be compensated at an agreed rate of \$1,500 per day for time spent per meeting either at the start of the project, for scheduled progress, or dispute meetings. A member serving on more than one Department DRB or Dispute Resolution Advisor (DRA), regardless of the number of meetings per day shall not be paid more than the agreed rate per day. The agreed rate shall be considered full compensation for on-site time, travel expenses, transportation, lodging, time for travel, and incidentals for each day or portion thereof that the DRB member is at an authorized DRB meeting.

No additional compensation will be made for time spent by DRB members in review and research activities outside the official DRB meetings unless that time, such as time spent evaluating and preparing recommendations on specific issues presented to the DRB, has been specifically agreed to in advance by the Department and Contractor. Time away from the project, which has been specifically agreed to in advance by the Department and Contractor, will be compensated at an agreed rate of \$150 per hour. The agreed amount of \$150 per hour shall include all incidentals including expenses for telephone, fax, and computer services.

The Department will provide conference facilities for DRB meetings at no cost to the Contractor.

The Contractor shall make direct payments to each DRB member for their participation in authorized meetings and approved hourly rate charges from invoices submitted by each DRB member.

The Department will reimburse the Contractor for the Department's share of the costs.

There will be no markups applied to expenses connected with the DRB, either by the DRB members or by the Contractor when requesting payment of the Department's share of DRB expenses. Regardless of the DRB recommendation, neither party shall be entitled to reimbursement of DRB costs from the other party.

The Contractor shall submit extra work bills and include evidence of every payment to each DRB member in the form of a cancelled check or bank statement within 30 days of payment.

The cost of technical services requested by the DRB will be borne equally by the State and Contractor. There will be no markups for these costs.

A copy of the "Dispute Resolution Board Agreement" to be executed by the Department, Contractor, and the 3 DRB members after approval of the contract follows:

Contract No. 12-0E3104 37 of 297

DISPUTE RESOLUTION BOARD AGREEMENT

(Contract Identification)	
Contract No		
		AGREEMENT, hereinafter called "AGREEMENT", made and
entered into this	day of	,, between the State of California, acting through
		the Director of Transportation, hereinafter called the "STATE,"
		hereinafter called the "CONTRACTOR," and the
Dispute Resolution Boa	ard, hereinafter called the "I	DRB" consisting of the following members:
(DRB Member)		·,
		,
(DRB Member)		
and		
(DRB Chairperson	n)	
•		
WITNESSETH, th	at	

WHEREAS, the STATE and the CONTRACTOR, hereinafter called the "parties," are now engaged in the construction on the State Highway project referenced above; and

WHEREAS, the Standard Specifications for the above referenced contract provides for the establishment and operation of the DRB to assist in resolving disputes; and

WHEREAS, the DRB is composed of three members, one selected by the STATE, one selected by the CONTRACTOR, and the third member selected by the other two members and approved by the parties; and

NOW THEREFORE, in consideration of the terms, conditions, covenants, and performance contained herein, or attached and incorporated and made a part hereof, the STATE, the CONTRACTOR, and the DRB members hereto agree as follows:

SECTION I DESCRIPTION OF WORK

To assist in the timely resolution of disputes between the parties, the contract provides for the establishment and the operation of the DRB. The DRB is to fairly and impartially consider disputes placed before it and provide recommendations for resolution of these disputes to the parties. The DRB shall provide recommendations based on the facts related to the dispute, the contract and applicable laws and regulations. The DRB shall perform the services necessary to participate in the DRB's actions as designated in Section III, Scope of Work.

SECTION II DRB QUALIFICATIONS

DRB members shall be knowledgeable in the type of construction and contract documents anticipated by the contract and shall have completed training through the Dispute Review Board Foundation.

No DRB member shall have prior direct involvement in this contract. No DRB member shall have a financial interest in this contract or parties thereto, including but not limited to the CONTRACTOR, subcontractors, suppliers, consultants, and legal and business services, within a period 6 months prior to award and during this contract. Exceptions to above are compensation for services on this or other DRBs and DRAs or retirement payments or pensions received from a party that are not tied to, dependent on or affected by the net worth of the party.

DRB members shall fully disclose all direct or indirect professional or personal relationships with all key members of the contract.

SECTION III SCOPE OF WORK

The scope of work of the DRB includes, but is not limited to, the following:

A. PROCEDURES

The DRB shall establish procedures that will govern the conduct of its business and reporting procedures in conformance with the requirements of the contract and the terms of this AGREEMENT. The DRB established procedures shall only be implemented upon approval of the parties.

The DRB Chairperson shall schedule progress and dispute meetings and any other DRB activities.

The parties shall not call on any of the DRB members, who served on this contract, as a witness in arbitration proceedings, which may arise from this contract.

DRB members shall have no claim against the STATE or the CONTRACTOR, or both, from claimed harm arising out of the parties' evaluations of the DRB's opinions.

During progress or dispute meetings, DRB members shall refrain from expressing opinions on the merits of statements on matters under dispute or potential dispute. Opinions of DRB members expressed in private sessions shall be kept strictly confidential. Individual DRB members shall not meet with, or discuss contract issues with individual parties. Discussions regarding the project between the DRB members and the parties shall be in the presence of all three members and both parties. Individual DRB members shall not undertake independent investigations of any kind pertaining to disputes or potential disputes, except with the knowledge of both parties and as expressly directed by the DRB Chairperson.

B. PROGRESS MEETINGS

DRB members shall visit the project site and meet with representatives of the parties to keep abreast of construction activities and to develop familiarity with the work in progress. Scheduled progress meetings shall be held at or near the project site. The DRB shall meet at least once at the start of the project, and at least once every 4 months thereafter. The frequency, exact time, and duration of additional site visits and progress meetings shall be as recommended by the DRB and approved by the parties consistent with the construction activities or matters under consideration and dispute. Scheduled progress meetings may be waived, if the parties are in agreement, when the only work remaining is plant establishment work. Each meeting shall consist of a round table discussion and a field inspection of the work being performed on the contract, if necessary. Each meeting shall be attended by representatives of both parties. The agenda shall generally be as follows:

- 1. Meeting opened by the DRB Chairperson.
- 2. Remarks by the STATE's representative.
- 3. A description by the CONTRACTOR's representative of work accomplished since the last meeting; the current schedule status of the work; and a forecast for the coming period.
- 4. An outline by the STATE's representative of the status of the work as the STATE views it.
- 5. An outline by the CONTRACTOR's representative of potential problems and a description of proposed solutions.
- 6. A brief description by the CONTRACTOR's and the STATE's representative of potential claims and disputes that have surfaced since the last meeting.
- 7. A summary by the STATE's representative, the CONTRACTOR's representative, or the DRB of the status of past potential claims and disputes.

The STATE's representative will prepare minutes of all progress meetings and circulate them for revision and approval by all concerned within 10 days of the meeting.

C. DISPUTE MEETING

The term "dispute meeting" as used in this subsection shall refer to both the informal and traditional dispute meeting processes, unless otherwise noted.

Either the STATE or the CONTRACTOR may request a dispute meeting with the DRB. The requesting party shall simultaneously notify the other party of each dispute meeting request. Upon being notified of the need for a dispute meeting, the DRB shall review and consider the dispute. The DRB shall determine the time and location of the dispute meeting with due consideration for the needs and preferences of the parties, while recognizing the importance of a speedy resolution to the dispute.

Dispute meetings shall be conducted at any location that would be convenient and provide required facilities and access to necessary documentation.

No DRB dispute meeting shall take place later than 30 days prior to acceptance of the contract.

Only the STATE's Area Construction Engineer, Resident Engineer, and Structure Representative and the CONTRACTOR's or subcontractor's, Superintendent or Project Manager may present information at a dispute meeting. There shall be no participation of persons who are not directly involved in the contract or who do not have direct knowledge of the dispute. The exception to this is technical services, as described below:

The DRB, with approval of the parties, may obtain technical services necessary to adequately review the disputes presented, including audit, geotechnical, schedule analysis and other services. The parties' technical staff may supply those services as appropriate. The cost of technical services, as agreed to by the parties, shall be borne equally by the two parties as specified in an approved contract change order. The CONTRACTOR shall not be entitled to markups for the payments made for these services.

At the dispute meeting the DRB may ask questions, seek clarification, and request further clarification of data presented by either of the parties as may be necessary to assist in making a fully informed recommendation. However, the DRB shall refrain from expressing opinions on the merits of statements on matters under dispute during the parties' presentations. The claimant shall discuss the dispute, followed by the other party. Each party shall then be allowed one or more rebuttals at the meeting until all aspects of the dispute are thoroughly covered. Each party will be given ample time to fully present its position, make rebuttals, provide relevant documents, and respond to DRB questions and requests.

There shall be no testimony under oath or cross-examination, during DRB dispute meetings. There shall be no reporting of the procedures by a shorthand reporter or by electronic means. Documents and verbal statements shall be received by the DRB in conformance with the procedures established at the first meeting between the DRB and the parties. These established procedures need not comply with prescribed legal laws of evidence.

Failure to attend a dispute meeting by either of the parties shall be conclusively considered by the DRB as indication that the non-attending party considers all written documents and correspondence submitted as their entire and complete argument.

After dispute meetings are concluded, the DRB shall meet in private and reach a conclusion supported by two or more members. Private sessions of the DRB may be held at a location other than the job site or by electronic conferencing as deemed appropriate, in order to expedite the process.

The DRB shall make every effort to reach a unanimous decision.

1. TRADITIONAL DISPUTE MEETING:

The following procedure shall be used for the traditional dispute meeting:

- a. Within 21 days after receiving the STATE's written response to the CONTRACTOR's supplemental potential claim record, the CONTRACTOR shall refer the dispute to the DRB if the CONTRACTOR wishes to further pursue the dispute. The CONTRACTOR shall make the referral in writing to the DRB, simultaneously copied to the STATE. The written dispute referral shall describe the disputed matter in individual discrete segments, so that it will be clear to both parties and the DRB what discrete elements of the dispute have been resolved, and which remain unresolved, and shall include an estimate of the cost of the affected work and impacts, if any, on project completion.
- b. The parties shall each be afforded an opportunity to be present and to be heard by the DRB, and to offer evidence. Either party furnishing written evidence or documentation to the DRB must furnish copies of such information to the other party a minimum of 15 days prior to the date the DRB is scheduled to convene the meeting for the dispute. Either party shall produce such additional evidence as the DRB may deem necessary to reach an understanding and a determination of the dispute. The party furnishing additional evidence shall furnish copies of such additional evidence to the other party at the same time the evidence is provided to the DRB. The DRB shall not consider evidence not furnished in conformance with the terms specified herein.
- c. Upon receipt by the DRB of a written referral of a dispute, the DRB shall convene to review and consider the dispute. The dispute meeting shall be held no earlier than 30 days and no later than 60 days after receipt of the written referral unless otherwise agreed to by all parties.
- d. The DRB may request clarifying information of either party within 10 days after the dispute meeting. Requested information shall be submitted to the DRB within 10 days of the DRB request.
- e. The DRB shall furnish a written report to the parties with its conclusion(s) and recommendation(s). The DRB shall complete its report, including minority opinion, if any, and submit it to the parties within 30 days of the dispute meeting, except that time extensions may be granted at the request of the DRB with the written concurrence of the parties. The report shall summarize the facts considered, the contract language, law or regulation viewed by the DRB as pertinent to the dispute, and the DRB's interpretation and

reasoning in arriving at its conclusion(s) and recommendation(s) and, if appropriate, recommends guidelines for determining compensation. The DRB's written opinion shall stand on its own, without attachments or appendices. The DRB Chairperson shall furnish a copy of the written recommendation report to the DRB Coordinator, Division of Construction, MS 44, P.O. Box 942874, Sacramento, CA 94274.

- f. Within 30 days after receiving the DRB's report, the parties shall respond to the DRB in writing signifying that the dispute is either resolved or remains unresolved. Failure to provide the written response within the time specified, or a written rejection of the DRB's recommendation or a written response requesting the DRB reconsider their recommendation, shall conclusively indicate that the party(s) failing to respond accepts the DRB recommendation. Immediately after responses have been received from both parties, the DRB shall provide copies of both responses to the parties simultaneously. Either party may request clarification of elements of the DRB's report from the DRB prior to responding to the report. The DRB shall consider any clarification request only if submitted within 10 days of receipt of the DRB's report, and if submitted simultaneously in writing to both the DRB and the other party. Each party may submit only one request for clarification for any individual DRB report. The DRB shall respond, in writing, to requests for clarification within 10 days of receipt of such requests.
- g. Either party may seek a reconsideration of the DRB's recommendation. The DRB shall only grant reconsideration based upon submission of new evidence and if the request is submitted within the 30 day time limit specified for response to the DRB's written report. Each party may submit only one request for reconsideration regarding an individual DRB recommendation.
- h. If the parties are able to settle their dispute with the aid of the DRB's report, the STATE and the CONTRACTOR shall promptly accept and implement the settlement of the parties. If the parties cannot agree on compensation within 60 days of the acceptance by both parties of the settlement, either party may request the DRB to make a recommendation regarding compensation.

2. INFORMAL DISPUTE MEETING

An informal dispute meeting shall be convened, only if, the parties and the DRB agree that this dispute resolution process is appropriate to settle the dispute.

The following procedure shall be used for the informal dispute meeting:

- a. The parties shall furnish the DRB with one copy of pertinent documents requested by the DRB that are or may become necessary for the DRB to perform its function. The party furnishing documents shall furnish such documents to the other party at the same time the document is provided to the DRB.
- b. After the dispute meeting has concluded, the DRB members shall deliberate in private the same day until a response to the parties is reached or as otherwise agreed to by the parties.
- The DRB then verbally delivers its recommendation with findings, including minority opinion, if any, to the parties.
- d. After the recommendation is presented, the parties may ask for clarifications.
- e. Occasionally the DRB may be unable to formulate a recommendation based on the information given at a dispute meeting. However, the DRB may provide the parties with advice on strengths and weaknesses of their prospective positions, in the hope of the parties reaching settlement.
- f. If the parties are able to settle their dispute with the aid of the DRB's opinion, the STATE and the CONTRACTOR shall promptly accept and implement the settlement of the parties.
- g. The DRB will not be bound by its verbal recommendation in the event that a dispute is later heard by the DRB in a traditional dispute meeting.

Unless the dispute is settled, use of the informal dispute meeting does not relieve the parties of their responsibilities under Section 5-1.15C, "Dispute Resolution Board," of the Standard Specifications or subsection, "Traditional Dispute Meeting," of this AGREEMENT. There will be no extension of time allowed for the process to permit the use of the informal dispute meeting, unless otherwise agreed to by the parties.

SECTION IV TIME FOR BEGINNING AND COMPLETION

DRB members shall not begin work under the terms of this AGREEMENT, until authorized in writing by the STATE or as agreed to by the parties. Once established, the DRB shall be in operation until the Director accepts the contract. If the contract is terminated in accordance with Section 8-1.08, "Termination of Control," of the Standard Specifications, the DRB will be dissolved.

SECTION V PAYMENT

Each DRB member shall be compensated at an agreed rate of \$1,500 per day for time spent per meeting, either at start of project, or a scheduled progress or a dispute meeting. A member serving on more than one State DRB or DRA, regardless of the number of meetings per day, shall not be paid more than the agreed rate per day. The agreed rate shall be considered full compensation for on site time, travel expenses, transportation, lodging, time for travel and incidentals for each day, or portion thereof that the DRB member is at an authorized DRB meeting. No additional compensation will be made for time spent by DRB member to review and research activities outside the official DRB meetings unless that time, such as time spent evaluating and preparing recommendations on specific issues presented to the DRB, has been specifically agreed to in advance by the parties. Time away from the project, which has been specifically agreed to in advance by the parties, will be compensated at an agreed rate of \$150 per hour. The agreed amount of \$150 per hour shall include all incidentals including expenses for telephone, fax, and computer services. The State will provide administrative services such as conference facilities to the DRB.

A. PAYMENT PROCESSING

The CONTRACTOR shall make direct payments to each DRB member for their participation in authorized meetings and approved hourly rate charges, from invoices submitted by each DRB member, and technical services.

DRB members may submit invoices to the CONTRACTOR for partial payment for work performed and services rendered for their participation in authorized meetings not more often than once per month during the progress of the work. The invoices shall be in a format approved by the parties and accompanied by a general description of activities performed during that billing period. Payment for hourly fees, at the agreed rate, shall not be paid to a DRB member until the amount and extent of those fees are approved by the STATE and the CONTRACTOR.

B. INSPECTION OF COSTS RECORDS

DRB members and the CONTRACTOR shall keep available for inspection by representatives of the STATE and the United States federal government, for a period of 3 years after final payment, the cost records and accounts pertaining to this AGREEMENT. If any litigation, claim, or audit arising out of, in connection with, or related to this contract is initiated before the expiration of the 3-year period, the cost records and accounts shall be retained until such litigation, claim, or audit involving the records is completed.

SECTION VI ASSIGNMENT OF TASKS OF WORK

DRB members shall not assign the work of this AGREEMENT.

SECTION VII TERMINATION OF A DRB MEMBER

DRB members may resign after providing not less than 15 days written notice of their resignation to the STATE and the CONTRACTOR. A DRB member may be terminated, by either party, for failing to comply at all times with all required employment or financial disclosure conditions of DRB membership in conformance with the terms of the contract and this AGREEMENT.

Service of a DRB member may be terminated at any time with not less than 15 days notice as follows:

- A. The State may terminate service of the State appointed member.
- B. The Contractor may terminate service of the Contractor appointed member.
- C. Upon the written recommendation of the State and Contractor appointed members for the removal of the third member.
- D. Upon resignation of a member.

When a member of the DRB is replaced, the replacement member shall be appointed in the same manner as the replaced member was appointed. The appointment of a replacement DRB member will begin promptly upon determination of the need for replacement and shall be completed within 15 days. Changes in either of the DRB members chosen by the 2 parties will not require re-selection of the third member, unless both parties agree to such re-selection in writing. The Dispute Resolution Board Agreement shall be amended to reflect the change of a DRB member.

Each party shall document the need for replacement and substantiate the replacement request in writing to the other party and DRB members.

SECTION VIII LEGAL RELATIONS

The parties hereto mutually understand and agree that each DRB member in the performance of duties is acting in the capacity of an independent agent and not as an employee of either party.

No party to this AGREEMENT shall bear a greater responsibility for damages or personal injury than is normally provided by Federal or State of California Law.

Notwithstanding the provisions of this contract that require the CONTRACTOR to indemnify and hold harmless the STATE, the parties shall jointly indemnify and hold harmless the DRB members from and against all claims, damages, losses, and expenses, including but not limited to attorney's fees, arising out of and resulting from the findings and recommendations of the DRB.

SECTION IX CONFIDENTIALITY

The parties hereto mutually understand and agree that all documents and records provided by the parties in reference to issues brought before the DRB, which documents and records are marked "Confidential - for use by the DRB only," shall be kept in confidence and used only for the purpose of resolution of subject disputes, and for assisting in development of DRB findings and recommendations; that such documents and records will not be utilized or revealed to others, except to officials of the parties who are authorized to act on the subject disputes, for any purposes, during the life of this AGREEMENT. Upon termination of this AGREEMENT, said confidential documents and records, and all copies thereof, shall be returned to the parties who furnished them to the DRB. However, the parties understand that such documents may be subsequently discoverable and admissible in court or arbitration proceedings unless a protective order has been obtained by the party seeking further confidentiality.

SECTION X DISPUTES

Disputes between the parties arising out of the work or other terms of this AGREEMENT, which cannot be resolved by negotiation and mutual concurrence between the parties, or through the administrative process provided in the contract, shall be resolved by arbitration as provided in Section 9-1.10, "Arbitration," of the Standard Specifications. Disputes between the DRB and either party, which cannot be resolved by negotiation and mutual concurrence, shall be resolved in the appropriate forum.

SECTION XI VENUE, APPLICABLE LAW, AND PERSONAL JURISDICTION

In the event that any party deems it necessary to institute arbitration proceedings to enforce any right or obligation under this AGREEMENT, the parties hereto agree that such action shall be initiated in the Office of Administrative Hearings of the State of California. The parties hereto agree that all questions shall be resolved by arbitration by application of California law and that the parties to such arbitration shall have the right of appeal from such decisions to the Superior Court in conformance with the laws of the State of California. Venue for the arbitration shall be Sacramento or any other location as agreed to by the parties.

SECTION XII FEDERAL REVIEW AND REQUIREMENTS

On Federal-Aid contracts, the Federal Highway Administration shall have the right to review the work of the DRB in progress, except for private meetings or deliberations of the DRB that do not become part of the project records.

Other Federal requirements in this agreement shall only apply to Federal-Aid contracts.

SECTION XIII CERTIFICATION OF CONTRACTOR, DRB, AND STATE

IN WITNESS WHEREOF, the parties hereto have executed this AGREEMENT as of the day and year first above written.

DRB MEMBER	DRB MEMBER
By:	By:
Title:	Title :

By:_____ CONTRACTOR CALIFORNIA DEPARTMENT OF TRANSPORTATION By:_______ By:______

Title: _____

DRB CHAIRPERSON

Title: _____

Add:

5-1.18 PROPERTY AND FACILITY PRESERVATION

5-1.18A General

Preserve property and facilities, including:

- 1. Adjacent property
- 2. Department's instrumentation
- 3. ESAs
- 4. Lands administered by other agencies
- 5. Railroads and railroad equipment
- 6. Roadside vegetation not to be removed
- 7. Utilities
- 8. Waterways

Immediately report damage to the Engineer.

If you cause damage, you are responsible.

Install sheet piling, cribbing, bulkheads, shores, or other supports necessary to support existing facilities or support material carrying the facilities.

Dispose of temporary facilities when they are no longer needed.

If you damage plants not to be removed:

- 1. Dispose of them outside the right of way unless the Engineer allows you to reduce them to chips and spread the chips within the highway at locations designated by the Engineer
- 2. Replace them

Replace plants with plants of the same species.

Replace trees with 24-inch-box trees.

Replace shrubs with No. 15 container shrubs.

Replace ground cover plants with plants from flats. Replace Carpobrutus ground cover plants with plants from cuttings. Plant ground cover plants 1 foot on center.

If a plant establishment period is specified, replace plants before the start of the plant establishment period; otherwise, replace plants at least 30 days before Contract acceptance.

Water each plant immediately after planting and saturate the backfill soil around and below the roots or ball of earth around the roots of each plant. Water as necessary to maintain plants in a healthy condition until Contract acceptance.

The Department may make a temporary repair to restore service to a damaged facility.

If working on or adjacent to railroad property, do not interfere with railroad operations.

For an excavation on or affecting railroad property, submit work plans showing the system to be used to protect railroad facilities. Allow 65 days for the Engineer's review of the plans. Do not perform work based on the plans until the Engineer notifies you they are accepted.

5-1.18B Nonhighway Facilities (Including Utilities)

The Department may rearrange a nonhighway facility during the Contract. Rearrangement of a nonhighway facility includes installation, relocation, alteration, or removal of the facility. The Department may authorize facility owners and their agents to enter the highway to perform rearrangement work for their facilities or to make connections or repairs to their property. Coordinate activities to avoid delays.

Notify the Engineer at least 3 business days before you contact the regional notification center under Govt Code § 4216 et seq. Failure to contact the notification center prohibits excavation.

Before starting work that could damage or interfere with underground infrastructure, locate the infrastructure described in the Contract, including laterals and other appurtenances, and determine the presence of other underground infrastructure inferred from visible facilities such as buildings, meters, or junction boxes.

Notify the Engineer if the infrastructure described in the Contract cannot be found. If after giving the notice, you find the infrastructure in a substantially different location than described, finding the infrastructure is paid for as extra work as specified in Section 4-1.03D, "Extra Work."

Underground infrastructure described in the Contract may be in different locations than described, and additional infrastructure may exist.

Upon discovering an underground main or trunk line not described in the Contract, immediately notify the Engineer and the infrastructure owner. The Engineer orders the locating and protecting of the infrastructure. The locating and protecting is paid for as extra work as specified in Section 4-1.03D, "Extra Work." If ordered, repair infrastructure damage. If the damage is not due to your negligence, the repair is paid for as extra work as specified in Section 4-1.03D, "Extra Work."

If necessary underground infrastructure rearrangement is not described in the Contract, the Engineer may order you to perform the work. The rearrangement is paid for as extra work as specified in Section 4-1.03D, "Extra Work."

If you want infrastructure rearrangement different from that described in the Contract:

- 1. Notify the Engineer
- 2. Make an arrangement with the infrastructure owner
- 3. Obtain authorization for the rearrangement
- 4. The Department does not adjust time or payment for rearrangement different from the Contract
- 5. Pay the infrastructure owner any additional cost

Immediately notify the Engineer of a delay due to the presence of main line underground infrastructure not described in the Contract or in a substantially different location or due to rearrangement different from the Contract. The Department pays for one of these delays in the same manner as specified for a right of way delay in Section 8-1.09, "Right of Way Delays."

SECTION 6 CONTROL OF MATERIALS (Issued 05-01-09)

Replace Section 6-1.05 with:

6-1.05 SPECIFIC BRAND OR TRADE NAME AND SUBSTITUTION

A reference to a specific brand or trade name establishes a quality standard and is not intended to limit competition. You may use a product that is equal to or better than the specified brand or trade name if approved.

Submit a substitution request within a time period that:

- 1. Follows Contract award
- 2. Allows 30 days for review
- 3. Causes no delay

Include substantiating data with the substitution request that proves the substitution:

- 1. Is of equal or better quality and suitability
- 2. Causes no delay in product delivery and installation

Add:

6-1.075 GUARANTEE

Guarantee the work remains free from substantial defects for 1 year after contract acceptance except for work parts for which you were relieved of maintenance and protection. Guarantee each of these relieved work parts for 1 year after the relief date.

The guarantee excludes damage or displacement caused by an event outside your control including:

- 1. Normal wear and tear
- 2. Improper operation
- 3. Insufficient maintenance
- 4. Abuse
- 5. Unauthorized change
- 6. Act of God

During the guarantee period, repair or replace each work portion having a substantial defect.

The Department does not pay for corrective work.

During corrective work activities, provide insurance coverage specified for coverage before contract acceptance.

The contract bonds must be in full force and effect until the later of:

- 1. Expiration of guarantee period
- 2. Completion of corrective work

If a warranty specification conflicts with Section 6-1.075, "Guarantee," comply with the warranty specification. During the guarantee period, the Engineer monitors the completed work. If the Engineer finds work having a substantial defect, the Engineer lists work parts and furnishes you the list.

Within 10 days of receipt of the list, submit for authorization a detailed plan for correcting the work. Include a schedule that includes:

- 1. Start and completion dates
- 2. List of labor, equipment, materials, and any special services you plan to use
- 3. Work related to the corrective work, including traffic control and temporary and permanent pavement markings

The Engineer notifies you when the plan is authorized. Start corrective work and related work within 15 days of notice.

If the Engineer determines corrective work is urgently required to prevent injury or property damage:

- The Engineer furnishes you a request to start emergency repair work and a list of parts requiring corrective work
- 2. Mobilize within 24 hours and start work
- 3. Submit a corrective work plan within 5 days of starting emergency repair work

If you fail to perform work as specified, the Department may perform the work and bill you.

In Section 6-1.08 delete the 2nd paragraph.

Add:

6-1.085 BUY AMERICA (23 CFR 635.410)

For a Federal-aid contract, furnish steel and iron materials to be incorporated into the work that are produced in the United States except:

- 1. Foreign pig iron and processed, pelletized, and reduced iron ore may be used in the domestic production of the steel and iron materials [60 Fed Reg 15478 (03/24/1995)]
- 2. If the total combined cost of the materials does not exceed the greater of 0.1 percent of the total bid or \$2,500, material produced outside the United States may be used

Production includes:

1. Processing steel and iron materials, including smelting or other processes that alter the physical form or shape (such as rolling, extruding, machining, bending, grinding, and drilling) or chemical composition

Coating application, including epoxy coating, galvanizing, and painting, that protects or enhances the value of steel and iron materials

For steel and iron materials to be incorporated into the work, submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications that certifies all production processes occurred in the United States except for the above exceptions.

Add:

6-1.087 BUY AMERICA (PUB RES CODE § 42703(d))

Furnish crumb rubber to be incorporated into the work that is produced in the United States and is derived from waste tires taken from vehicles owned and operated in the United States.

For crumb rubber to be incorporated into the work, submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance," of the Standard Specifications that certifies only crumb rubber manufactured in the United States and derived from waste tires taken from vehicles owned and operated in the United States is used.

In Section 6-2.01 delete the 4th paragraph.

In Section 6-2.01 replace the 7th paragraph with:

Upon the Contractor's written request, the Department tests materials from an untested local source. If satisfactory material from that source is used in the work, the Department does not charge the Contractor for the tests; otherwise, the Department deducts the test cost.

In Section 6-2.01 delete the 8th paragraph.

In Section 6-2.02 delete the 3rd paragraph.

In Section 6-2.02 in the 7th paragraph, replace the 2nd sentence with:

The Department deducts the charges for the removed material.

In Section 6-2.03 in the 3rd paragraph, replace the 5th sentence with:

No allowance or additional compensation will be made for lost time or for delay in completing the work due to moving the Contractor's plant from the designated mandatory source to the alternative mandatory source, other than a time adjustment as specified in Section 8-1.09, "Delays."

In Section 6-3.01 delete the 4th paragraph.

In Section 6-3.01 in the 6th paragraph, delete the 1st sentence.

In Section 6-3.01 add:

As used in Section 6-3.01, "Testing," tests are tests to assure the quality and to determine the acceptability of the work.

The Department deducts costs of testing work found to be noncompliant.

^^^^^^

SECTION 7 LEGAL RELATIONS AND RESPONSIBILITY (Issued 09-16-11)

Replace Section 7-1.01 with:

7-1.01 LAWS TO BE OBSERVED

Comply with laws, regulations, orders, decrees, and PLACs applicable to the project. Indemnify and defend the State against any claim or liability arising from the violation of a law, regulation, order, decree, or PLAC by you or your employees. Immediately report to the Engineer in writing a discrepancy or inconsistency between the contract and a law, regulation, order, decree, or PLAC.

In Section 7-1.01A replace the 1st clause with:

Work on the job site must comply with Labor Code §§ 1727 and 1770-1815 and 8 CA Code of Regs § 16000 et seq. Work includes roadside production and processing of materials.

In Section 7-1.01A(2) in the 1st paragraph, replace item 3 with:

3. Upon becoming aware of the subcontractor's failure to pay the specified prevailing rate of wages to the subcontractor's workers, the Contractor must diligently take corrective action to stop or rectify the failure, including withholding sufficient funds due the subcontractor for work performed on the public works project.

In Section 7-1.01A(2), replace the 2nd paragraph with:

Pursuant to Section 1775 of the Labor Code, the Division of Labor Standards Enforcement must notify the Contractor on a public works project within 15 days of the receipt by the Division of Labor Standards Enforcement of a complaint of the failure of a subcontractor on that public works project to pay workers the general prevailing rate of per diem wages. If the Division of Labor Standards Enforcement determines that employees of a subcontractor were not paid the general prevailing rate of per diem wages and if the Department did not withhold sufficient money under the contract to pay those employees the balance of wages owed under the general prevailing rate of per diem wages, the Contractor must withhold an amount of moneys due the subcontractor sufficient to pay those employees the general prevailing rate of per diem wages if requested by the Division of Labor Standards Enforcement. The Contractor must pay any money withheld from and owed to a subcontractor upon receipt of notification by the Division of Labor Standards Enforcement that the wage complaint has been resolved. If notice of the resolution of the wage complaint has not been received by the Contractor within 180 days of the filing of a valid notice of completion or acceptance of the public works project, whichever occurs later, the Contractor must pay all moneys withheld from the subcontractor to the Department. The Department withholds these moneys pending the final decision of an enforcement action.

In Section 7-1.01A(2) replace 7th paragraph with:

Changes in general prevailing wage determinations apply to the contract when the Director of Industrial Relations has issued them at least 10 days before advertisement (Labor Code § 1773.6 and 8 CA Code of Regs 16204).

In Section 7-1.01A(3) replace the 2nd paragraph with:

The Department withholds the penalties specified in subdivision (g) of Labor Code § 1776 for noncompliance with the requirements in Section 1776.

In Section 7-1.01A(3) replace the 4th paragraph with:

The Department withholds for delinquent or inadequate payroll records (Labor Code § 1771.5). If the Contractor has not submitted an adequate payroll record by the month's 15th day for the period ending on or before the 1st of that month, the Department withholds 10 percent of the monthly progress estimate, exclusive of mobilization. The Department does not withhold more than \$10,000 or less than \$1,000.

In Section 7-1.01A(3) delete the 5th paragraph.

Replace Section 7-1.01A(6) with:

7-1.01A(6) (Blank)

Replace Section 7-1.01A(7) with:

7-1.01A(7) (Blank)

Replace Section 7-1.01F with:

7-1.01F Environmental Stewardship

Comply with Section 14.

Replace Section 7-1.01I with:

7-1.01I (Blank)

In Section 7-1.02 in the 2nd paragraph, replace the 4th sentence with:

Trucks used to haul treated base, portland cement concrete, or hot mix asphalt shall enter onto the base to dump at the nearest practical entry point ahead of spreading equipment.

In Section 7-1.02 between the 4th and 5th paragraphs, add:

Loads imposed on existing, new, or partially completed structures shall not exceed the load carrying capacity of the structure or any portion of the structure as determined by AASHTO LRFD with interims and California Amendments, Design Strength Limit State II. The compressive strength of concrete (f_c) to be used in computing the load carrying capacity shall be the smaller of the following:

- 1. Actual compressive strength at the time of loading
- 2. Value of f_c shown on the plans for that portion of the structure or 2.5 times the value of f_c (extreme fiber compressive stress in concrete at service loads) shown on the plans for portions of the structure where no f_c is shown

Replace Section 7-1.04 with:

7-1.04 PERMITS, LICENSES, AGREEMENTS, AND CERTIFICATIONS

7-1.04A General

Comply with PLACs. The Department makes PLAC changes under Section 4-1.03, "Changes,"

7-1.04B Before Award

To make a change to a PLAC made available to you before award, submit the proposed change. The Department sends the proposed change to the appropriate authority for consideration.

7-1.04C After Award

Confirm with the Engineer which after-award PLACs are obtained by the Department and which are obtained by the Contractor.

To make a change to an after-award PLAC obtained by the Department, submit the proposed change. The Department sends the proposed change to the appropriate authority for consideration.

Obtain those PLACs to be issued to you and pay fees and costs associated with obtaining them. Submit copies of Contractor-obtained after-award PLACs for review.

In Section 7-1.06 in the 1st paragraph, add:

The Contractor's Injury and Illness Prevention Program shall be submitted to the Engineer. The program shall address the use of personal and company issued electronic devices during work. The use of entertainment and personal communication devices in the work zone shall not be allowed. Workers may use a communication device for business purposes in the work area, at a location where their safety and the safety of other workers and the traveling public is not compromised.

Replace Section 7-1.07 with:

7-1.07 Lead Compliance Plan

Section 7-1.07 applies if a bid item for a lead compliance plan is included in the Contract.

Prepare a work plan to prevent or minimize worker exposure to lead while managing and handling earth materials, paint system debris, traffic stripe residue, and pavement marking residue containing lead. Regulations containing specific Cal/OSHA requirements when working with lead include 8 CA Code of Regs § 1532.1.

The plan must contain the items listed in 8 CA Code of Regs § 1532.1(e)(2)(B). Before submittal, a CIH must sign and seal the plan. Submit the plan at least 7 days before starting any activity that presents the potential for lead exposure. The Engineer notifies you of the acceptability of the plan within 4 business days of receipt.

Before starting any activity that presents the potential for lead exposure to employees who have no prior training, including State employees, provide a safety training program to these employees that complies with 8 CA Code of Regs § 1532.1 and your lead compliance program.

Submit copies of air monitoring or job site inspection reports made by or under the direction of the CIH under 8 CA Code of Regs § 1532.1 within 10 days after the date of monitoring or inspection.

Supply personal protective equipment, training, and washing facilities required by your lead compliance plan for 5 State employees.

The contract lump sum price paid for lead compliance plan includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing and implementing the plan as specified in this section.

Replace Section 7-1.08 with:

7-1.08 PUBLIC CONVENIENCE

Compliance with the provisions of this section does not relieve you of your responsibility for public safety.

Construction activities must not inconvenience the public or abutting property owners. Schedule and conduct work to avoid unnecessary inconvenience to the public and abutting property owners. Avoid undue delay in construction activities to reduce the public's exposure to construction.

Where possible, route traffic on new or existing paved surfaces.

Maintain convenient access to driveways, houses, and buildings. When the abutting property owner's access across the right of way line is to be eliminated or replaced under the contract, the existing access must not be closed until the replacement access facilities are usable. Construct temporary approaches to crossings and intersecting highways.

Provide a reasonably smooth and even surface for use by traffic at all time during excavation of roadways and construction of embankments. Before other grading activities, place fill at culverts and bridges to allow traffic to cross. If ordered, excavate roadway cuts in layers and construct embankments in partial widths at a time alternating construction from one side to the other and routing traffic over the side opposite the one under construction. Install or construct culverts on only 1/2 the width of the traveled way at a time; keep the traveled way portion being used by traffic open and unobstructed until the opposite side of the traveled way is ready for use by traffic.

Upon completion of rough grading or placing any subsequent layer, bring the surface of the roadbed to a smooth and even condition, free of humps and depressions and satisfactory for the use of the public.

After subgrade preparation for a specified layer of material has been completed, repair any damage to the roadbed or completed subgrade, including damage due to use by the public.

While subgrade and paving activities are underway, allow the public to use the shoulders. If half-width paving methods are used, allow the public to use the side of the roadbed opposite the one under construction. If enough width is available, keep open a passageway wide enough to accommodate at least 2 lanes of traffic at locations where subgrade and paving activities are underway. Shape shoulders or reshape subgrade as necessary to accommodate traffic during subgrade preparation and paving activities.

Apply water or dust palliative for the prevention or alleviation of dust nuisance.

Install signs, lights, flares, temporary railing (Type K), barricades and other facilities to direct traffic. Furnish flaggers whenever necessary to direct the movement of the public through or around the work.

You will be required to pay the cost of replacing or repairing all facilities installed under extra work for the convenience or direction or warning of the public which are lost while in your custody, or are damaged by your operations to such an extent as to require replacement or repair.

The Engineer may order or consent to your request to open a completed section of surfacing, pavement, or structure roadway surface for public use. You will not be compensated for any delay to your construction activities caused by the public. This does not relieve you from any other contractual responsibility.

Replace Section 7-1.09 with:

7-1.09 PUBLIC SAFETY

You are responsible to provide for public safety.

Do not construct a temporary facility that interferes with the safe passage of traffic.

Control dust resulting from the work, inside and outside the right-of-way.

Move workers, equipment, and materials without endangering traffic.

Whenever your operations create a condition hazardous to the public, furnish, erect and maintain those fences, temporary railing, barricades, lights, signs, and other devices and take any other necessary protective measures to prevent damage or injury to the public.

Any fences, temporary railing, barricades, lights, signs, or other devices furnished, erected and maintained by you are in addition to those for which payment is provided elsewhere in the specifications.

Provide flaggers whenever necessary to ensure that the public is given safe guidance through the work zone. Except as ordered, at locations where traffic is being routed through construction under one-way controls, move your equipment in compliance with the one-way controls.

Use of signs, lights, flags, or other protective devices must conform with the California MUTCD and as ordered. Signs, lights, flags or other protective devices must not obscure the visibility of, nor conflict in intent, meaning and function of either existing signs, lights and traffic control devices or any construction area signs or traffic control devices.

Keep existing traffic signals and highway lighting in operation. Other entities perform routine maintenance of these facilities during the work.

Cover signs that direct traffic to a closed area. Providing, maintaining, and removing the covers on construction area signs is paid as extra work under Section 4-1.03D, "Extra Work."

Install temporary illumination in a manner which the illumination and the illumination equipment does not interfere with public safety. The installation of general roadway illumination does not relieve you from furnishing and maintaining any protective devices.

Equipment must enter and leave the highway via existing ramps and crossovers and must move in the direction of public traffic. All movements of workmen and construction equipment on or across lanes open to public traffic must be performed in a manner that will not endanger the public. Your vehicles or other mobile equipment leaving an open traffic lane to enter the construction area, must slow down gradually in advance of the location of the turnoff to give traffic following an opportunity to slow down. When leaving a work area and entering a roadway carrying public traffic, your vehicles and equipment must yield to public traffic.

Immediately remove hauling spillage from roadway lanes or shoulders open to traffic. When hauling on roadways, trim loads and remove material from shelf areas to minimize spillage.

Notify the Engineer not less than 25 days and not more than 125 days before the anticipated start of an activity that will change the vertical or horizontal clearance available to public traffic, including shoulders.

If vertical clearance is temporarily reduced to 15.5 feet or less, place low clearance warning signs in accordance with the California MUTCD and as ordered. Signs must comply with the dimensions, color, and legend requirements of the California MUTCD and these specifications except that the signs must have black letters and numbers on an orange retroreflective background. W12-2P signs must be illuminated so that the signs are clearly visible.

Pave or provide full width continuous and cleared wood walks for pedestrian openings through falsework. Protect pedestrians from falling objects and curing water for concrete. Extend overhead protection for pedestrians not less than 4 feet beyond the edge of the bridge deck. Illuminate all pedestrian openings through falsework. Temporary pedestrian facilities must comply with the American with Disabilities Act of 1990 (ADA).

Do not store vehicles, material, or equipment in a way that:

- 1. Creates a hazard to the public
- 2. Obstructs traffic control devices

Do not install or place temporary facilities used to perform the work which interfere with the free and safe passage of public traffic.

Temporary facilities which could be a hazard to public safety if improperly designed shall comply with design requirements specified in the contract for those facilities or, if none are specified, with standard design criteria or codes appropriate for the facility involved. Working drawings and design calculations for the temporary facilities shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California and shall be submitted to the Engineer for approval pursuant to Section 5-1.02, "Plans and Working Drawings." The submittals shall designate thereon the standard design criteria or codes used. Installation of the temporary facilities shall not start until the Engineer has reviewed and approved the drawings.

If you appear to be neglectful or negligent in furnishing warning devices and taking protective measures, the Engineer may direct your attention to the existence of a hazard and the necessary warning devices must be furnished and installed and protective measures taken by you. If the Engineer points out the inadequacy of warning devices and protective measures, that action on the part of the Engineer does not relieve you from your responsibility for public safety or abrogate the obligation to furnish and pay for these devices and measures.

Install temporary railing (Type K) or other approved protection system under the following conditions:

- 1. Excavations: Where the near edge of the excavation is within 15 feet from the edge of an open traffic lane
- 2. Temporarily Unprotected Permanent Obstacles: When the work includes the installation of a fixed obstacle together with a protective system, such as a sign structure together with protective railing, and you elect to install the obstacle before installing the protective system; or you, for your convenience and as authorized, remove a portion of an existing protective railing at an obstacle and do not replace such railing completely the same day
- 3. Storage Areas: When material or equipment is stored within 15 feet of the edge of an open traffic lane and the storage is not otherwise prohibited by the provisions of these Standard Specifications and the special provisions
- 4. Height Differentials: When construction operations create a height differential greater than 0.15 feet within 15 feet of the edge of traffic lane

Temporary railing (Type K) does not need to be installed where excavations within 15 feet from edge of an open traffic lane are:

- Covered with steel plates or concrete covers of adequate thickness to prevent accidental entry by traffic or the public
- 2. In side slopes, where the downhill slope is 4:1 (horizontal:vertical) or less unless a naturally occurring condition
- 3. Protected by existing barrier or railing

Offset the approach end of temporary railing (Type K) a minimum of 15 feet from the edge of an open traffic lane. Install the temporary railing on a skew toward the edge of the traffic lane of not more than one foot transversely to 10 feet longitudinally with respect to the edge of the traffic lane. If the 15-foot minimum offset cannot be achieved, the temporary railing must be installed on the 10 to 1 skew to obtain the maximum available offset between the approach end of the railing and the edge of the traffic lane, and an array of temporary crash cushion modules must be installed at the approach end of the temporary railing.

Secure in place temporary railing (Type K) before starting work for which the temporary railing is required.

Where 2 or more lanes in the same direction are adjacent to the area where the work is being performed, including shoulders, the adjacent lane must be closed under any of the following conditions:

- 1. Work is off the traveled way but within 6 feet of the edge of traveled way, and approach speed is greater than 45 miles per hour
- 2. Work is off the traveled way but within 3 feet of the edge of traveled way, and approach speed is less than 45 miles per hour

Closure of the adjacent traffic lane is not required when:

- 1. Performing work behind a barrier
- 2. Paving, grinding, or grooving
- 3. Installing, maintaining, or removing traffic control devices except temporary railing (Type K)

Do not reduce an open traffic lane width to less than 10 feet. When traffic cones or delineators are used for temporary edge delineation, the line of cones or delineators is considered the edge of the traveled way.

If a traffic lane is closed with channelizers for excavation work, move the devices to the adjacent edge of the traveled way when not excavating. Space the devices the same as specified for the lane closure.

Do not move or temporarily suspend anything over a traffic lane open to the public unless the public is protected.

Replace Section 7-1.11 with:

7-1.11 PRESERVATION OF PROPERTY

Comply with Section 5-1.18, "Property and Facility Preservation."

Replace Section 7-1.12 with:

7-1.12 INDEMNIFICATION AND INSURANCE

The Contractor's obligations regarding indemnification of the State of California and the requirements for insurance shall conform to the provisions in Section 3-1.05, "Insurance Policies," and Sections 7-1.12A, "Indemnification," and 7-1.12B, "Insurance," of this Section 7-1.12.

7-1.12A Indemnification

The Contractor shall defend, indemnify, and save harmless the State, including its officers, employees, and agents (excluding agents who are design professionals) from any and all claims, demands, causes of action, damages, costs, expenses, actual attorneys' fees, losses or liabilities, in law or in equity (Section 7-1.12A Claims) arising out of or in connection with the Contractor's performance of this contract for:

- 1. Bodily injury including, but not limited to, bodily injury, sickness or disease, emotional injury or death to persons, including, but not limited to, the public, any employees or agents of the Contractor, the State, or any other contractor; and
- 2. Damage to property of anyone including loss of use thereof; caused or alleged to be caused in whole or in part by any negligent or otherwise legally actionable act or omission of the Contractor or anyone directly or indirectly employed by the Contractor or anyone for whose acts the Contractor may be liable.

Except as otherwise provided by law, these requirements apply regardless of the existence or degree of fault of the State. The Contractor is not obligated to indemnify the State for Claims arising from conduct delineated in Civil Code Section 2782 and to Claims arising from any defective or substandard condition of the highway that existed at or before the start of work, unless this condition has been changed by the work or the scope of the work requires the Contractor to maintain existing highway facilities and the Claim arises from the Contractor's failure to maintain. The Contractor's defense and indemnity obligation shall extend to Claims arising after the work is completed and accepted if the Claims are directly related to alleged acts or omissions by the Contractor that occurred during the course of the work. State inspection is not a waiver of full compliance with these requirements.

The Contractor's obligation to defend and indemnify shall not be excused because of the Contractor's inability to evaluate liability or because the Contractor evaluates liability and determine that the Contractor is not liable. The Contractor shall respond within 30 days to the tender of any Claim for defense and indemnity by the State, unless this time has been extended by the State. If the Contractor fails to accept or reject a tender of defense and indemnity within 30 days, in addition to any other remedy authorized by law, the Department may withhold such funds the State reasonably considers necessary for its defense and indemnity until disposition has been made of the Claim or until the Contractor accepts or rejects the tender of defense, whichever occurs first.

With respect to third-party claims against the Contractor, the Contractor waives all rights of any type to express or implied indemnity against the State, its officers, employees, or agents (excluding agents who are design professionals).

Nothing in the Contract is intended to establish a standard of care owed to any member of the public or to extend to the public the status of a third-party beneficiary for any of these indemnification specifications.

7-1.12B Insurance

7-1.12B(1) General

Nothing in the contract is intended to establish a standard of care owed to any member of the public or to extend to the public the status of a third-party beneficiary for any of these insurance specifications.

7-1.12B(2) Casualty Insurance

The Contractor shall procure and maintain insurance on all of its operations with companies acceptable to the State as follows:

- 1. The Contractor shall keep all insurance in full force and effect from the beginning of the work through contract acceptance.
- 2. All insurance shall be with an insurance company with a rating from A.M. Best Financial Strength Rating of A- or better and a Financial Size Category of VII or better.
- 3. The Contractor shall maintain completed operations coverage with a carrier acceptable to the State through the expiration of the patent deficiency in construction statute of repose set forth in Code of Civil Procedure Section 337.15.

7-1.12B(3) Workers' Compensation and Employer's Liability Insurance

In accordance with Labor Code Section 1860, the Contractor shall secure the payment of worker's compensation in accordance with Labor Code Section 3700.

In accordance with Labor Code Section 1861, the Contractor shall submit to the Department the following certification before performing the work:

I am aware of the provisions of Section 3700 of the Labor Code which require every employer to be insured against liability for workers' compensation or to undertake self-insurance in accordance with the provisions of that code, and I will comply with such provisions before commencing the performance of the work of this contract.

Contract execution constitutes certification submittal.

The Contractor shall provide Employer's Liability Insurance in amounts not less than:

- 1. \$1,000,000 for each accident for bodily injury by accident
- 2. \$1,000,000 policy limit for bodily injury by disease
- 3. \$1,000,000 for each employee for bodily injury by disease

If there is an exposure of injury to the Contractor's employees under the U.S. Longshoremen's and Harbor Workers' Compensation Act, the Jones Act, or under laws, regulations, or statutes applicable to maritime employees, coverage shall be included for such injuries or claims.

7-1.12B(4) Liability Insurance

7-1.12B(4)(a) General

The Contractor shall carry General Liability and Umbrella or Excess Liability Insurance covering all operations by or on behalf of the Contractor providing insurance for bodily injury liability and property damage liability for the following limits and including coverage for:

- 1. Premises, operations, and mobile equipment
- 2. Products and completed operations
- 3. Broad form property damage (including completed operations)
- 4. Explosion, collapse, and underground hazards
- 5. Personal injury
- 6. Contractual liability

7-1.12B(4)(b) Liability Limits/Additional Insureds

The limits of liability shall be at least the amounts shown in the following table:

Total Bid	For Each	Aggregate for	General	Umbrella or
	Occurrence ¹	Products/Completed	Aggregate ²	Excess Liability ³
		Operation		
≤\$1,000,000	\$1,000,000	\$2,000,000	\$2,000,000	\$5,000,000
>\$1,000,000				
≤\$10,000,000	\$1,000,000	\$2,000,000	\$2,000,000	\$10,000,000
>\$10,000,000				
≤\$25,000,000	\$2,000,000	\$2,000,000	\$4,000,000	\$15,000,000
>\$25,000,000	\$2,000,000	\$2,000,000	\$4,000,000	\$25,000,000

- 1. Combined single limit for bodily injury and property damage.
- 2. This limit shall apply separately to the Contractor's work under this contract.
- 3. The umbrella or excess policy shall contain a clause stating that it takes effect (drops down) in the event the primary limits are impaired or exhausted.

The Contractor shall not require certified Small Business subcontractors to carry Liability Insurance that exceeds the limits in the table above. Notwithstanding the limits specified herein, at the option of the Contractor, the liability insurance limits for certified Small Business subcontractors of any tier may be less than those limits specified in the table. For Small Business subcontracts, "Total Bid" shall be interpreted as the amount of subcontracted work to a certified Small Business.

The State, including its officers, directors, agents (excluding agents who are design professionals), and employees, shall be named as additional insureds under the General Liability and Umbrella Liability Policies with respect to liability arising out of or connected with work or operations performed by or on behalf of the Contractor under this contract. Coverage for such additional insureds does not extend to liability:

- Arising from any defective or substandard condition of the roadway which existed at or before the time the Contractor started work, unless such condition has been changed by the work or the scope of the work requires the Contractor to maintain existing roadway facilities and the claim arises from the Contractor's failure to maintain:
- 2. For claims occurring after the work is completed and accepted unless these claims are directly related to alleged acts or omissions of the Contractor that occurred during the course of the work; or
- 3. To the extent prohibited by Insurance Code Section 11580.04

Additional insured coverage shall be provided by a policy provision or by an endorsement providing coverage at least as broad as Additional Insured (Form B) endorsement form CG 2010, as published by the Insurance Services Office (ISO), or other form designated by the Department.

7-1.12B(4)(c) Contractor's Insurance Policy is Primary

The policy shall stipulate that the insurance afforded the additional insureds applies as primary insurance. Any other insurance or self-insurance maintained by the State is excess only and shall not be called upon to contribute with this insurance.

7-1.12B(5) Automobile Liability Insurance

The Contractor shall carry automobile liability insurance, including coverage for all owned, hired, and nonowned automobiles. The primary limits of liability shall be not less than \$1,000,000 combined single limit each accident for bodily injury and property damage. The umbrella or excess liability coverage required under Section 7-1.12B(4)(b) also applies to automobile liability.

7-1.12B(6) Policy Forms, Endorsements, and Certificates

The Contractor shall provide its General Liability Insurance under Commercial General Liability policy form No. CG0001 as published by the Insurance Services Office (ISO) or under a policy form at least as broad as policy form No. CG0001.

7-1.12B(7) Deductibles

The State may expressly allow deductible clauses, which it does not consider excessive, overly broad, or harmful to the interests of the State. Regardless of the allowance of exclusions or deductions by the State, the Contractor is responsible for any deductible amount and shall warrant that the coverage provided to the State is in accordance with Section 7-1.12B, "Insurance."

7-1.12B(8) Enforcement

The Department may assure the Contractor's compliance with its insurance obligations. Ten days before an insurance policy lapses or is canceled during the contract period, the Contractor shall submit to the Department evidence of renewal or replacement of the policy.

If the Contractor fails to maintain any required insurance coverage, the Department may maintain this coverage and withhold or charge the expense to the Contractor or terminate the Contractor's control of the work in accordance with Section 8-1.08, "Termination of Control."

The Contractor is not relieved of its duties and responsibilities to indemnify, defend, and hold harmless the State, its officers, agents, and employees by the Department's acceptance of insurance policies and certificates.

Minimum insurance coverage amounts do not relieve the Contractor for liability in excess of such coverage, nor do they preclude the State from taking other actions available to it, including the withholding of funds under this contract.

7-1.12B(9) Self-Insurance

Self-insurance programs and self-insured retentions in insurance policies are subject to separate annual review and approval by the State.

If the Contractor uses a self-insurance program or self-insured retention, the Contractor shall provide the State with the same protection from liability and defense of suits as would be afforded by first-dollar insurance. Execution of the contract is the Contractor's acknowledgement that the Contractor will be bound by all laws as if the Contractor were an insurer as defined under Insurance Code Section 23 and that the self-insurance program or self-insured retention shall operate as insurance as defined under Insurance Code Section 22.

Replace Section 7-1.125 with:

7-1.125 Legal Actions Against the Department

If legal action is brought against the Department over compliance with a State or Federal law, rule, or regulation applicable to highway work, then:

- 1. If the Department, in complying with a court order, prohibits you from performing work, the resulting delay is a suspension related to your performance, unless the Department terminates the contract.
- 2. If a court order other than an order to show cause or the final judgment in the action prohibits the Department from requiring you to perform work, the Department may delete the prohibited work or terminate the contract.

In Section 7-1.13 delete the 5th and 6th paragraphs.

Add:

7-1.50 FEDERAL LAWS FOR FEDERAL-AID CONTRACTS

7-1.50A General

Section 7-1.50, "Federal Laws for Federal-Aid Contracts," includes specifications required in a Federal-aid construction contract and applies to a Federal-aid contract.

Form FHWA-1273 is included in the contract in Section 7-1.50B, "FHWA-1273." Some contract terms on the form are different than those used in other contract parts as shown in the following table:

FHWA-1273 Terms and Department Equivalencies

111 //11 12 / 0 1 0 1 1 1 1 1 1 0 1	and a chartement addr. anomores
FHWA-1273 Term	Equivalent Term Used in Other
	Contract Parts
SHA	Department
SHA contracting officer	Engineer
SHA resident engineer	Engineer

Contract No. 12-0E3104 57 of 297

REQUIRED CONTRACT PROVISIONS FEDERAL-AID CONSTRUCTION CONTRACTS

- I. General
- II. Nondiscrimination
- III. Nonsegregated Facilities
- IV. Payment of Predetermined Minimum Wage
- V. Statements and Payrolls
- VI. Record of Materials, Supplies, and Labor
- VII. Subletting or Assigning the Contract
- VIII. Safety: Accident Prevention
- IX. False Statements Concerning Highway Projects
- X. Implementation of Clean Air Act and Federal Water Pollution Control Act
- XI. Certification Regarding Debarment, Suspension, Ineligibility, and Voluntary Exclusion
- XII. Certification Regarding Use of Contract Funds for Lobbying

ATTACHMENTS

A. Employment Preference for Appalachian Contracts (included in Appalachian contracts only)

I. GENERAL

- 1. These contract provisions shall apply to all work performed on the contract by the contractor's own organization and with the assistance of workers under the contractor's immediate superintendence and to all work performed on the contract by piecework, station work, or by subcontract.
- 2. Except as otherwise provided for in each section, the contractor shall insert in each subcontract all of the stipulations contained in these Required Contract Provisions, and further require their inclusion in any lower tier subcontract or purchase order that may in turn be made. The Required Contract Provisions shall not be incorporated by reference in any case. The prime contractor shall be responsible for compliance by any subcontractor or lower tier subcontractor with these Required Contract Provisions.
- 3. A breach of any of the stipulations contained in these Required Contract Provisions shall be sufficient grounds for termination of the contract.
- 4. A breach of the following clauses of the Required Contract Provisions may also be grounds for debarment as provided in 29 CFR 5.12:

Section I, paragraph 2;

Section IV, paragraphs 1, 2, 3, 4, and 7;

Section V, paragraphs 1 and 2a through 2g.

- 5. Disputes arising out of the labor standards provisions of Section IV (except paragraph 5) and Section V of these Required Contract Provisions shall not be subject to the general disputes clause of this contract. Such disputes shall be resolved in accordance with the procedures of the U.S. Department of Labor (DOL) as set forth in 29 CFR 5, 6, and 7. Disputes within the meaning of this clause include disputes between the contractor (or any of its subcontractors) and the contracting agency, the DOL, or the contractor's employees or their representatives.
- 6. **Selection of Labor:** During the performance of this contract, the contractor shall not:
 - a. discriminate against labor from any other State, possession, or territory of the United States (except for employment preference for Appalachian contracts, when applicable, as specified in Attachment A), or
 - b. employ convict labor for any purpose within the limits of the project unless it is labor performed by convicts who are on parole, supervised release, or probation.

II. NONDISCRIMINATION

(Applicable to all Federal-aid construction contracts and to all related subcontracts of \$10,000 or more.)

1. Equal Employment Opportunity: Equal employment opportunity (EEO) requirements not to discriminate and to take affirmative action to assure equal opportunity as set forth under laws, executive orders, rules, regulations (28 CFR 35, 29 CFR 1630 and 41 CFR 60) and orders of the Secretary of Labor as modified by the provisions prescribed herein, and imposed pursuant to 23 U.S.C. 140 shall constitute the EEO and specific affirmative action standards for the contractor's project activities under this contract. The Equal

Opportunity Construction Contract Specifications set forth under 41 CFR 60-4.3 and the provisions of the American Disabilities Act of 1990 (42 U.S.C. 12101 *et seq.*) set forth under 28 CFR 35 and 29 CFR 1630 are incorporated by reference in this contract. In the execution of this contract, the contractor agrees to comply with the following minimum specific requirement activities of EEO:

- a. The contractor will work with the State highway agency (SHA) and the Federal Government in carrying out EEO obligations and in their review of his/her activities under the contract.
- b. The contractor will accept as his operating policy the following statement:

"It is the policy of this Company to assure that applicants are employed, and that employees are treated during employment, without regard to their race, religion, sex, color, national origin, age or disability. Such action shall include: employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship, preapprenticeship, and/or on-the-job training."

- 2. **EEO Officer:** The contractor will designate and make known to the SHA contracting officers an EEO Officer who will have the responsibility for and must be capable of effectively administering and promoting an active contractor program of EEO and who must be assigned adequate authority and responsibility to do so.
- 3. **Dissemination of Policy:** All members of the contractor's staff who are authorized to hire, supervise, promote, and discharge employees, or who recommend such action, or who are substantially involved in such action, will be made fully cognizant of, and will implement, the contractor's EEO policy and contractual responsibilities to provide EEO in each grade and classification of employment. To ensure that the above agreement will be met, the following actions will be taken as a minimum:
 - a. Periodic meetings of supervisory and personnel office employees will be conducted before the start of work and then not less often than once every six months, at which time the contractor's EEO policy and its implementation will be reviewed and explained. The meetings will be conducted by the EEO Officer.
 - b. All new supervisory or personnel office employees will be given a thorough indoctrination by the EEO Officer, covering all major aspects of the contractor's EEO obligations within thirty days following their reporting for duty with the contractor.
 - c. All personnel who are engaged in direct recruitment for the project will be instructed by the EEO Officer in the contractor's procedures for locating and hiring minority group employees.
 - d. Notices and posters setting forth the contractor's EEO policy will be placed in areas readily accessible to employees, applicants for employment and potential employees.
 - e. The contractor's EEO policy and the procedures to implement such policy will be brought to the attention of employees by means of meetings, employee handbooks, or other appropriate means.
- 4. **Recruitment:** When advertising for employees, the contractor will include in all advertisements for employees the notation: "An Equal Opportunity Employer." All such advertisements will be placed in publications having a large circulation among minority groups in the area from which the project work force would normally be derived.
 - a. The contractor will, unless precluded by a valid bargaining agreement, conduct systematic and direct recruitment through public and private employee referral sources likely to yield qualified minority group applicants. To meet this requirement, the contractor will identify sources of potential minority group employees, and establish with such identified sources procedures whereby minority group applicants may be referred to the contractor for employment consideration.
 - b. In the event the contractor has a valid bargaining agreement providing for exclusive hiring hall referrals, he is expected to observe the provisions of that agreement to the extent that the system permits the contractor's compliance with EEO contract provisions. (The DOL has held that where implementation of such agreements have the effect of discriminating against minorities or women, or obligates the contractor to do the same, such implementation violates Executive Order 11246, as amended.)
 - c. The contractor will encourage his present employees to refer minority group applicants for employment. Information and procedures with regard to referring minority group applicants will be discussed with employees.

- 5. **Personnel Actions:** Wages, working conditions, and employee benefits shall be established and administered, and personnel actions of every type, including hiring, upgrading, promotion, transfer, demotion, layoff, and termination, shall be taken without regard to race, color, religion, sex, national origin, age or disability. The following procedures shall be followed:
 - a. The contractor will conduct periodic inspections of project sites to insure that working conditions and employee facilities do not indicate discriminatory treatment of project site personnel.
 - b. The contractor will periodically evaluate the spread of wages paid within each classification to determine any evidence of discriminatory wage practices.
 - c. The contractor will periodically review selected personnel actions in depth to determine whether there is evidence of discrimination. Where evidence is found, the contractor will promptly take corrective action. If the review indicates that the discrimination may extend beyond the actions reviewed, such corrective action shall include all affected persons.
 - d. The contractor will promptly investigate all complaints of alleged discrimination made to the contractor in connection with his obligations under this contract, will attempt to resolve such complaints, and will take appropriate corrective action within a reasonable time. If the investigation indicates that the discrimination may affect persons other than the complainant, such corrective action shall include such other persons. Upon completion of each investigation, the contractor will inform every complainant of all of his avenues of appeal.

6. Training and Promotion:

- a. The contractor will assist in locating, qualifying, and increasing the skills of minority group and women employees, and applicants for employment.
- b. Consistent with the contractor's work force requirements and as permissible under Federal and State regulations, the contractor shall make full use of training programs, i.e., apprenticeship, and on-the-job training programs for the geographical area of contract performance. Where feasible, 25 percent of apprentices or trainees in each occupation shall be in their first year of apprenticeship or training. In the event a special provision for training is provided under this contract, this subparagraph will be superseded as indicated in the special provision.
- c. The contractor will advise employees and applicants for employment of available training programs and entrance requirements for each.
- d. The contractor will periodically review the training and promotion potential of minority group and women employees and will encourage eligible employees to apply for such training and promotion.
- 7. Unions: If the contractor relies in whole or in part upon unions as a source of employees, the contractor will use his/her best efforts to obtain the cooperation of such unions to increase opportunities for minority groups and women within the unions, and to effect referrals by such unions of minority and female employees. Actions by the contractor either directly or through a contractor's association acting as agent will include the procedures set forth below:
 - a. The contractor will use best efforts to develop, in cooperation with the unions, joint training programs aimed toward qualifying more minority group members and women for membership in the unions and increasing the skills of minority group employees and women so that they may qualify for higher paying employment.
 - b. The contractor will use best efforts to incorporate an EEO clause into each union agreement to the end that such union will be contractually bound to refer applicants without regard to their race, color, religion, sex, national origin, age or disability.
 - c. The contractor is to obtain information as to the referral practices and policies of the labor union except that to the extent such information is within the exclusive possession of the labor union and such labor union refuses to furnish such information to the contractor, the contractor shall so certify to the SHA and shall set forth what efforts have been made to obtain such information.
 - d. In the event the union is unable to provide the contractor with a reasonable flow of minority and women referrals within the time limit set forth in the collective bargaining agreement, the contractor will, through independent recruitment efforts, fill the employment vacancies without regard to race, color, religion, sex, national origin, age or disability; making full efforts to obtain qualified and/or qualifiable minority group persons and women. (The DOL has held that it shall be no excuse that the

union with which the contractor has a collective bargaining agreement providing for exclusive referral failed to refer minority employees.) In the event the union referral practice prevents the contractor from meeting the obligations pursuant to Executive Order 11246, as amended, and these specifications, such contractor shall immediately notify the SHA.

- 8. **Selection of Subcontractors, Procurement of Materials and Leasing of Equipment:** The contractor shall not discriminate on the grounds of race, color, religion, sex, national origin, age or disability in the selection and retention of subcontractors, including procurement of materials and leases of equipment.
 - The contractor shall notify all potential subcontractors and suppliers of his/her EEO obligations under this contract.
 - b. Disadvantaged business enterprises (DBE), as defined in 49 CFR 23, shall have equal opportunity to compete for and perform subcontracts which the contractor enters into pursuant to this contract. The contractor will use his best efforts to solicit bids from and to utilize DBE subcontractors or subcontractors with meaningful minority group and female representation among their employees. Contractors shall obtain lists of DBE construction firms from SHA personnel.
 - c. The contractor will use his best efforts to ensure subcontractor compliance with their EEO obligations.
- 9. Records and Reports: The contractor shall keep such records as necessary to document compliance with the EEO requirements. Such records shall be retained for a period of three years following completion of the contract work and shall be available at reasonable times and places for inspection by authorized representatives of the SHA and the FHWA.
 - a. The records kept by the contractor shall document the following:
 - 1. The number of minority and non-minority group members and women employed in each work classification on the project;
 - 2. The progress and efforts being made in cooperation with unions, when applicable, to increase employment opportunities for minorities and women;
 - 3. The progress and efforts being made in locating, hiring, training, qualifying, and upgrading minority and female employees; and
 - 4. The progress and efforts being made in securing the services of DBE subcontractors or subcontractors with meaningful minority and female representation among their employees.
 - b. The contractors will submit an annual report to the SHA each July for the duration of the project, indicating the number of minority, women, and non-minority group employees currently engaged in each work classification required by the contract work. This information is to be reported on Form FHWA-1391. If on-the-job training is being required by special provision, the contractor will be required to collect and report training data.

III. NONSEGREGATED FACILITIES

(Applicable to all Federal-aid construction contracts and to all related subcontracts of \$10,000 or more.)

- a. By submission of this bid, the execution of this contract or subcontract, or the consummation of this material supply agreement or purchase order, as appropriate, the bidder, Federal-aid construction contractor, subcontractor, material supplier, or vendor, as appropriate, certifies that the firm does not maintain or provide for its employees any segregated facilities at any of its establishments, and that the firm does not permit its employees to perform their services at any location, under its control, where segregated facilities are maintained. The firm agrees that a breach of this certification is a violation of the EEO provisions of this contract. The firm further certifies that no employee will be denied access to adequate facilities on the basis of sex or disability.
- b. As used in this certification, the term "segregated facilities" means any waiting rooms, work areas, restrooms and washrooms, restaurants and other eating areas, timeclocks, locker rooms, and other storage or dressing areas, parking lots, drinking fountains, recreation or entertainment areas, transportation, and housing facilities provided for employees which are segregated by explicit directive, or are, in fact, segregated on the basis of race, color, religion, national origin, age or disability, because of habit, local custom, or otherwise. The only exception will be for the disabled when the demands for accessibility override (e.g. disabled parking).

c. The contractor agrees that it has obtained or will obtain identical certification from proposed subcontractors or material suppliers prior to award of subcontracts or consummation of material supply agreements of \$10,000 or more and that it will retain such certifications in its files.

IV. PAYMENT OF PREDETERMINED MINIMUM WAGE

(Applicable to all Federal-aid construction contracts exceeding \$2,000 and to all related subcontracts, except for projects located on roadways classified as local roads or rural minor collectors, which are exempt.)

1. General:

- All mechanics and laborers employed or working upon the site of the work will be paid unconditionally and not less often than once a week and without subsequent deduction or rebate on any account [except such payroll deductions as are permitted by regulations (29 CFR 3) issued by the Secretary of Labor under the Copeland Act (40 U.S.C. 276c)] the full amounts of wages and bona fide fringe benefits (or cash equivalents thereof) due at time of payment. The payment shall be computed at wage rates not less than those contained in the wage determination of the Secretary of Labor (hereinafter "the wage determination") which is attached hereto and made a part hereof, regardless of any contractual relationship which may be alleged to exist between the contractor or its subcontractors and such laborers and mechanics. The wage determination (including any additional classifications and wage rates conformed under paragraph 2 of this Section IV and the DOL poster (WH-1321) or Form FHWA-1495) shall be posted at all times by the contractor and its subcontractors at the site of the work in a prominent and accessible place where it can be easily seen by the workers. For the purpose of this Section, contributions made or costs reasonably anticipated for bona fide fringe benefits under Section 1(b) (2) of the Davis- Bacon Act (40 U.S.C. 276a) on behalf of laborers or mechanics are considered wages paid to such laborers or mechanics, subject to the provisions of Section IV, paragraph 3b, hereof. Also, for the purpose of this Section, regular contributions made or costs incurred for more than a weekly period (but not less often than quarterly) under plans, funds, or programs, which cover the particular weekly period, are deemed to be constructively made or incurred during such weekly period. Such laborers and mechanics shall be paid the appropriate wage rate and fringe benefits on the wage determination for the classification of work actually performed, without regard to skill, except as provided in paragraphs 4 and 5 of this Section IV.
- b. Laborers or mechanics performing work in more than one classification may be compensated at the rate specified for each classification for the time actually worked therein, provided, that the employer's payroll records accurately set forth the time spent in each classification in which work is performed.
- c. All rulings and interpretations of the Davis-Bacon Act and related acts contained in 29 CFR 1, 3, and 5 are herein incorporated by reference in this contract.

2. Classification:

- a. The SHA contracting officer shall require that any class of laborers or mechanics employed under the contract, which is not listed in the wage determination, shall be classified in conformance with the wage determination.
- b. The contracting officer shall approve an additional classification, wage rate and fringe benefits only when the following criteria have been met:
 - 1. the work to be performed by the additional classification requested is not performed by a classification in the wage determination;
 - 2. the additional classification is utilized in the area by the construction industry;
 - 3. the proposed wage rate, including any bona fide fringe benefits, bears a reasonable relationship to the wage rates contained in the wage determination; and
 - 4. with respect to helpers, when such a classification prevails in the area in which the work is performed.
- c. If the contractor or subcontractors, as appropriate, the laborers and mechanics (if known) to be employed in the additional classification or their representatives, and the contracting officer agree on the classification and wage rate (including the amount designated for fringe benefits where appropriate), a report of the action taken shall be sent by the contracting officer to the DOL, Administrator of the Wage and Hour Division, Employment Standards Administration, Washington, D.C. 20210. The Wage and Hour Administrator, or an authorized representative, will approve, modify,

- or disapprove every additional classification action within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30-day period that additional time is necessary.
- d. In the event the contractor or subcontractors, as appropriate, the laborers or mechanics to be employed in the additional classification or their representatives, and the contracting officer do not agree on the proposed classification and wage rate (including the amount designated for fringe benefits, where appropriate), the contracting officer shall refer the questions, including the views of all interested parties and the recommendation of the contracting officer, to the Wage and Hour Administrator for determination. Said Administrator, or an authorized representative, will issue a determination within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30-day period that additional time is necessary.
- e. The wage rate (including fringe benefits where appropriate) determined pursuant to paragraph 2c or 2d of this Section IV shall be paid to all workers performing work in the additional classification from the first day on which work is performed in the classification.

3. Payment of Fringe Benefits:

- a. Whenever the minimum wage rate prescribed in the contract for a class of laborers or mechanics includes a fringe benefit which is not expressed as an hourly rate, the contractor or subcontractors, as appropriate, shall either pay the benefit as stated in the wage determination or shall pay another bona fide fringe benefit or an hourly case equivalent thereof.
- b. If the contractor or subcontractor, as appropriate, does not make payments to a trustee or other third person, he/she may consider as a part of the wages of any laborer or mechanic the amount of any costs reasonably anticipated in providing bona fide fringe benefits under a plan or program, provided, that the Secretary of Labor has found, upon the written request of the contractor, that the applicable standards of the Davis-Bacon Act have been met. The Secretary of Labor may require the contractor to set aside in a separate account assets for the meeting of obligations under the plan or program.

4. Apprentices and Trainees (Programs of the U.S. DOL) and Helpers:

a. Apprentices:

- 1. Apprentices will be permitted to work at less than the predetermined rate for the work they performed when they are employed pursuant to and individually registered in a bona fide apprenticeship program registered with the DOL, Employment and Training Administration, Bureau of Apprenticeship and Training, or with a State apprenticeship agency recognized by the Bureau, or if a person is employed in his/her first 90 days of probationary employment as an apprentice in such an apprenticeship program, who is not individually registered in the program, but who has been certified by the Bureau of Apprenticeship and Training or a State apprenticeship agency (where appropriate) to be eligible for probationary employment as an apprentice.
- 2. The allowable ratio of apprentices to journeyman-level employees on the job site in any craft classification shall not be greater than the ratio permitted to the contractor as to the entire work force under the registered program. Any employee listed on a payroll at an apprentice wage rate, who is not registered or otherwise employed as stated above, shall be paid not less than the applicable wage rate listed in the wage determination for the classification of work actually performed. In addition, any apprentice performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed. Where a contractor or subcontractor is performing construction on a project in a locality other than that in which its program is registered, the ratios and wage rates (expressed in percentages of the journeyman-level hourly rate) specified in the contractor's or subcontractor's registered program shall be observed.
- 3. Every apprentice must be paid at not less than the rate specified in the registered program for the apprentice's level of progress, expressed as a percentage of the journeyman-level hourly rate specified in the applicable wage determination. Apprentices shall be paid fringe benefits in accordance with the provisions of the apprenticeship program. If the apprenticeship program does not specify fringe benefits, apprentices must be paid the full amount of fringe benefits listed on the wage determination for the applicable classification. If the Administrator for the Wage and Hour Division determines that a

- different practice prevails for the applicable apprentice classification, fringes shall be paid in accordance with that determination.
- 4. In the event the Bureau of Apprenticeship and Training, or a State apprenticeship agency recognized by the Bureau, withdraws approval of an apprenticeship program, the contractor or subcontractor will no longer be permitted to utilize apprentices at less than the applicable predetermined rate for the comparable work performed by regular employees until an acceptable program is approved.

b. Trainees:

- 1. Except as provided in 29 CFR 5.16, trainees will not be permitted to work at less than the predetermined rate for the work performed unless they are employed pursuant to and individually registered in a program which has received prior approval, evidenced by formal certification by the DOL, Employment and Training Administration.
- 2. The ratio of trainees to journeyman-level employees on the job site shall not be greater than permitted under the plan approved by the Employment and Training Administration. Any employee listed on the payroll at a trainee rate who is not registered and participating in a training plan approved by the Employment and Training Administration shall be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed. In addition, any trainee performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed.
- 3. Every trainee must be paid at not less than the rate specified in the approved program for his/her level of progress, expressed as a percentage of the journeyman-level hourly rate specified in the applicable wage determination. Trainees shall be paid fringe benefits in accordance with the provisions of the trainee program. If the trainee program does not mention fringe benefits, trainees shall be paid the full amount of fringe benefits listed on the wage determination unless the Administrator of the Wage and Hour Division determines that there is an apprenticeship program associated with the corresponding journeyman-level wage rate on the wage determination which provides for less than full fringe benefits for apprentices, in which case such trainees shall receive the same fringe benefits as apprentices.
- 4. In the event the Employment and Training Administration withdraws approval of a training program, the contractor or subcontractor will no longer be permitted to utilize trainees at less than the applicable predetermined rate for the work performed until an acceptable program is approved.

c. Helpers:

Helpers will be permitted to work on a project if the helper classification is specified and defined on the applicable wage determination or is approved pursuant to the conformance procedure set forth in Section IV.2. Any worker listed on a payroll at a helper wage rate, who is not a helper under an approved definition, shall be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed.

5. Apprentices and Trainees (Programs of the U.S. DOT):

Apprentices and trainees working under apprenticeship and skill training programs which have been certified by the Secretary of Transportation as promoting EEO in connection with Federal-aid highway construction programs are not subject to the requirements of paragraph 4 of this Section IV. The straight time hourly wage rates for apprentices and trainees under such programs will be established by the particular programs. The ratio of apprentices and trainees to journeymen shall not be greater than permitted by the terms of the particular program.

6. Withholding:

The SHA shall upon its own action or upon written request of an authorized representative of the DOL withhold, or cause to be withheld, from the contractor or subcontractor under this contract or any other Federal contract with the same prime contractor, or any other Federally-assisted contract subject to Davis-Bacon prevailing wage requirements which is held by the same prime contractor, as much of the accrued payments or advances as may be considered necessary to pay laborers and mechanics, including apprentices, trainees, and helpers, employed by the contractor or any subcontractor the full amount of wages required by the contract. In the event of failure to pay any laborer or mechanic, including any apprentice, trainee, or helper, employed or working on the site of the work, all or part of the wages required by the contract, the SHA contracting officer may, after written notice to the contractor, take such action as

may be necessary to cause the suspension of any further payment, advance, or guarantee of funds until such violations have ceased.

7. Overtime Requirements:

No contractor or subcontractor contracting for any part of the contract work which may require or involve the employment of laborers, mechanics, watchmen, or guards (including apprentices, trainees, and helpers described in paragraphs 4 and 5 above) shall require or permit any laborer, mechanic, watchman, or guard in any workweek in which he/she is employed on such work, to work in excess of 40 hours in such workweek unless such laborer, mechanic, watchman, or guard receives compensation at a rate not less than one-and-one-half times his/her basic rate of pay for all hours worked in excess of 40 hours in such workweek.

8. Violation:

Liability for Unpaid Wages; Liquidated Damages: In the event of any violation of the clause set forth in paragraph 7 above, the contractor and any subcontractor responsible thereof shall be liable to the affected employee for his/her unpaid wages. In addition, such contractor and subcontractor shall be liable to the United States (in the case of work done under contract for the District of Columbia or a territory, to such District or to such territory) for liquidated damages. Such liquidated damages shall be computed with respect to each individual laborer, mechanic, watchman, or guard employed in violation of the clause set forth in paragraph 7, in the sum of \$10 for each calendar day on which such employee was required or permitted to work in excess of the standard work week of 40 hours without payment of the overtime wages required by the clause set forth in paragraph 7.

9. Withholding for Unpaid Wages and Liquidated Damages:

The SHA shall upon its own action or upon written request of any authorized representative of the DOL withhold, or cause to be withheld, from any monies payable on account of work performed by the contractor or subcontractor under any such contract or any other Federal contract with the same prime contractor, or any other Federally-assisted contract subject to the contract Work Hours and Safety Standards Act, which is held by the same prime contractor, such sums as may be determined to be necessary to satisfy any liabilities of such contractor or subcontractor for unpaid wages and liquidated damages as provided in the clause set forth in paragraph 8 above.

V. STATEMENTS AND PAYROLLS

(Applicable to all Federal-aid construction contracts exceeding \$2,000 and to all related subcontracts, except for projects located on roadways classified as local roads or rural collectors, which are exempt.)

1. Compliance with Copeland Regulations (29 CFR 3):

The contractor shall comply with the Copeland Regulations of the Secretary of Labor which are herein incorporated by reference.

2. Payrolls and Payroll Records:

- a. Payrolls and basic records relating thereto shall be maintained by the contractor and each subcontractor during the course of the work and preserved for a period of 3 years from the date of completion of the contract for all laborers, mechanics, apprentices, trainees, watchmen, helpers, and guards working at the site of the work.
- b. The payroll records shall contain the name, social security number, and address of each such employee; his or her correct classification; hourly rates of wages paid (including rates of contributions or costs anticipated for bona fide fringe benefits or cash equivalent thereof the types described in Section 1(b)(2)(B) of the Davis Bacon Act); daily and weekly number of hours worked; deductions made; and actual wages paid. In addition, for Appalachian contracts, the payroll records shall contain a notation indicating whether the employee does, or does not, normally reside in the labor area as defined in Attachment A, paragraph 1. Whenever the Secretary of Labor, pursuant to Section IV, paragraph 3b, has found that the wages of any laborer or mechanic include the amount of any costs reasonably anticipated in providing benefits under a plan or program described in Section 1(b)(2)(B) of the Davis Bacon Act, the contractor and each subcontractor shall maintain records which show that the commitment to provide such benefits is enforceable, that the plan or program is financially responsible, that the plan or program has been communicated in writing to the laborers or mechanics affected, and show the cost anticipated or the actual cost incurred in providing benefits. Contractors or subcontractors employing apprentices or trainees under approved programs shall maintain written

- evidence of the registration of apprentices and trainees, and ratios and wage rates prescribed in the applicable programs.
- c. Each contractor and subcontractor shall furnish, each week in which any contract work is performed, to the SHA resident engineer a payroll of wages paid each of its employees (including apprentices, trainees, and helpers, described in Section IV, paragraphs 4 and 5, and watchmen and guards engaged on work during the preceding weekly payroll period). The payroll submitted shall set out accurately and completely all of the information required to be maintained under paragraph 2b of this Section V. This information may be submitted in any form desired. Optional Form WH-347 is available for this purpose and may be purchased from the Superintendent of Documents (Federal stock number 029-005-0014-1), U.S. Government Printing Office, Washington, D.C. 20402. The prime contractor is responsible for the submission of copies of payrolls by all subcontractors.
- d. Each payroll submitted shall be accompanied by a "Statement of Compliance," signed by the contractor or subcontractor or his/her agent who pays or supervises the payment of the persons employed under the contract and shall certify the following:
 - 1. that the payroll for the payroll period contains the information required to be maintained under paragraph 2b of this Section V and that such information is correct and complete;
 - 2. that such laborer or mechanic (including each helper, apprentice, and trainee) employed on the contract during the payroll period has been paid the full weekly wages earned, without rebate, either directly or indirectly, and that no deductions have been made either directly or indirectly from the full wages earned, other than permissible deductions as set forth in the Regulations, 29 CFR 3;
 - 3. that each laborer or mechanic has been paid not less that the applicable wage rate and fringe benefits or cash equivalent for the classification of worked performed, as specified in the applicable wage determination incorporated into the contract.
- e. The weekly submission of a properly executed certification set forth on the reverse side of Optional Form WH-347 shall satisfy the requirement for submission of the "Statement of Compliance" required by paragraph 2d of this Section V.
- f. The falsification of any of the above certifications may subject the contractor to civil or criminal prosecution under 18 U.S.C. 1001 and 31 U.S.C. 231.
- g. The contractor or subcontractor shall make the records required under paragraph 2b of this Section V available for inspection, copying, or transcription by authorized representatives of the SHA, the FHWA, or the DOL, and shall permit such representatives to interview employees during working hours on the job. If the contractor or subcontractor fails to submit the required records or to make them available, the SHA, the FHWA, the DOL, or all may, after written notice to the contractor, sponsor, applicant, or owner, take such actions as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds. Furthermore, failure to submit the required records upon request or to make such records available may be grounds for debarment action pursuant to 29 CFR 5.12.

VI. RECORD OF MATERIALS, SUPPLIES, AND LABOR

(As of May 22, 2007, Form FHWA-47 is no longer required.)

VII. SUBLETTING OR ASSIGNING THE CONTRACT

- 1. The contractor shall perform with its own organization contract work amounting to not less than 30 percent (or a greater percentage if specified elsewhere in the contract) of the total original contract price, excluding any specialty items designated by the State. Specialty items may be performed by subcontract and the amount of any such specialty items performed may be deducted from the total original contract price before computing the amount of work required to be performed by the contractor's own organization (23 CFR 635).
 - a. "Its own organization" shall be construed to include only workers employed and paid directly by the
 prime contractor and equipment owned or rented by the prime contractor, with or without operators.
 Such term does not include employees or equipment of a subcontractor, assignee, or agent of the prime
 contractor.
 - b. "Specialty Items" shall be construed to be limited to work that requires highly specialized knowledge, abilities, or equipment not ordinarily available in the type of contracting organizations qualified and

expected to bid on the contract as a whole and in general are to be limited to minor components of the overall contract.

- 2. The contract amount upon which the requirements set forth in paragraph 1 of Section VII is computed includes the cost of material and manufactured products which are to be purchased or produced by the contractor under the contract provisions.
- 3. The contractor shall furnish (a) a competent superintendent or supervisor who is employed by the firm, has full authority to direct performance of the work in accordance with the contract requirements, and is in charge of all construction operations (regardless of who performs the work) and (b) such other of its own organizational resources (supervision, management, and engineering services) as the SHA contracting officer determines is necessary to assure the performance of the contract.
- 4. No portion of the contract shall be sublet, assigned or otherwise disposed of except with the written consent of the SHA contracting officer, or authorized representative, and such consent when given shall not be construed to relieve the contractor of any responsibility for the fulfillment of the contract. Written consent will be given only after the SHA has assured that each subcontract is evidenced in writing and that it contains all pertinent provisions and requirements of the prime contract.

VIII. SAFETY: ACCIDENT PREVENTION

- In the performance of this contract the contractor shall comply with all applicable Federal, State, and local
 laws governing safety, health, and sanitation (23 CFR 635). The contractor shall provide all safeguards,
 safety devices and protective equipment and take any other needed actions as it determines, or as the SHA
 contracting officer may determine, to be reasonably necessary to protect the life and health of employees on
 the job and the safety of the public and to protect property in connection with the performance of the work
 covered by the contract.
- 2. It is a condition of this contract, and shall be made a condition of each subcontract, which the contractor enters into pursuant to this contract, that the contractor and any subcontractor shall not permit any employee, in performance of the contract, to work in surroundings or under conditions which are unsanitary, hazardous or dangerous to his/her health or safety, as determined under construction safety and health standards (29 CFR 1926) promulgated by the Secretary of Labor, in accordance with Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 333).
- 3. Pursuant to 29 CFR 1926.3, it is a condition of this contract that the Secretary of Labor or authorized representative thereof, shall have right of entry to any site of contract performance to inspect or investigate the matter of compliance with the construction safety and health standards and to carry out the duties of the Secretary under Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 333).

IX. FALSE STATEMENTS CONCERNING HIGHWAY PROJECTS

In order to assure high quality and durable construction in conformity with approved plans and specifications and a high degree of reliability on statements and representations made by Engineers, contractors, suppliers, and workers on Federal-aid highway projects, it is essential that all persons concerned with the project perform their functions as carefully, thoroughly, and honestly as possible. Willful falsification, distortion, or misrepresentation with respect to any facts related to the project is a violation of Federal law. To prevent any misunderstanding regarding the seriousness of these and similar acts, the following notice shall be posted on each Federal-aid highway project (23 CFR 635) in one or more places where it is readily available to all persons concerned with the project:

NOTICE TO ALL PERSONNEL ENGAGED ON FEDERAL-AID HIGHWAY PROJECTS

18 U.S.C. 1020 reads as follows:

"Whoever, being an officer, agent, or employee of the United States, or of any State or Territory, or whoever, whether a person, association, firm, or corporation, knowingly makes any false statement, false representation, or false report as to the character, quality, quantity, or cost of the material used or to be used, or the quantity or quality of the work performed or to be performed, or the cost thereof in connection with the submission of plans, maps, specifications, contracts, or costs of construction on any highway or related project submitted for approval to the Secretary of Transportation; or

Whoever knowingly makes any false statement, false representation, false report or false claim with respect to the character, quality, quantity, or cost of any work performed or to be performed, or materials furnished

or to be furnished, in connection with the construction of any highway or related project approved by the Secretary of Transportation; or

Whoever knowingly makes any false statement or false representation as to material fact in any statement, certificate, or report submitted pursuant to provisions of the Federal-aid Roads Act approved July 1, 1916, (39 Stat. 355), as amended and supplemented;

Shall be fined not more that \$10,000 or imprisoned not more than 5 years or both."

X. IMPLEMENTATION OF CLEAN AIR ACT AND FEDERAL WATER POLLUTION CONTROL ACT

(Applicable to all Federal-aid construction contracts and to all related subcontracts of \$100,000 or more.) By submission of this bid or the execution of this contract, or subcontract, as appropriate, the bidder, Federal-aid construction contractor, or subcontractor, as appropriate, will be deemed to have stipulated as follows:

- 1. That any facility that is or will be utilized in the performance of this contract, unless such contract is exempt under the Clean Air Act, as amended (42 U.S.C. 1857 *et seq.*, as amended by Pub.L. 91-604), and under the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 *et seq.*, as amended by Pub.L. 92-500), Executive Order 11738, and regulations in implementation thereof (40 CFR 15) is not listed, on the date of contract award, on the U.S. Environmental Protection Agency (EPA) List of Violating Facilities pursuant to 40 CFR 15.20.
- 2. That the firm agrees to comply and remain in compliance with all the requirements of Section 114 of the Clean Air Act and Section 308 of the Federal Water Pollution Control Act and all regulations and guidelines listed thereunder.
- 3. That the firm shall promptly notify the SHA of the receipt of any communication from the Director, Office of Federal Activities, EPA, indicating that a facility that is or will be utilized for the contract is under consideration to be listed on the EPA List of Violating Facilities.
- 4. That the firm agrees to include or cause to be included the requirements of paragraph 1 through 4 of this Section X in every nonexempt subcontract, and further agrees to take such action as the government may direct as a means of enforcing such requirements.

XI. CERTIFICATION REGARDING DEBARMENT, SUSPENSION, INELIGIBILITY AND VOLUNTARY EXCLUSION

1. Instructions for Certification - Primary Covered Transactions:

(Applicable to all Federal-aid contracts - 49 CFR 29)

- a. By signing and submitting this proposal, the prospective primary participant is providing the certification set out below.
- b. The inability of a person to provide the certification set out below will not necessarily result in denial of participation in this covered transaction. The prospective participant shall submit an explanation of why it cannot provide the certification set out below. The certification or explanation will be considered in connection with the department or agency's determination whether to enter into this transaction. However, failure of the prospective primary participant to furnish a certification or an explanation shall disqualify such a person from participation in this transaction.
- c. The certification in this clause is a material representation of fact upon which reliance was placed when the department or agency determined to enter into this transaction. If it is later determined that the prospective primary participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the department or agency may terminate this transaction for cause of default.
- d. The prospective primary participant shall provide immediate written notice to the department or agency to whom this proposal is submitted if any time the prospective primary participant learns that its certification was erroneous when submitted or has become erroneous by reason of changed circumstances.
- e. The terms "covered transaction," "debarred," "suspended," "ineligible," "lower tier covered transaction," "participant," "person," "primary covered transaction," "principal," "proposal," and "voluntarily excluded," as used in this clause, have the meanings set out in the Definitions and Coverage sections of rules implementing Executive Order 12549. You may contact the department or agency to which this proposal is submitted for assistance in obtaining a copy of those regulations.
- f. The prospective primary participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from

- participation in this covered transaction, unless authorized by the department or agency entering into this transaction.
- g. The prospective primary participant further agrees by submitting this proposal that it will include the clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transaction," provided by the department or agency entering into this covered transaction, without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions.
- h. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant may decide the method and frequency by which it determines the eligibility of its principals. Each participant may, but is not required to, check the nonprocurement portion of the "Lists of Parties Excluded From Federal Procurement or Nonprocurement Programs" (Nonprocurement List) which is compiled by the General Services Administration.
- i. Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.
- j. Except for transactions authorized under paragraph f of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency may terminate this transaction for cause or default.

* * * * *

Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion--Primary Covered Transactions

- 1. The prospective primary participant certifies to the best of its knowledge and belief, that it and its principals:
 - a. Are not presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from covered transactions by any Federal department or agency;
 - b. Have not within a 3-year period preceding this proposal been convicted of or had a civil judgement rendered against them for commission of fraud or a criminal offense in connection with obtaining, attempting to obtain, or performing a public (Federal, State or local) transaction or contract under a public transaction; violation of Federal or State antitrust statutes or commission of embezzlement, theft, forgery, bribery, falsification or destruction of records, making false statements, or receiving stolen property;
 - c. Are not presently indicted for or otherwise criminally or civilly charged by a governmental entity (Federal, State or local) with commission of any of the offenses enumerated in paragraph 1b of this certification; and
 - d. Have not within a 3-year period preceding this application/proposal had one or more public transactions (Federal, State or local) terminated for cause or default.
- 2. Where the prospective primary participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal.

2. Instructions for Certification - Lower Tier Covered Transactions:

(Applicable to all subcontracts, purchase orders and other lower tier transactions of \$25,000 or more - 49 CFR 29)

 a. By signing and submitting this proposal, the prospective lower tier is providing the certification set out below.

- b. The certification in this clause is a material representation of fact upon which reliance was placed when this transaction was entered into. If it is later determined that the prospective lower tier participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the department, or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment.
- c. The prospective lower tier participant shall provide immediate written notice to the person to which this proposal is submitted if at any time the prospective lower tier participant learns that its certification was erroneous by reason of changed circumstances.
- d. The terms "covered transaction," "debarred," "suspended," "ineligible," "primary covered transaction," "participant," "person," "principal," "proposal," and "voluntarily excluded," as used in this clause, have the meanings set out in the Definitions and Coverage sections of rules implementing Executive Order 12549. You may contact the person to which this proposal is submitted for assistance in obtaining a copy of those regulations.
- e. The prospective lower tier participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency with which this transaction originated.
- f. The prospective lower tier participant further agrees by submitting this proposal that it will include this clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transaction," without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions.
- g. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant may decide the method and frequency by which it determines the eligibility of its principals. Each participant may, but is not required to, check the Nonprocurement List.
- h. Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.
- i. Except for transactions authorized under paragraph e of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment.

Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion--Lower Tier Covered Transactions:

- 1. The prospective lower tier participant certifies, by submission of this proposal, that neither it nor its principals is presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participation in this transaction by any Federal department or agency.
- 2. Where the prospective lower tier participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal.

* * * * *

XII. CERTIFICATION REGARDING USE OF CONTRACT FUNDS FOR LOBBYING

(Applicable to all Federal-aid construction contracts and to all related subcontracts which exceed \$100,000 - 49 CFR 20)

1. The prospective participant certifies, by signing and submitting this bid or proposal, to the best of his or her knowledge and belief, that:

- a. No Federal appropriated funds have been paid or will be paid, by or on behalf of the undersigned, to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with the awarding of any Federal contract, the making of any Federal grant, the making of any Federal loan, the entering into of any cooperative agreement, and the extension, continuation, renewal, amendment, or modification of any Federal contract, grant, loan, or cooperative agreement.
- b. If any funds other than Federal appropriated funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with this Federal contract, grant, loan, or cooperative agreement, the undersigned shall complete and submit Standard Form-LLL, "Disclosure Form to Report Lobbying," in accordance with its instructions.
- 2. This certification is a material representation of fact upon which reliance was placed when this transaction was made or entered into. Submission of this certification is a prerequisite for making or entering into this transaction imposed by 31 U.S.C. 1352. Any person who fails to file the required certification shall be subject to a civil penalty of not less than \$10,000 and not more than \$100,000 for each such failure.
- 3. The prospective participant also agrees by submitting his or her bid or proposal that he or she shall require that the language of this certification be included in all lower tier subcontracts, which exceed \$100,000 and that all such recipients shall certify and disclose accordingly.

Contract No. 12-0E3104 71 of 297

7-1.50C Female and Minority Goals

To comply with Section II, "Nondiscrimination," of "Required Contract Provisions Federal-Aid Construction Contracts," the Department is including in Section 7-1.50C, "Female and Minority Goals," female and minority utilization goals for Federal-aid construction contracts and subcontracts that exceed \$10,000.

The nationwide goal for female utilization is 6.9 percent.

The goals for minority utilization [45 Fed Reg 65984 (10/3/1980)] are as follows:

Minority Utilization Goals

Minority Utilization Goals		
	Economic Area	Goal (Percent)
174	Redding CA: Non-SMSA Counties:	6.8
	CA Lassen; CA Modoc; CA Plumas; CA Shasta; CA Siskiyou; CA Tehema	0.0
175	Eureka, CA	
	Non-SMSA Counties:	6.6
	CA Del Norte; CA Humboldt; CA Trinity	
176	San Francisco-Oakland-San Jose, CA:	
	SMSA Counties:	20.0
	7120 Salinas-Seaside-Monterey, CA	28.9
	CA Monterey 7360 San Francisco-Oakland	25.6
	CA Alameda; CA Contra Costa; CA Marin; CA San Francisco; CA San Mateo	23.0
	7400 San Jose, CA	
	CA Santa Clara, CA	19.6
	7485 Santa Cruz, CA	
	CA Santa Cruz	14.9
	7500 Santa Rosa	
	CA Sonoma	9.1
	8720 Vallejo-Fairfield-Napa, CA	
	CA Napa; CA Solano	17.1
	Non-SMSA Counties:	22.2
	CA Lake; CA Mendocino; CA San Benito	23.2
177	Sacramento, CA:	
	SMSA Counties:	
	6920 Sacramento, CA	16.1
	CA Placer; CA Sacramento; CA Yolo	14.2
	Non-SMSA Counties CA Butte; CA Colusa; CA El Dorado; CA Glenn; CA Nevada; CA Sierra; CA Sutter; CA	14.3
	Yuba	
178	Stockton-Modesto, CA:	
170	SMSA Counties:	
	5170 Modesto, CA	12.3
	CA Stanislaus	
	8120 Stockton, CA	24.3
	CA San Joaquin	
	Non-SMSA Counties	19.8
	CA Alpine; CA Amador; CA Calaveras; CA Mariposa; CA Merced; CA Toulumne	
179	Fresno-Bakersfield, CA	
	SMSA Counties:	10.1
	0680 Bakersfield, CA	19.1
	CA Kern 2840 Fresno, CA	26.1
	2840 Fresno, CA CA Fresno	20.1
	Non-SMSA Counties:	23.6
	CA Kings; CA Madera; CA Tulare	23.0
180	Los Angeles, CA:	

	SMSA Counties:	
	0360 Anaheim-Santa Ana-Garden Grove, CA	11.9
	CA Orange	11.7
	4480 Los Angeles-Long Beach, CA	28.3
	CA Los Angeles	
	6000 Oxnard-Simi Valley-Ventura, CA	21.5
	CA Ventura	
	6780 Riverside-San Bernardino-Ontario, CA	19.0
	CA Riverside; CA San Bernardino	
	7480 Santa Barbara-Santa Maria-Lompoc, CA	19.7
	CA Santa Barbara	
	Non-SMSA Counties	24.6
	CA Inyo; CA Mono; CA San Luis Obispo	
181	San Diego, CA:	
	SMSA Counties	
	7320 San Diego, CA	16.9
	CA San Diego	
	Non-SMSA Counties	18.2
	CA Imperial	

For each July during which work is performed under the contract, you and each non-material-supplier subcontractor with a subcontract of \$10,000 or more must complete Form FHWA PR-1391 (Appendix C to 23 CFR 230). Submit the forms by August 15.

7-1.50D Training

Section 7-1.50D, "Training," applies if a number of trainees or apprentices is specified in the special provisions. As part of your equal opportunity affirmative action program, provide on-the-job training to develop full journeymen in the types of trades or job classifications involved.

You have primary responsibility for meeting this training requirement.

If you subcontract a contract part, determine how many trainees or apprentices are to be trained by the subcontractor.

Include these training requirements in your subcontract.

Where feasible, 25 percent of apprentices or trainees in each occupation must be in their 1st year of apprenticeship or training.

Distribute the number of apprentices or trainees among the work classifications on the basis of your needs and the availability of journeymen in the various classifications within a reasonable recruitment area.

Before starting work, submit to the Department:

- 1. Number of apprentices or trainees to be trained for each classification
- 2. Training program to be used
- 3. Training starting date for each classification

Obtain the Department's approval for this submitted information before you start work. The Department credits you for each apprentice or trainee you employ on the work who is currently enrolled or becomes enrolled in an approved program.

The primary objective of Section 7-1.50D, "Training," is to train and upgrade minorities and women toward journeymen status. Make every effort to enroll minority and women apprentices or trainees, such as conducting systematic and direct recruitment through public and private sources likely to yield minority and women apprentices or trainees, to the extent they are available within a reasonable recruitment area. Show that you have made the efforts. In making these efforts, do not discriminate against any applicant for training.

Do not employ as an apprentice or trainee an employee:

- 1. In any classification in which the employee has successfully completed a training course leading to journeyman status or in which the employee has been employed as a journeyman
- 2. Who is not registered in a program approved by the US Department of Labor, Bureau of Apprenticeship and Training

Ask the employee if the employee has successfully completed a training course leading to journeyman status or has been employed as a journeyman. Your records must show the employee's answers to the questions.

In your training program, establish the minimum length and training type for each classification. The Department and FHWA approves a program if one of the following is met:

- 1. It is calculated to:
 - 1.1. Meet the your equal employment opportunity responsibilities
 - 1.2. Qualify the average apprentice or trainee for journeyman status in the classification involved by the end of the training period
- It is registered with the U.S. Department of Labor, Bureau of Apprenticeship and Training and it is administered in a way consistent with the equal employment responsibilities of federal-aid highway construction contracts

Obtain the State's approval for your training program before you start work involving the classification covered by the program.

Provide training in the construction crafts, not in clerk-typist or secretarial-type positions. Training is allowed in lower level management positions such as office engineers, estimators, and timekeepers if the training is oriented toward construction applications. Training is allowed in the laborer classification if significant and meaningful training is provided and approved by the division office. Off-site training is allowed if the training is an integral part of an approved training program and does not make up a significant part of the overall training.

The Department reimburses you 80 cents per hour of training given an employee on this contract under an approved training program:

- 1. For on-site training
- 2. For off-site training if the apprentice or trainee is currently employed on a federal-aid project and you do at least one of the following:
 - 2.1. Contribute to the cost of the training
 - 2.2. Provide the instruction to the apprentice or trainee
 - 2.3. Pay the apprentice's or trainee's wages during the off-site training period
- 3. If you comply with Section 7-1.50D, "Training"

Each apprentice or trainee must:

- 1. Begin training on the project as soon as feasible after the start of work involving the apprentice's or trainee's skill
- 2. Remain on the project as long as training opportunities exist in the apprentice's or trainee's work classification or until the apprentice or trainee has completed the training program

Furnish the apprentice or trainee:

- 1. Copy of the program you will comply with in providing the training
- 2. Certification showing the type and length of training satisfactorily completed

Maintain records and submit reports documenting your performance under Section 7-1.50D, "Training."

^^^^^^

SECTION 8 PROSECUTION AND PROGRESS (Issued 06-05-09)

Replace Section 8 with: SECTION 8 PROSECUTION AND PROGRESS

8-1.01 (BLANK)

8-1.02 ASSIGNMENT

No third-party agreement relieves you or your surety of your responsibility to complete the work. Do not sell, transfer, or otherwise dispose of any contract part without prior written consent from the Department.

If you assign the right to receive contract payments, the Department accepts the assignment upon the Engineer's receipt of a notice. Assigned payments remain subject to deductions and withholds described in the contract. The Department may use withheld payments for work completion whether payments are assigned or not.

8-1.025 PRECONSTRUCTION CONFERENCE

Attend a preconstruction conference with key personnel, including your assigned representative, at a time and location determined by the Engineer. Submit documents as required before the preconstruction conference. You may begin work before the preconstruction conference.

Be prepared to discuss the following topics and documents:

Topics	Document
Potential claim and dispute resolution	Potential claim forms
Contractor's representation	Assignment of Contractor's representative
DBE and DVBE	Final utilization reports
Equipment	Equipment list
Labor compliance and equal employment opportunity	Job site posters and benefit and payroll reports
Material inspection	Notice of Materials to be Used
Materials on hand	Request for Payment for Materials on Hand
Measurements	
Partnering	Field Guide to Partnering on Caltrans Construction Projects
Quality control	QC plans
Safety	Injury and Illness Prevention Program and job site posters
Schedule	Baseline schedule and Weekly Statement of Working Days
Subcontracting	Subcontracting Request
Surveying	Survey Request
Traffic control	Traffic contingency plan and traffic control plans
Utility work	
Weight limitations	
Water pollution control	SWPPP or WPCP
Work restrictions	PLACs
Working drawings	

8-1.03 BEGINNING OF WORK

Begin work within 15 days after receiving notice that the contract has been approved by the Attorney General or the attorney appointed and authorized to represent the Department. Submit a written notice 72 hours before beginning work. If the project has more than one location of work, submit a separate notice for each location.

You may begin work before receiving the notice of contract approval if you:

- 1. Deliver the signed contract, bonds, and evidence of insurance to the Department
- 2. Submit 72-hour notice
- 3. Obtain an encroachment permit from the Department
- 4. Are authorized by the Department to begin
- 5. Perform work at your own risk
- 6. Perform work under the contract

The Engineer does not count working days for days worked before contract approval.

If the contract is approved, work already performed that complies with the contract is authorized.

If the contract does not get approved, leave the job site in a neat condition. If a facility has been changed, restore it to its former or equivalent condition at your expense.

Contract No. 12-0E3104

The Department does not adjust time for beginning before the approval date.

8-1.04 PROGRESS SCHEDULE

8-1.04A General

Reserved

8-1.04B Critical Path Method Schedule

The following definitions apply to critical path method schedules:

activity: Task, event, or other project element on a schedule that contributes to completing the project. Activities have a description, start date, finish date, duration, and one or more logic ties.

baseline schedule: The initial schedule showing the original work plan beginning on the date of contract approval. This schedule shows no completed work to date and no negative float or negative lag to any activity.

controlling activity: Construction activity that extends the scheduled completion date if delayed.

critical path: Longest continuous chain of activities for the project that has the least amount of total float of all chains. In general, a delay on the critical path extends the scheduled completion date.

critical path method (CPM): Network based planning technique using activity durations and relationships between activities to calculate a schedule for the entire project.

revised schedule: Schedule that incorporates a proposed or past change to logic or activity durations.

scheduled completion date: Planned project completion date shown on the current schedule.

updated schedule: Current schedule developed from the accepted baseline and any subsequent accepted updated or revised schedules through regular monthly review to incorporate actual past progress.

Before or at the preconstruction conference, submit a CPM baseline schedule.

Submit a monthly updated schedule that includes the status of work completed to date and the work yet to be performed as planned.

On each schedule, show:

- 1. Planned and actual start and completion date of each work activity, including applicable:
 - 1.1. Submittal development
 - 1.2. Submittal review and approval
 - 1.3. Material procurement
 - 1.4. Contract milestones and constraints
 - 1.5. Equipment and plant setup
 - 1.6. Interfaces with outside entities
 - 1.7. Erection and removal of falsework and shoring
 - 1.8. Test periods
 - 1.9. Major traffic stage change
 - 1.10. Final cleanup
- 2. Order that you propose to prosecute the work
- 3. Logical links between the time-scaled work activities
- 4. All controlling activities
- 5. Legible description of each activity
- 6. At least one predecessor and one successor to each activity, except for project start and project end milestones
- 7. Duration of not less than one working day for each activity
- 8. Start milestone date as the contract approval date

You may include changes on updated schedules that do not alter the critical path or extend the schedule completion date compared to the current schedule. Changes may include:

- 1. Adding or deleting activities
- 2. Changing activity constraints
- 3. Changing durations

4. Changing logic

If any proposed change in planned work results in altering the critical path or extending the scheduled completion date, submit a revised schedule within 15 days of the proposed change.

For each schedule submittal:

- 1. Submit a plotted original, time-scaled network diagram on a sheet of at least 8.5" x 11" with a title block and timeline
- 2. If a computer program is used to make the schedule, submit a read-only compact disc or diskette containing the schedule data. Label the compact disc or diskette with:
 - 2.1. Contract number
 - 2.2. CPM schedule number and date produced
 - 2.3. File name

If there is no contract item for progress schedule (critical path method), full compensation for this work is included in the contract prices paid for the items of work involved, and no additional compensation will be allowed therefor.

8-1.05 TEMPORARY SUSPENSION OF WORK

8-1.05A General

The Engineer may suspend work wholly or in part due to any of the following:

- 1. Conditions are unsuitable for work progress.
- 2. You fail to do any of the following:
 - 2.1. Fulfill the Engineer's orders.
 - 2.2. Fulfill a contract part.
 - 2.3. Perform weather-dependent work when conditions are favorable so that weather-related unsuitable conditions are avoided or do not occur.

Upon the Engineer's written order of suspension, suspend work immediately. Provide for public safety and a smooth and unobstructed passageway through the work zone during the suspension as specified in Sections 7-1.08, "Public Convenience," and 7-1.09, "Public Safety." Resume work when ordered.

8-1.05B Suspensions Unrelated to Contractor Performance

For a suspension unrelated to your performance, providing for a smooth and unobstructed passageway through the work during the suspension will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

The days during a suspension unrelated to your performance are non-working days.

8-1.05C Suspensions Related to Contractor Performance

For a suspension related to your performance, the Department may provide for a smooth and unobstructed passageway through the work during the suspension and deduct the cost from payments.

The days during a suspension related to your performance are working days.

8-1.06 TIME OF COMPLETION

The time to complete the work is specified in the special provisions.

The Engineer issues a Weekly Statement of Working Days by the end of the following week unless the contract is suspended for reasons unrelated to your performance.

The Weekly Statement of Working Days shows:

- 1. Working days and non-working days during the reporting week
- 2. Time adjustments
- 3. Work completion date computations, including working days remaining
- 4. Controlling activities

You may protest a Weekly Statement of Working Days.

8-1.07 LIQUIDATED DAMAGES

8-1.07A General

The Department specifies liquidated damages (Pub Cont Code § 10226). Liquidated damages, if any, accrue starting on the 1st day after the expiration of the working days through the day of contract acceptance except as specified in Sections 8-1.07B, "Failure to Complete Work Parts within Specified Times," and 8-1.07C, "Failure to Complete Work Parts by Specified Dates."

The Department withholds liquidated damages before the accrual date if the anticipated liquidated damages may exceed the value of the remaining work.

Liquidated damages for all work, except plant establishment, are:

Liquidated Damages					
Tota	ıl Bid	Liquidated Damages per			
From over	To	Day			
\$0	\$50,000	\$1,200			
\$50,000	\$120,000	\$1,500			
\$120,000	\$1,000,000	\$1,900			
\$1,000,000	\$5,000,000	\$3,000			
\$5,000,000	\$10,000,000	\$5,400			
\$10,000,000	\$30,000,000	\$8,300			
\$30,000,000	\$100,000,000	\$10,500			
\$100,000,000	\$250,000,000	\$28,500			

If all work, except plant establishment, is complete and the total number of working days has expired, liquidated damages are \$950 per day.

8-1.07B Failure to Complete Work Parts within Specified Times

The Department may deduct specified damages from payments for each day in completing a work part beyond the time specified for completing the work part.

Damages for untimely completion of work parts may not be equal to the daily amount specified as liquidated damages for the project as a whole, but the Department does not simultaneously assess damages for untimely completion of work parts and for the whole work.

Damages accrue starting the 1st day after a work part exceeds the specified time through the day the specified work part is complete.

8-1.07C Failure to Complete Work Parts by Specified Dates

The Department may deduct specified damages from payments for each day in completing a work part beyond the specified completion date for the work part.

Damages for untimely work part completion may not be equal to the daily amount specified as liquidated damages for the project as a whole, but the Department does not simultaneously assess damages for untimely work part completion and the whole work.

Damages accrue starting the 1st day after an unmet completion date through the day the work part is complete.

8-1.07D Director Davs

If the work is not completed within the working days, the Director may grant director days if it serves the State's best interest.

By granting director days, the Director adds working days to the contract. The Director may either grant enough days to eliminate the liquidated damages or fewer. In the latter case, the Department deducts liquidated damages for the remaining overrun in contract time. The Director may deduct the Department's engineering, inspection, and overhead costs incurred during the period of extension granted as director days.

8-1.08 TERMINATION OF CONTROL

The Department may terminate your control of the work for failure to do any of the following (Pub Cont Code § 10253):

1. Supply an adequate workforce

- 2. Supply material as described
- 3. Pay subcontractors (Pub Cont Code §10262)
- 4. Prosecute the work as described in the contract

The Department may also terminate your control for failure to maintain insurance coverage.

For a Federal-aid contract, the Department may terminate your control of the work for failure to include "Required Contract Provisions, Federal-Aid Construction Contracts" in subcontracts.

The Department gives you and your surety notice at least 5 days before terminating control. The notice describes the failures and the time allowed to remedy the failures. If failures are not remedied within the time provided, the Department takes control of the work.

The Department may complete the work if the Department terminates your control or you abandon the project (Pub Cont Code § 10255). The Department determines the unpaid balance under Pub Cont Code § 10258 and the contract.

At any time before final payment of all claims, the Department may convert a termination of control to a termination of contract.

8-1.09 **DELAYS**

8-1.09A General

An excusable delay is a delay of a controlling activity beyond your control, not foreseeable when the work began such as:

- 1. Change in the work
- 2. Department action that is not part of the contract
- 3. Presence of an underground utility main not described in the contract or in a location different from that specified
- 4. Described facility reconstruction not reconstructed as described, by the utility owner by the date specified, unless the reconstruction is solely for your convenience
- 5. Department's failure to obtain timely access to the right-of-way
- 6. Department's failure to perform an action in the time specified

A critical delay is a delay that extends the schedule completion date.

To request a delay-related time or payment adjustment, submit an RFI.

8-1.09B Time Adjustments

For an excusable critical delay, the Department may make a time adjustment. The Engineer uses information from the schedule to evaluate requests for time adjustments.

If requesting an adjustment, submit a revised schedule showing the delay's effect on the controlling activity. If the delay has:

- 1. Occurred, submit records of dates and what work was performed during the delayed activity
- 2. Not occurred, submit the expected dates or duration of the delayed activity

If the Engineer requests, update the schedule to the last working day before the start of the delay.

8-1.09C Payment Adjustments

The Department may make a payment adjustment for an excusable delay that affects your costs.

Only losses for idle equipment, idle workers, and equipment moving or transporting are eligible for delay-related payment adjustments.

The Engineer determines payment for idle time of equipment in the same manner as determinations are made for equipment used in the performance of force account work under Section 9-1.03, "Force Account," with the following exceptions:

- 1. Delay factor in the Labor Surcharge and Equipment Rental Rates applies to each equipment rental rate.
- Daily number of payable hours equals the normal working hours during the delay, not to exceed 8 hours per day.
- 3. Delay days exclude non-working days.
- 4. Markups are not added.

The Engineer determines payment adjustment for idle workers under Section 9-1.03B, "Labor," but does not add markups.

The Engineer includes costs due to necessary extra equipment moving or transporting.

8-1.10 (BLANK)

8-1.11 TERMINATION OF CONTRACT

8-1.11A General

The Director may terminate the contract if it serves the State's best interest. The Department issues you a written notice, implements the termination, and pays you.

8-1.11B Relief from Responsibility for Work

On receiving a termination notice:

- 1. Stop work
- 2. Notify subcontractors and suppliers of the contract termination and stop contract-related work
- 3. Perform the Engineer-ordered work to secure the job site for termination
- 4. Remove equipment
- 5. If authorized, settle termination-related claims and liabilities involving subcontractors and suppliers; assign to the Department the rights, titles, or interests held by you with respect to these parties

8-1.11C Responsibility for Materials

On receiving a termination notice, protect unused material until:

- 1. You submit an inventory of materials already produced, purchased, or ordered but not yet used; include the location of the material.
- 2. The Engineer identifies materials that will be retained by the Department. Submit bills of sales or other records of material title.
- 3. The Engineer confirms that unused materials paid by progress payment and materials furnished by the State have been delivered and stored as ordered.
- 4. Titles are transferred for materials purchased by the Department.

Dispose of materials that will not be retained by the Department.

8-1.11D Contract Acceptance after Termination

The Engineer recommends contract acceptance after determining completion of:

- 1. Contract work ordered to be completed before termination
- 2. Other work ordered to secure the project before termination
- 3. Material delivery and title transfer

The Department pays you under Section 9-1.08, "Payment After Contract Acceptance."

8-1.11E Payment Adjustment for Termination

If the Department issues a termination notice, the Engineer determines payment for termination based on the following:

1. Direct cost for the work:

- 1.1. Including mobilization, demobilization, securing the job site for termination, and losses from the sale of materials
- 1.2. Not including the cost of materials you keep, profit realized from the sale of materials, the cost of material damaged by an occurrence as defined in Section 7-1.165, "Damage by Storm, Flood, Tsunami or Earthquake," and other credits.

- 2. Cost of remedial work, as estimated by the Engineer, is not reimbursed.
- 3. Allowance for profit not to exceed 4 percent of the cost of the work. Prove a likelihood of having made a profit had the contract not been terminated.
- 4. Material handling costs for material returned to the vendor or disposed of as ordered.
- Costs in determining the payment adjustment due to the termination, excluding attorney fees and litigation costs.

Termination of the contract does not relieve the surety of its obligation for any just claims arising out of the work performed.

^^^^^^

SECTION 9 MEASUREMENT AND PAYMENT (Issued 03-11-10)

Replace Section 9 with: SECTION 9 MEASUREMENT AND PAYMENT

9-1.01 MEASUREMENT OF QUANTITIES

9-1.01A General

The Department determines bid item quantities under U.S. customary units.

9-1.01B Weighing Equipment and Procedures

9-1.01B(1) General

The Engineer measures material quantities for payment with devices that comply with:

- 1. 4 CA Code of Regs § 4000 et seq.
- 2. Bus & Prof Code § 12001 et seq.

To determine the material payment quantities, use measuring devices that have been sealed by the Department of Food and Agriculture's Division of Measurement Standards or its designated representative.

If a device is not type approved by the Division of Measurement Standards, type approve it under California Test 109.

Notify the Engineer at least 1 business day in advance of equipment testing.

Use material plant controllers having elements affecting the data accuracy and delivery that have been sealed by the Engineer. Make these elements available to the Engineer for inspection. If the elements are adequate for use, the Engineer seals them. If security seal manipulation occurs, stop material production. Do not resume production until the Engineer reinspects and reseals the device.

The Engineer measures material paid for by weight on Contractor-furnished sealed scales regularly inspected by the Department of Food and Agriculture's Division of Measurement Standards or its designated representative.

Obtain authorization of portable vehicle scale installations before sealing.

Proportioning scales must comply with Section 5-1.10, "Equipment."

9-1.01B(2) **Equipment**

Each scale must be long enough to fit an entire vehicle or a combination vehicle on the scale deck. The Department allows you to weigh a combination vehicle separately if you disconnect the vehicles.

Construct scale undersupports:

- 1. Using portland cement concrete containing at least 470 pounds of cement per cubic yard produced from commercial quality materials
- 2. Such that footing heights are at least 20 inches thick
- 3. With a bearing surface at least 30 inches wide and bearing pressure on the footing not over 4000 pounds per square foot

In constructing a scale:

Contract No. 12-0E3104 81 of 297

- 1. Furnish drainage to prevent water from saturating the ground under the scale
- 2. Use bulkheads that prevent displacement
- 3. If shimming is necessary:
 - 3.1. Use securely attached metal shims or grout
 - 3.2 Do not use wedges to shim the supports
 - 3.3. Do not use shim material in excess of 3 inches
- 4. Install mechanical indicating elements level, plumb, and rigidly mounted on the concrete undersupports
- 5. For a hopper scale, rigidly attach hopper scale lever systems and mechanical indicating elements so no weight is lost from bending or support distortion

Each scale used to determine material payment quantities must be operated by a licensed weighmaster (Bus & Prof Code § 12700 et seq.).

Submit a public weighmaster's certificate or certified daily summary weigh sheets for each weighed material quantity. The Department may witness material weighing and check and compile the daily scale weight record.

Each vehicle operator must obtain weight or load slips from the weighmaster. Submit these records at the delivery point.

9-1.01B(3) Procedures

Daily, weigh empty vehicles used to haul material paid for by weight. Each vehicle must have a legible identification mark. The Department may verify material weight by having an empty and loaded vehicle weighed on any scale the Engineer designates.

For imported topsoil measured by volume, soil amendment, and mulch:

- 1. Each vehicle must allow a ready and accurate contents determination
- 2. Unless vehicles are of uniform capacity, each vehicle must have a legible identification mark showing its volume capacity
- 3. Load vehicles to at least the volume capacity
- 4. Level vehicle loads on arrival at the delivery point

If determining a quantity paid on a volume basis is impractical or if you request and the Engineer authorizes the request, the Engineer weighs the material and converts the result to a volume measurement. The Engineer determines the conversion factors and, if you agree, adopts this method of measurement.

9-1.01C Final Pay Items

The Department shows a bid item quantity as a final pay item for payment purposes only. For a final pay item, accept payment based on the verified Bid Item List quantity, regardless of actual quantity used unless dimensions are changed by the Engineer.

9-1.01D Quantities of Aggregate and Other Roadway Materials

The Engineer determines the weight of aggregate and other roadway materials that are being paid for by weight as shown and does not include the deducted weight of water in their payment quantities.

Material	Quantity Determination
Aggregate or other roadway material except as otherwise	By deducting the weight of water in the material ^a in
shown in this table	excess of 3 percent of the dry weight of the material
	from the weight of the material
Imported borrow, imported topsoil, aggregate subbase	By deducting the weight of water in the material ^a in
	excess of 6 percent of the dry weight of the material
	from the weight of the material
Straw	By deducting the weight of water in the material ^a in
	excess of 15 percent of the dry weight of the material
	from the weight of the material
Fiber ^b	Engineer does not deduct the weight of water
Aggregate base and aggregate for cement treated bases	As specified in Section 26, "Aggregate Bases," and
	Section 27, "Cement Treated Bases"

NOTE: Percentage of water is determined by California Test 226.

9-1.02 SCOPE OF PAYMENT

The Department pays you for furnishing the resources and activities required to complete the Contract work. The Department's payment is full compensation for furnishing the resources and activities, including:

- 1. Risk, loss, damage repair, or cost of whatever character arising from or relating to the work and performance of the work
- 2. PLACs and taxes

Full compensation for work specified in Sections 1 through 9 is included in the payment for the bid items involved unless:

- 1. Bid item for the work is shown on the verified Bid Item List
- 2. Work is specified as paid for as extra work

The Department does not pay for your loss, damage, repair, or extra costs of whatever character arising from or relating to the work that is a direct or indirect result of your choice of construction methods, materials, equipment, or manpower, unless specifically mandated by the Contract.

Payment is:

- 1. Full compensation for each bid item specified by the description and measurement unit shown on the verified Bid Item List
- 2. For the price bid for each bid item shown on the verified Bid Item List or as changed by change order with a specified price adjustment

If an alternative is described in the Contract, the Department pays based on the bid items for the details and specifications not described as an alternative.

The Department pays for work performed by change order based on one or a combination of the following:

- 1. Bid item prices
- 2. Force account
- 3. Agreed price
- 4. Specialist billing

If the Engineer chooses to pay for work performed by change order based on an agreed price, but you and the Engineer cannot agree on the price, the Department pays by force account.

If a portion of extra work is covered by bid items, the Department pays for this work as changed quantities in those items. The Department pays for the remaining portion of the extra work by force account or agreed price.

The Department pays 10 percent annual interest for unpaid and undisputed:

1. Progress payments

^aAt the time of weighing

^bWeight of water in the fiber^a must not exceed 15 percent of the dry weight of the fiber.

2. After-acceptance payment except for claims

For these payments, interest starts to accrue 30 days after the 1st working day following the 20th day of the month payment is due. For extra work bills not submitted within 7 days after performing the work as specified in 5-1.015E, "Extra Work Bills," interest starts to accrue 60 days after the 1st working day following the 20th day of the month payment is due.

The Department pays 6 percent annual interest for unpaid and undisputed claims. Interest starts to accrue 61 days after the Department accepts a claim statement.

The Department pays 6 percent annual interest for awards in arbitration (Civ Code § 3289).

If the amount of a deduction or withhold exceeds final payment, the Department invoices you for the difference, to be paid upon receipt.

9-1.03 FORCE ACCOUNT PAYMENT

9-1.03A General

For work paid by force account, the Engineer compares the Department's records to your daily force account work report. When you and the Engineer agree on the contents of the daily force account work reports, the Engineer accepts the report and the Department pays for the work. If the records differ, the Department pays for the work based only on the information shown on the Department's records.

If a subcontractor performs work at force account, accept an additional 10 percent markup to the total cost of that work paid at force account, including markups specified in Section 9-1.03, as reimbursement for additional administrative costs.

The markups specified in labor, materials, and equipment include compensation for all delay costs, overhead costs, and profit.

If an item's payment is adjusted for work-character changes, the Department excludes your cost of determining the adjustment.

Payment for owner-operated labor and equipment is made at the market-priced invoice submitted.

9-1.03B Labor

Labor payment is full compensation for the cost of labor used in the direct performance of the work plus a 35 percent markup. Force account labor payment consists of:

- 1. Employer payment to the worker for:
 - 1.1. Basic hourly wage
 - 1.2. Health and welfare
 - 1.3. Pension
 - 1.4. Vacation
 - 1.5. Training
 - 1.6. Other State and federal recognized fringe benefit payments
- 2. Labor surcharge percentage in Labor Surcharge and Equipment Rental Rates current during the work paid at force account for:
 - 2.1. Workers' compensation insurance
 - 2.2. Social security
 - 2.3. Medicare
 - 2.4. Federal unemployment insurance
 - 2.5. State unemployment insurance
 - 2.6. State training taxes
- 3. Subsistence and travel allowances paid to the workers
- 4. Employer payment to supervisors, if authorized

The 35 percent markup consists of payment for all overhead costs related to labor but not designated as costs of labor used in the direct performance of the work including:

1. Home office overhead

- 2. Field office overhead
- 3. Bond costs
- 4. Profit
- 5. Labor liability insurance
- 6. Other fixed or administrative costs that are not costs of labor used in the direct performance of the work

9-1.03C Materials

Material payment is full compensation for materials you furnish and use in the work. The Engineer determines the cost based on the material purchase price, including delivery charges, except:

- 1. A 15 percent markup is added.
- 2. Supplier discounts are subtracted whether you took them or not.
- 3. If the Engineer believes the material purchase prices are excessive, the Department pays the lowest current wholesale price for a similar material quantity.
- 4. If you procured the materials from a source you wholly or partially own, the determined cost is based on the lower of the:
 - 4.1. Price paid by the purchaser for similar materials from that source on Contract items
 - 4.2. Current wholesale price for those materials
- 5. If you do not submit a material cost record within 30 days of billing, the determined cost is based on the lowest wholesale price:
 - 5.1. During that period
 - 5.2. In the quantities used

9-1.03D Equipment Rental

9-1.03D(1) General

Equipment rental payment is full compensation for:

- 1. Rental equipment costs, including moving rental equipment to and from the site of work performed by change order using its own power.
- 2. Transport equipment costs for rental equipment that cannot be transported economically using its own power. No payment is made during transport for the transported equipment.
- 3. 15 percent markup.

If you want to return the equipment to a location other than its original location, the payment to move the equipment must not exceed the cost of returning the equipment to its original location. If you use the equipment for work other than work paid by force account, the transportation cost is included in the other work.

Before moving or loading the equipment, obtain authorization for the equipment rental's original location.

The Engineer determines rental costs:

- 1. Using rates in Labor Surcharge and Equipment Rental Rates:
 - 1.1. By classifying equipment using manufacturer's ratings and manufacturer-approved changes.
 - 1.2. Current during the work paid by force account.
 - 1.3. Regardless of equipment ownership; but the Department uses the rental document rates or minimum rental cost terms if:
 - 1.3.1. Rented from equipment business you do not own.
 - 1.3.2. The Labor Surcharge and Equipment Rental Rates hourly rate is \$10.00 per hour or less.
- 2. Using rates established by the Engineer for equipment not listed in Labor Surcharge and Equipment Rental Rates. You may submit cost information that helps the Engineer establish the rental rate; but the Department uses the rental document rates or minimum rental cost terms if:
 - 2.1. Rented from equipment business you do not own.

- 2.2. The Engineer establishes a rate of \$10.00 per hour or less.
- 3. Using rates for transport equipment not exceeding the hourly rates charged by established haulers.

Equipment rental rates include the cost of:

- 1. Fuel
- 2. Oil
- 3. Lubrication
- 4. Supplies
- 5. Small tools that are not consumed by use
- 6. Necessary attachments
- 7. Repairs and maintenance
- 8. Depreciation
- 9. Storage
- 10. Insurance
- 11. Incidentals

The Department pays for small tools consumed by use. The Engineer determines payment for small tools consumed by use based on Contractor-submitted invoices.

9-1.03D(2) Equipment On the Job Site

For equipment on the job site at the time required to perform work paid by force account, the time paid is the time:

- 1. To move the equipment to the location of work paid by force account plus an equal amount of time to move the equipment to another location on the job site when the work paid by force account is completed
- 2. To load and unload equipment
- 3. Equipment is operated to perform work paid by force account and:
 - 3.1. Hourly rates are paid in 1/2-hour increments
 - 3.2 Daily rates are paid in 1/2-day increments

When rented equipment on the job site is used to perform work at force account not required by the original contract work, the Engineer may authorize rates in excess of those in Labor Surcharge and Equipment Rental Rates if:

- 1. You submit a request to use rented equipment
- 2. Equipment is not available from your owned equipment fleet or from your subcontractors
- 3. Rented equipment is from an independent rental company
- 4. Proposed equipment rental rate is reasonable
- 5. Engineer authorizes the equipment source and the rental rate before you use the equipment

The Department pays for fuel consumed during operation of rented equipment not included in the invoiced rental rate.

9-1.03D(3) Equipment Not On the Job Site Required for Original Contract Work

For equipment not on the job site at the time required to perform work paid by force account and required for original Contract work, the time paid is the time the equipment is operated to perform work paid by force account and the time to move the equipment to a location on the job site when the work paid by force account is completed.

The minimum total time paid is:

- 1. 1 day if daily rates are paid
- 2. 8 hours if hourly rates are paid

If daily rates are recorded, equipment:

1. Idled is paid as 1/2 day

- 2. Operated 4 hours or less is paid as 1/2 day
- 3. Operated 4 hours or more is paid as 1 day

If the minimum total time exceeds 8 hours and if hourly rates are listed, the Department rounds up hours operated to the nearest 1/2-hour increment and pays based on the following table. The table does not apply when equipment is not operated due to breakdowns; in which case rental hours are the hours the equipment was operated.

Equipment Rental Hours

Hours operated	Hours paid
0.0	4.00
0.5	4.25
1.0	4.50
1.5	4.75
2.0	5.00
2.5	5.25
3.0	5.50
3.5	5.75
4.0	6.00
4.5	6.25
5.0	6.50
5.5	6.75
6.0	7.00
6.5	7.25
7.0	7.5
7.5	7.75
>8.0	hours used

9-1.03D(4) Equipment Not On the Job Site Not Required for Original Contract Work

For equipment not on the job site at the time required to perform work paid by force account and not required for original Contract work, the time paid is the time:

- 1. To move the equipment to the location of work paid by force account plus an equal amount of time to return the equipment to its source when the work paid by force account is completed
- 2. To load and unload equipment
- 3. Equipment is operated to perform work paid by force account

For this equipment, the Engineer may authorize rates in excess of those in Labor Surcharge and Equipment Rental Rates subject to the following:

- 1. Equipment is not available from your normal sources or from one of your subcontractors
- 2. Proposed equipment rental rate is reasonable
- 3. Engineer authorizes the equipment source and the rental rate before you use the equipment

9-1.03D(5) Non-Owner-Operated Dump Truck Rental

Submit the rental rate for non-owner-operated dump truck rental. The Engineer determines the payment rate. Payment for non-owner-operated dump truck rental is for the cost of renting a dump truck, including its driver. For the purpose of markup payment only, the non-owner-operated dump truck is rental equipment and the owner is a subcontractor.

9-1.04 EXTRA WORK PERFORMED BY SPECIALISTS

If the Engineer determines that you or your subcontractors are not capable of performing specialty extra work, a specialist may be used. Itemize the labor, material, and equipment rental costs unless it is not the special service industry's established practice to provide itemization; in which case, the Engineer accepts current market-priced invoices for the work.

The Engineer may accept an invoice as a specialist billing for work performed at an off-job site manufacturing plant or machine shop.

The Engineer determines the cost based on the specialist invoice price minus any available or offered discounts plus a 10 percent markup.

9-1.05 CHANGED QUANTITY PAYMENT ADJUSTMENTS

9-1.05A General

The unit prices specified in Section 9-1.05 are adjusted under Section 9-1.03, "Force Account."

9-1.05B Increases of More Than 25 Percent

If the total bid item quantity exceeds 125 percent of the quantity shown on the verified Bid Item List and if no approved Contract Change Order addresses payment for the quantity exceeding 125 percent, the Engineer may adjust the unit price for the excess quantity under Section 9-1.03, "Force Account," or the following:

- 1. The adjustment is the difference between the unit price and the unit cost of the total item pay quantity.
- 2. In determining the unit cost, the Engineer excludes the item's fixed costs. You have recovered the fixed costs in the payment for 125 percent shown on the verified Bid Item List.
- 3. After excluding fixed costs, the Engineer determines the item unit cost under Section 9-1.03, "Force Account."

If the payment for the number of units of a bid item in excess of 125 percent of the verified Bid Item List is less than \$5,000 at the unit price, the Engineer may not adjust the unit price unless you request it.

9-1.05C Decreases of More Than 25 Percent

If the total item pay quantity is less than 75 percent of the quantity shown on the verified Bid Item List and if no approved Contract Change Order addresses payment for the quantity less than 75 percent, you may request a unit price adjustment. The Engineer may adjust the unit price for the decreased quantity under Section 9-1.03, "Force Account" or the following:

- 1. The adjustment is the difference between the unit price and the unit cost of the total pay quantity.
- 2. In determining the unit cost, the Engineer includes the item's fixed costs.
- 3. After including fixed costs, the Engineer determines the item unit cost under Section 9-1.03, "Force Account."

The Department does not pay more than 75 percent of the item total in the verified Bid Item List.

9-1.05D Eliminated Items

If the Engineer eliminates an item, the Department pays your costs incurred before the Engineer's elimination notification date.

If you order authorized material for an eliminated item before the notification date and the order cannot be canceled, either of the following occurs:

- 1. If the material is returnable to the vendor, the Engineer orders you to return the material and the Department pays your handling costs and vendor charges.
- 2. The Department pays your cost for the material and its handling and becomes the material owner.

The Engineer determines the payment for the eliminated bid item under Section 9-1.03, "Force Account."

9-1.06 WORK-CHARACTER CHANGES

The Department adjusts a bid item unit price based on the difference between the cost to perform the work as planned and the cost to perform the work as changed. The Engineer determines the payment adjustment under Section 9-1.03, "Force Account." The Department adjusts payment for only the work portion that changed in character.

9-1.07 PROGRESS PAYMENTS

9-1.07A General

The Department pays you based on Engineer-prepared monthly progress estimates. Each estimate reflects:

- 1. Total work completed during the pay period
- 2. Extra work bills if:
 - 2.1. Submitted by the 15th of a month
 - 2.2. Approved by the 20th of a month
- 3. Amount for materials on hand
- 4. Amount earned for mobilization
- 5. Deductions
- 6. Withholds
- 7. Resolved potential claims
- 8. Payment adjustments

Submit certification stating the work complies with the QC procedures. The Engineer does not process a progress estimate without a signed certification.

You may protest a progress payment.

9-1.07B Schedule of Values

Section 9-1.07B applies to a lump sum bid item for which a schedule of values is specified to be submitted.

The sum of the amounts for the work units listed in the schedule of values must equal the lump sum price bid for the bid item.

Obtain authorization of a schedule of values before you perform work shown on the schedule. The Department does not process a progress payment for the bid item without an authorized schedule of values.

Accept progress payments for overhead, profit, bond costs, and other fixed or administrative costs as distributed proportionally among the items listed except that for a contract with a bid item for mobilization, accept progress payments for bond costs as included in the mobilization bid item.

For changed quantities of the work units listed, the Department adjusts payments in the same manner as specified for changed quantities of bid items under Section 9-1.05, "Changed Quantity Payment Adjustments."

9-1.07C Materials On Hand

A material on hand but not incorporated into the work is eligible for progress payment if:

- 1. Listed in a special provision as eligible and is in compliance with other Contract parts
- 2. Purchased
- 3. An invoice is submitted
- 4. Stored within the State and you submit evidence that the stored material is subject to the Department's control
- 5. Requested on the Department-furnished form

9-1.07D Mobilization

Mobilization is eligible for partial payments if the Contract includes a bid item for mobilization. The Department makes the partial payments under Pub Cont Code § 10264. If the Contract does not include a mobilization bid item, mobilization is included in the payment for the various bid items.

The Department pays the item total for mobilization in excess of 10 percent of the total bid in the 1st payment after Contract acceptance.

9-1.07E Withholds

9-1.07E(1) General

The Department may withhold payment for noncompliance.

The Department returns the noncompliance withhold in the progress payment following correction of noncompliance.

Withholds are not retentions under Pub Cont Code § 7107 and do not accrue interest under Pub Cont Code § 10261.5.

Withholds are cumulative and independent of deductions.

Section 9-1.07E does not include all withholds that may be taken; the Department may withhold other payments as specified.

9-1.07E(2) Progress Withholds

The Department withholds 10 percent of a partial payment for noncompliant progress. Noncompliant progress occurs when:

- 1. Total days to date exceed 75 percent of the revised Contract working days
- 2. Percent of working days elapsed exceeds the percent of value of work completed by more than 15 percent

The Engineer determines the percent of working days elapsed by dividing the total days to date by the revised Contract working days and converting the quotient to a percentage.

The Engineer determines the percent of value of work completed by summing payments made to date and the amount due on the current progress estimate, dividing this sum by the current total estimated value of the work, and converting the quotient to a percentage. These amounts are shown on the Progress Payment Voucher.

When the percent of working days elapsed minus the percent of value of work completed is less than or equal to 15 percent, the Department returns the withhold in the next progress payment.

9-1.07E(3) Performance Failure Withholds

During each estimate period you fail to comply with a Contract part, including submittal of a document as specified, the Department withholds a part of the progress payment. The documents include QC plans, schedules, traffic control plans, and water pollution control submittals.

For 1 performance failure, the Department withholds 25 percent of the progress payment but does not withhold more than 10 percent of the total bid.

For multiple performance failures, the Department withholds 100 percent of the progress payment but does not withhold more than 10 percent of the total bid.

9-1.07E(4) Stop Notice Withholds

The Department may withhold payments to cover claims filed under Civ Code § 3179 et seq.

Stop notice information may be obtained from the Office of External Accounts Payable, Division of Accounting.

9-1.07E(5) Penalty Withholds

Penalties include fines and damages that are proposed, assessed, or levied against you or the Department by a governmental agency or private lawsuit. Penalties are also payments made or costs incurred in settling alleged violations of federal, state, or local laws, regulations, requirements, or PLACs. The cost incurred may include the amount spent for mitigation or correcting a violation.

If you or the Department is assessed a penalty, the Department may withhold the penalty amount until the penalty disposition has been resolved. The Department may withhold penalty funds without notifying you.

Instead of the withhold, you may provide a bond equal to the highest estimated liability for any disputed penalties proposed.

9-1.07E(6)-9-1.07E(10) Reserved

9-1.07F Retentions

The Department does not retain moneys from progress payments due to the Contractor for work performed (Pub Cont Code § 7202).

9-1.07G-9-1.07K Reserved

9-1.08 PAYMENT AFTER CONTRACT ACCEPTANCE

9-1.08A General

Reserved

9-1.08B Payment Before Final Estimate

After Contract acceptance, the Department pays you based on the Engineer-prepared estimate that includes withholds and the balance due after deduction of previous payments.

9-1.08C Proposed Final Estimate

The Engineer estimates the amount of work completed and shows the amount payable in a proposed final estimate based on:

- 1. Contract items
- 2. Payment adjustments
- 3. Work paid by force account or agreed price
- 4. Extra work
- 5. Deductions

Submit either a written final estimate acceptance or a claim statement no later than the 30th day after receiving the proposed final estimate. Evidence of the Contractor's receipt of the final estimate and the Engineer's receipt of the Contractor's written acceptance or claim statement is a delivery service's proof of delivery or Engineer's written receipt if hand delivered.

If you claim that the final estimate is less than 90 percent of your total bid, the Department adjusts the final payment to cover your overhead. The adjustment is 10 percent of the difference between the total bid and the final estimate. The Department does not make this adjustment on a terminated contract.

9-1.08D Final Payment and Claims

9-1.08D(1) General

If you accept the proposed final estimate or do not submit a claim statement within 30 days of receiving the estimate, the Engineer furnishes the final estimate to you and the Department pays the amount due within 30 days. This final estimate and payment is conclusive except as specified in Sections 5-1.015, "Records," 6-1.075, "Guarantee," and 9-1.09, "Clerical Errors."

If you submit a claim statement within 30 days of receiving the Engineer's proposed final estimate, the Engineer furnishes a semifinal estimate to the Contractor and the Department pays the amount due within 30 days. The semifinal estimate is conclusive as to the amount of work completed and the amount payable except as affected by the claims or as specified in Sections 5-1.015, "Records," 6-1.075, "Guarantee," and 9-1.09, "Clerical Errors."

9-1.08D(2) Claim Statement

9-1.08D(2)(a) General

For each claim, submit a claim statement showing only the identification number that corresponds to the Full and Final Potential Claim Record and the final amount of additional payment requested except:

- 1. If the final amount of requested payment differs from the amount requested in the Full and Final Potential Claim Record
- 2. For a claim for quantities, withholds, deductions, liquidated damages, or change order bills
- 3. For an overhead claim

If the final amount of requested payment differs from the amount requested in the Full and Final Potential Claim Record, submit:

- 1. Identification number that corresponds to the Full and Final Potential Claim Record
- 2. Final amount of additional payment requested
- 3. Basis for the changed amount
- 4. Contract documentation that supports the changed amount
- 5. Statement of the reasons the Contract documentation supports the claim

The Engineer notifies you of an omission of or a disparity in the exclusive identification number. Within 15 days of the notification, correct the omission or disparity. If the omission or disparity is not resolved after the 15 days, the Engineer assigns a new number.

For a claim for quantities, withholds, deductions, or change order bills submit:

- 1. Final amount of additional payment requested
- 2. Enough detail to enable the Engineer to determine the basis and amounts of the additional payment requested

9-1.08D(2)(b) Overhead Claims

Include with an overhead claim:

- 1. Final amount of additional payment requested
- 2. Independent CPA audit report

Failure to submit the audit report with an overhead claim with the claim statement is a waiver of the overhead claim and operates as a bar to arbitration on the claim (Pub Cont Code § 10240.2).

The Department deducts an amount for field and home office overhead paid on added work from any claim for overhead. The value of the added work equals the value of the work completed minus the total bid. The home office overhead deduction equals 5 percent of the added work. The field office overhead deduction equals 5-1/2 percent of the added work.

If you intend to pursue a claim for reimbursement for field or home office overhead beyond that provided expressly by the Contract:

- 1. Notify the Engineer within 30 days of receipt of the proposed final estimate of your intent to seek reimbursement for specific overhead costs beyond that provided by the Contract
- 2. Specifically identify each claim and each date associated with each claim from which you seek reimbursement for specific overhead costs beyond that provided by the Contract
- 3. Timely submit all other claims
- 4. Within 30 days of receipt of the proposed final estimate, submit an audit report prepared by an independent CPA
 - 4.1. The audit report must show calculations with supporting documentation of actual home office and project field overhead costs
 - 4.2. The calculations must specify the actual daily rates for both field and home office overhead for the entire duration of the project expressed as a rate per working day
 - 4.3. The start and end dates of the actual project performance period, number of working days, overhead cost pools, and all allocation bases must be disclosed in the calculations of your actual field and home office overhead daily rates
 - 4.4. Neither daily rate may include a markup for profit
- 5. Field overhead costs from which the daily rate is calculated must be:
 - 5.1. Allowable under 48 CFR 31
 - 5.2. Supported by reliable records
 - 5.3. Related solely to the project
 - 5.4. Incurred during the actual project performance period
 - 5.5. Comprised of only time-related field overhead costs
 - 5.6. Not a direct cost
- 6. Home office overhead costs from which the daily rate is calculated must be:
 - 6.1. Allowable under 48 CFR 31
 - 6.2. Supported by reliable records
 - 6.3. Incurred during the actual project performance period
 - 6.4. Comprised of only fixed home office overhead costs
 - 6.5. Not a direct cost

The actual rate of time-related overhead is subject to authorization by the Engineer.

The CPA's audit must be performed under the Attestation Standards published by the American Institute of Certified Public Accountants. The CPA's audit report must express an opinion whether or not your calculations of your actual field and home office overhead daily rates comply with Section 9-1.08D(2)(b), "Overhead Claims." The attest documentation prepared by the CPA in connection with the audit must be reproduced and submitted for review with the audit report.

The Department provides markups for all work paid by force account. Overhead for field and home office costs are included in the markups. Overhead claims in excess of Contract markups are not allowed under the Contract. If you seek reimbursement for costs not allowed under the Contract, the Department does not pay your cost of

performing the independent CPA examination specified in section 9-1.08D(2)(b), "Overhead Claims," including preparation of the audit report.

9-1.08D(2)(c) Declaration

Submit a declaration that includes the following language with the claim statement:

9-1.08D(2)(d) Waiver

A claim is waived if:

- 1. Claim does not have a corresponding Full and Final Potential Claim Record identification number
- Claim does not have the same nature, circumstances, and basis of claim as the corresponding Full and Final Potential Claim Record
- 3. Claim is not included in the claim statement
- 4. You do not comply with the claim procedures
- 5. You do not submit the declaration specified in 9-1.08D(2)(c), "Declaration"

9-1.08D(3) Final Determination of Claims

Failure to allow timely access to claim supporting data when requested waives the claim.

The Department's costs in reviewing or auditing a claim not supported by the Contractor's accounting or other records are damages incurred by the State within the meaning of the California False Claims Act.

If the Engineer determines that a claim requires additional analysis, the Engineer schedules a board of review meeting. Meet with the board of review and make a presentation supporting the claim.

After claim review completion by the Engineer or board of review, the Department makes the final determination of claims and furnishes it to the Contractor.

After the determination, the Engineer furnishes a final estimate to the Contractor and the Department pays the amount due within 30 days. The final estimate is conclusive as to the amount of work completed and the amount payable except as specified in Sections 5-1.015, "Records," 6-1.075, "Guarantee," and 9-1.09, "Clerical Errors."

The Contractor's failure to comply with the claim procedures is a bar to arbitration under Pub Cont Code § 10240.2.

9-1.09 CLERICAL ERRORS

For 3 years after Contract acceptance, estimates and payments are open to correction and adjustment for clerical errors. Either the Department or the Contractor pays to the other the amount due except for clerical errors resulting in an adjustment less than \$200; in which case, no payment is made.

9-1.10 ARBITRATION

Pub Cont Code § 10240 through 10240.13 provides for the resolution of contract claims by arbitration.

Start arbitration by filing a complaint with the Office of Administrative Hearings in Sacramento (1 CA Code Regs § 1350). File the arbitration complaint no later than 90 days after receiving the Department's final written decision on a claim (Pub Cont Code § 10240.1).

^^^^^

SECTION 10 DUST CONTROL (Issued 02-06-09)

Contract No. 12-0E3104 93 of 297

Replace Section 10 with: SECTION 10 (BLANK)

SECTION 11 MOBILIZATION (Issued 06-05-09)

Replace Section 11 with: SECTION 11 (BLANK)

^^^^^^

SECTION 12 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES (Issued 11-07-08)

In Section 12-1.01 in the 2nd paragraph, replace the 1st sentence with:

Attention is directed to Part 6 of the California MUTCD.

Replace Section 12-2.01 with:

12-2.01 FLAGGERS

Flaggers while on duty and assigned to traffic control or to give warning to the public that the highway is under construction and of any dangerous conditions to be encountered as a result thereof, shall perform their duties and shall be provided with the necessary equipment in conformance with Part 6 of the California MUTCD. The equipment shall be furnished and kept clean and in good repair by the Contractor at the Contractor's expense.

All flaggers shall wear safety apparel meeting the requirements of ANSI/ISEA 107-2004 for Class 2 or 3 garment and complying with 71 Fed Reg 67792.

In Section 12-3.01 replace the 1st paragraph with:

In addition to the requirements in Part 6 of the California MUTCD, all devices used by the Contractor in the performance of the work shall conform to the provisions in this Section 12-3.

In Section 12-3.06 in the 1st paragraph, replace the 2nd sentence with:

Construction area signs are shown in or referred to in Part 6 of the California MUTCD.

In Section 12-3.06 in the 4th paragraph, replace the 1st sentence with:

All construction area signs shall conform to the dimensions, color and legend requirements of the plans, Part 6 of the California MUTCD and these specifications.

In Section 12-3.06 in the 8th paragraph, replace the 1st sentence with:

Used signs with the specified sheeting material will be considered satisfactory if they conform to the requirements for visibility and legibility and the colors conform to the requirements in Part 6 of the California MUTCD.

^^^^^^

SECTION 14 (BLANK) (Issued 06-01-11)

Replace Section 14 with: SECTION 14 ENVIRONMENTAL STEWARDSHIP 14-1 GENERAL

14-1.01 GENERAL

Environmental stewardship includes both environmental compliance and environmental resource management. If an ESA is shown on the plans:

- 1. The boundaries shown are approximate; the Department marks the exact boundaries on the ground
- 2. Do not enter the ESA unless authorized
- 3. If the ESA is breached, immediately:
 - 3.1. Secure the area and stop all operations within 60 feet of the ESA boundary
 - 3.2. Notify the Engineer
- 4. If the ESA is damaged, the Department determines what efforts are necessary to remedy the damage and who performs the remedy; you are responsible for remedies and charges.

14-2 CULTURAL RESOURCES

14-2.01 GENERAL

Reserved

14-2.02 ARCHAEOLOGICAL RESOURCES

If archaeological resources are discovered at the job site, do not disturb the resources and immediately:

- 1. Stop all work within a 60-foot radius of the discovery
- 2. Protect the discovery area
- 3. Notify the Engineer

The Department investigates. Do not move archaeological resources or take them from the job site. Do not resume work within the discovery area until authorized.

If, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of an archaeological find, or investigation or recovery of archeological materials, you will be compensated for resulting losses, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays."

If ordered, furnish resources to assist in the investigation or recovery of archaeological resources. This work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

14-2.03 ARCHAEOLOGICAL MONITORING AREA

Section 14-2.03 applies if an AMA is described in the Contract.

The Department assigns an archaeological monitor to monitor job site activities within the AMA. Do not work within the AMA unless the archeological monitor is present.

The Engineer and the Department archaeological monitor conduct an AMA location field review with you at least 5 business days before start of work. The Department marks the exact boundaries of the AMA on the ground.

If temporary fence (Type ESA) or other exclosure for an AMA is described in the Contract, install temporary fence (Type ESA) or other exclosure to define the boundaries of the AMA during the AMA location field review.

At least 5 business days before starting work within an AMA, submit a schedule of days and hours to be worked for the Engineer's approval. If you require changes in the schedule, submit an update for the Engineer's approval at least 5 business days before any changed work day.

If archaeological resources are discovered within an AMA, comply with Section 14-2.02, "Archaeological Resources."

14-2.04 HISTORIC STRUCTURES

Reserved

14-3 COMMUNITY IMPACTS AND ENVIRONMENTAL JUSTICE

Reserved

14-4 NATIVE AMERICAN CONCERNS

Reserved

14-5 AESTHETICS

Reserved

14-6 BIOLOGICAL RESOURCES

14-6.01 **GENERAL**

Reserved

14-6.02 BIRD PROTECTION

Protect migratory and nongame birds, their occupied nests, and their eggs.

The Department anticipates nesting or attempted nesting from February 15 to September 1.

The federal Migratory Bird Treaty Act, 16 USC § 703–711, and 50 CFR Pt 10 and Fish & Game Code §§ 3503, 3513, and 3800 protect migratory and nongame birds, their occupied nests, and their eggs.

The federal Endangered Species Act of 1973, 16 USC §§ 1531 and 1543, and the California Endangered Species Act, Fish & Game Code §§ 2050–2115.5, prohibit the take of listed species and protect occupied and unoccupied nests of threatened and endangered bird species.

The Bald and Golden Eagle Protection Act, 16 USC § 668, prohibits the destruction of bald and golden eagles and their occupied and unoccupied nests.

If migratory or nongame bird nests are discovered that may be adversely affected by construction activities or an injured or killed bird is found, immediately:

- 1. Stop all work within a 100-foot radius of the discovery.
- 2. Notify the Engineer.

The Department investigates. Do not resume work within the specified radius of the discovery until authorized. When ordered, use exclusion devices, take nesting prevention measures, remove and dispose of partially

constructed and unoccupied nests of migratory or nongame birds on a regular basis to prevent their occupation, or perform any combination of these. This work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

Prevent nest materials from falling into waterways.

Bird protection that causes a delay to the controlling activity is a condition unfavorable to the suitable prosecution of work as specified in Section 8-1.05, "Temporary Suspension of Work."

14-7 PALEONTOLOGICAL RESOURCES

If paleontological resources are discovered at the job site, do not disturb the material and immediately:

- 1. Stop all work within a 60-foot radius of the discovery
- 2. Protect the area
- 3. Notify the Engineer

The Department investigates and modifies the dimensions of the protected area if necessary. Do not move paleontological resources or take them from the job site. Do not resume work within the specified radius of the discovery until authorized.

14-8 NOISE AND VIBRATION

14-8.01 **GENERAL**

Reserved

14-8.02 NOISE CONTROL

Do not exceed 86 dBA LMax at 50 feet from the job site activities from 9 p.m. to 6 a.m.

Equip an internal combustion engine with the manufacturer-recommended muffler. Do not operate an internal combustion engine on the job site without the appropriate muffler.

14-9 AIR QUALITY

14-9.01 AIR POLLUTION CONTROL

Comply with air pollution control rules, regulations, ordinances, and statutes that apply to work performed under the Contract, including air pollution control rules, regulations, ordinances, and statutes provided in Govt Code § 11017 (Pub Cont Code § 10231).

Do not burn material to be disposed of.

14-9.02 DUST CONTROL

Prevent and alleviate dust by applying water, dust palliative, or both under Section 14-9.01.

Apply water under Section 17, "Watering."

Apply dust palliative under Section 18,"Dust Palliative."

If ordered, apply water, dust palliative, or both to control dust caused by public traffic. This work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

14-10 SOLID WASTE DISPOSAL AND RECYCLING

14-10.01 SOLID WASTE DISPOSAL AND RECYCLING

Submit an annual Solid Waste Disposal and Recycling Report between January 1 and 15 for each year work is performed under the Contract at any time during the previous calendar year. Show the types and amounts of project-generated solid waste taken to or diverted from landfills or reused on the project from January 1 through December 31 of the previous calendar year.

Submit a final annual Solid Waste Disposal and Recycling Report within 5 business days after Contract acceptance. Show the types and amounts of project-generated solid waste taken to or diverted from landfills or reused on the project from January 1 to Contract acceptance.

For each failure to submit a completed form, the Department withholds \$10,000.

14-11 HAZARDOUS WASTE AND CONTAMINATION

14-11.01 GENERAL

Reserved

14-11.02 ASBESTOS AND HAZARDOUS SUBSTANCES

Upon discovery, immediately stop working in and notify the Engineer of areas where asbestos or a hazardous substance is present if the:

- 1. Contractor reasonably believes the substance is asbestos as defined in Labor Code § 6501.7 or a hazardous substance as defined in Health & Safety Code §§ 25316 and 25317
- 2. Presence is not described in the Contract
- 3. Substance has not been made harmless

14-12 OTHER INTERAGENCY RELATIONS

Reserved

14-13 PAYMENT

Payment for work specified in Section 14 is included in the payment for the bid items involved unless:

- 1. Bid item for the work is shown in the verified Bid Item List
- 2. Work is specified as paid for as extra work

SECTION 15 EXISTING HIGHWAY FACILITIES (Issued 05-01-09)

In Section 15-1.02 replace the 1st paragraph with:

Existing facilities which are to remain in place shall be protected in conformance with the provisions in Sections 5-1.18, "Property and Facility Preservation," and 7-1.12, "Indemnification and Insurance."

^^^^^

SECTION 19 EARTHWORK (Issued 09-16-11)

Replace Section 19-1.02 with:

19-1.02 (BLANK)

Replace Section 19-1.03 with:

19-1.03 GRADE TOLERANCE

Immediately prior to placing subsequent layers of material thereon, the grading plane shall conform to one of the following:

- A. When hot mix asphalt is to be placed on the grading plane, the grading plane at any point shall not vary more than 0.05 foot above or below the grade established by the Engineer.
- B. When subbase or base material to be placed on the grading plane is to be paid for by the ton, the grading plane at any point shall not vary more than 0.10 foot above or below the grade established by the Engineer.
- C. When the material to be placed on the grading plane is to be paid for by the cubic yard, the grading plane at any point shall be not more than 0.05 foot above the grade established by the Engineer.

In Section 19-3.025C replace the 1st paragraph with:

Cementitious material used in soil cement bedding shall conform to the provisions in Section 90-2.01, "Cementitious Materials." Supplementary cementitious material will not be required.

In Section 19-3.025C replace the 4th paragraph with:

The aggregate, cementitious material, and water shall be proportioned either by weight or by volume. Soil cement bedding shall contain not less than 282 pounds of cementitious material per cubic yard. The water content shall be sufficient to produce a fluid, workable mix that will flow and can be pumped without segregation of the aggregate while being placed.

In Section 19-3.06 replace the 9th paragraph with:

Unless otherwise shown on the plans or specified in these specifications or the special provisions, material for structure backfill to be compacted to a relative compaction of not less than 90 percent, except material to be placed behind retaining walls, shall consist of material free of rocks, broken concrete, other solid material exceeding 3 inches in greatest dimension, or organic or other unsatisfactory material.

In Section 19-3.062 replace the 1st paragraph with:

Slurry cement backfill shall consist of a fluid, workable mixture of aggregate, cementitious material, and water.

In Section 19-3.062 replace the 5th paragraph with:

Cementitious material shall conform to the provisions in Section 90-2.01, "Cementitious Materials." Supplementary cementitious material will not be required.

In Section 19-3.062 replace the 8th paragraph with:

The aggregate, cementitious material, and water shall be proportioned either by weight or by volume. Slurry cement backfill shall contain not less than 188 pounds of cementitious material per cubic yard. The water content shall be sufficient to produce a fluid, workable mix that will flow and can be pumped without segregation of the aggregate while being placed.

^^^^^^

SECTION 20 EROSION CONTROL AND HIGHWAY PLANTING (Issued 04-20-12)

Replace Section 20-2.03 with:

20-2.03 SOIL AMENDMENT

Soil amendment must comply with the Food & Agri Code.

In Section 20-2.10 delete the 8th, 9th, and 10th paragraphs.

In Section 20-3.04A delete the last paragraph.

In Section 20-4.026 replace the 3rd paragraph with:

Oil or pelleted forms of pesticides for weed control shall not be used.

Replace Section 20-4.055 with:

20-4.055 PRUNING

Prune plants under ANSI A300 (Part 1) published by the Tree Care Industry Association.

SECTION 24 LIME STABILIZATION (Issued 06-05-09)

Replace Section 24 with: SECTION 24 LIME STABILIZED SOIL

24-1.01 GENERAL

24-1.01A Summary

Section 24 includes specifications for stabilizing soil by mixing lime and water with soil and compacting the mixture to the specified dimensions.

24-1.01B Definitions

lime: Quicklime made from high-calcium or dolomitic sources specified under ASTM C 51. For high-calcium quicklime, the calcium oxide content must be greater than 90 percent. For dolomitic quicklime, the calcium oxide content must be greater than 55 percent and the combined calcium oxide and magnesium oxide content must be greater than 90 percent.

mellowing period: The time between the initial and final mixing to promote initial chemical reactions between lime, water, and soil.

Contract No. 12-0E3104 99 of 297

24-1.01C Submittals

From 30 to 180 days before use, submit one 10-pound sample of each lime product proposed and from each source.

Submit lime samples in airtight containers under ASTM C 50. Mark the sample date on the container. Include the MSDS and chemical and physical analysis with the submittal.

With the lime samples, submit a Certificate of Compliance from the pre-qualified lime source under Section 6-1.07, "Certificates of Compliance," with a statement certifying the lime furnished is the same as that pre-qualified.

Fifteen days before starting soil stabilization activities, submit for the Engineer's approval a laboratory to perform quality control tests. The laboratory must be qualified under the Department's Independent Assurance Program.

Before you apply lime in slurry form, submit the slurry's lime content for Engineer's approval 25 days before application.

Before performing quality control sampling and testing, submit the time and location the sampling and testing will occur. Submit quality control testing results within 24 hours of receiving the results.

Submit a weighmaster certificate or bill of lading with each load of lime delivered to the jobsite.

24-1.01D Quality Control and Assurance

General

Perform quality control testing in the presence of the Engineer.

Place unique, sequentially numbered lock seals on each load and affix them to trailer blow down valves that are locked open. The bill of lading for each lime delivery must have that specific lock seal number legibly and visibly imprinted.

The Engineer samples each lime delivery truck at the job site and randomly tests them off-site.

Pre-qualification of Lime Sources

Lime sources must be listed on the Department's pre-qualified products list. The list is available at the METS web site.

The pre-qualified list for lime sources describes the application procedures for inclusion on the list.

Preparing Soil

After you prepare an area for lime soil stabilization, test the soil to be stabilized every 500 cubic yards for relative compaction under California Test 231 and moisture content under California Test 226, and verify the surface grades.

Applying Lime

The Engineer determines the final application rate for each lime product proposed from the samples submitted. If the soil being stabilized changes, the Engineer changes the application rate. Based on California Test 373, the Engineer reports the application rates as the percent of lime by dry weight of soil. The Engineer provides the optimum moisture content determined under California Test 373 for each application rate.

Before applying lime, measure the temperature at the ground surface.

If lime in dry form is used, the Engineer verifies the application rate using the drop pan method once per 40,000 square feet stabilized, or twice per day, whichever is greater.

If lime in slurry form is used, report the quantity of slurry placed by measuring the volume of slurry in the holding tank once per 40,000 square feet stabilized, or twice per day, whichever is greater.

Mixing

For each day of initial mixing, test the moisture content. Sample the material immediately after initial mixing. Randomly test the adequacy of the final mixing with a phenolphthalein indicator solution.

During mixing operations, measure the ground temperature at full mixing depth.

After mixing and before compacting, determine maximum density under California Test 216 from composite samples of the mixed material and at each distinct change in material. Test the moisture content of the mixed material under California Test 226. Test the gradation for compliance with "Materials."

Compaction

Test relative compaction on a wet weight basis.

After initial compaction, determine in-place density under California Test 231 and moisture content under California Test 226 at the same locations. The testing frequency must be 1 test per 250 cubic yards of lime stabilized soil. Test in 0.50-foot depth intervals.

Before requesting to compact material in layers greater than 0.50 foot, construct a test strip in the production area and demonstrate the test strip passes compaction tests using the proposed thickness. The test strip must contain no more material than 1 day's production. The Engineer tests at not more than 0.50-foot depth intervals regardless of the thickness of your layers.

Construct test pads by scraping away material to the depth ordered by the Engineer. If a compaction test fails corrective action must include the layers of material already placed above the test pad elevation.

Finish Grading

Do not proceed with construction activities for subsequent layers of material until the Engineer verifies the final grades of the lime stabilized soil.

Dispute Resolution

You and the Engineer must work together to avoid potential conflicts and to resolve disputes regarding test result discrepancies. Notify the Engineer within 5 days of receiving a test result if you dispute the test result.

If you or the Engineer dispute each other's test results, submit written quality control test results and copies of paperwork including worksheets used to determine the disputed test results to the Engineer. An Independent Third Party (ITP) performs referee testing. Before the ITP participates in a dispute resolution, the ITP must be accredited under the Department's Independent Assurance Program. The ITP must be independent of the project. By mutual agreement, the ITP is chosen from:

- 1. A Department laboratory
- 2. A Department laboratory in a district or region not in the district or region the project is located
- 3. The Transportation Laboratory
- 4. A laboratory not currently employed by you or your lime producer

If split quality control or acceptance samples are not available, the ITP uses any available material representing the disputed material for evaluation.

24-1.02 MATERIALS

24-1.02A Lime

Lime must comply with ASTM C 977 and the following:

Contract No. 12-0E3104 101 of 297

Lime **ASTM** Quality Specification Characteristic C 25^a Available High Calcium Calcium and Quicklime: Magnesium CaO > 90Oxide(min., %) Dolomitic Quicklime: CaO > 55 and CaO + MgO > 90Loss on ignition C 25 7 (total loss) 5 (carbon dioxide) (max., %) 2 (free moisture) Slaking rate C 110 30 °C rise in 8

Notes:

A 0.5-pound sample of lime dry-sieved in a mechanical sieve shaker for 10 minutes ±30 seconds must comply with:

minutes

Sieve Sizes	Percentage
	Passing
3/8-inch	98-100

Slurry must:

- 1. Be free of contaminants
- 2. Contain at least the minimum dry solids
- 3. Have uniform consistency

If you prepare lime slurry, prepare it at the jobsite.

24-1.02B Water

If available, use potable water. Inform the Engineer if a water source other than potable water is used. If not using potable water, water for mixing soil and lime must:

- 1. Contain no more than 650 parts per million of chlorides as Cl, and no more than 1,300 parts per million of sulfates as SO_4
- 2. Not contain an amount of impurities that will cause a reduction in the strength of the stabilize soil

24-1.02C Mixed Material

Take a composite sample from 5 random locations after initial mixing. The moisture content of the composite sample tested under California Test 226 must be a minimum of 3 percent greater than optimum. Determine the moisture versus density relationship of the composite sample material determined under California Test 216, except Part 2, Section E, Paragraph 6 is modified as follows:

After adjustment of the moisture content, compact each of the remaining test specimens in the mold, then record the water adjustment, tamper reading, and the corresponding adjusted wet density from the chart on Table 1 using the column corresponding to the actual wet weight of the test specimen compacted. Note each of these wet weights on Line I.

The mixed material before compaction excluding rock must comply with:

^a You may use ASTM C25 or ASTM C1301 and ASTM C1271.

Sieve Sizes	Percentage Passing
1"	98 - 100
No. 4	60 - 100

24-1.02D Curing Treatment

Curing treatment may be any of the following:

- 1. Water cure
- 2. Curing seal
- 3. Moist material blanket

Curing seal must be SS or CSS grade asphaltic emulsion under Section 94, "Asphaltic Emulsions."

24-1.03 CONSTRUCTION

24-1.03A General

If using different types of lime or lime from more than one source, do not mix them. The Engineer determines separate application rates.

Deliver lime in full loads unless it is the last load needed for a work shift.

Apply lime at ground temperatures above 35 °F. Do not apply lime if you expect the ground temperature to drop below 35 °F before you complete mixing and compacting.

During mixing, maintain the in-place moisture of the soil to be stabilized a minimum 3 percent above the optimum moisture determined under California Test 216 as modified in "Mixed Material." During compaction and finish grading, add water to the surface to prevent drying until the next layer of mixed material is placed, or until you apply curing treatment.

Scarify the surface of lime stabilized soil at least 2 inches between each layer. Do not scarify the final surface of the lime stabilized soil.

Between the time of applying lime and 3 days after applying curing treatment, only allow equipment or vehicles on the soil being stabilized that are essential to the work.

24-1.03B Preparing Soil

Except for soil clods, remove rocks or solids larger than 1/3 of the layer thickness. Regardless of the layer thickness, remove rocks and solids greater than 4 inches. Notify the Engineer if you encounter rocks or solids greater than 1/3 of the layer thickness.

Before adding lime, place the soil to be stabilized to within 0.08 foot of the specified lines and grades and compact to not less than 90 percent relative compaction.

24-1.03C Applying Lime

Apply lime uniformly over the area to be stabilized using a vane spreader.

The Engineer determines the final application rate. Do not vary from this application rate by more than 5 percent.

Apply lime in dry form. If you request and the Engineer approves, you may apply lime in slurry form.

Lime slurry must be in suspension during application. Apply lime slurry uniformly making successive passes over a measured section or roadway until the specified lime content is reached. Apply the residue from lime slurry over the length of the roadway being processed.

24-1.03D Mixing

Lime and soil to be stabilized must be mixed uniformly at least twice to within 0.10 foot of the specified depth at any point. If the mixing depth exceeds the specified depth by more than 10 percent, add lime in proportion to the exceeded depth. The Department does not pay for this added lime.

Mix lime on the same day it is applied. After the initial mixing, allow a mellowing period for at least 36 hours before final mixing. Moisture content during the mellowing period determined under California Test 226 must be at least 3 percent higher than the optimum moisture content. You may add water and mix during the mellowing period.

Remix until the mixture is uniform with no streaks or pockets of lime.

Except for clods larger than 1 inch, mixed material must have a color reaction with sprayed phenolphthalein alcohol indicator solution.

Complete all the mixing work within 7 days of the initial application of lime.

24-1.03E Compaction

Begin compacting immediately after final mixing, but not less than 36 hours after the beginning of initial mixing.

Compact by using sheepsfoot or segmented wheel rollers immediately followed by steel drum or pneumatic-tired rollers. Do not use vibratory rollers.

If you request and the Engineer approves, you may compact mixed material in layers greater than 0.50 foot.

If the specified thickness is 0.50 foot or less, compact in one layer. If the specified thickness is more than 0.50 foot, compact in 2 or more layers of approximately equal thickness. The maximum compacted thickness of any one layer must not exceed 0.50 foot unless you first demonstrate your equipment and methods provide uniform distribution of lime and achieve the specified compaction.

Use other compaction methods in areas inaccessible to rollers.

Compact the lime stabilized soil to at least 95 percent relative compaction determined under California Test 216 as modified under "Mixed Material." The relative compaction is determined on a wet weight basis.

24-1.03F Finish Grading

Maintain the moisture content of the lime stabilized soil through the entire finish grading operation at a minimum of 3 percent above optimum moisture content.

The finished surface of the lime stabilized soil must not vary more than 0.08 foot above or below the grade established by the Engineer unless the lime stabilized soil is to be covered by material paid for by the cubic yard, in which case the finished surface may not vary above the grade established by the Engineer.

If lime stabilized soil is above the allowable tolerance, trim, remove, and dispose of the excess material. Do not leave loose material on the finished surface. If finish rolling cannot be completed within 2 hours of trimming, defer trimming.

If lime stabilized soil is below the allowable tolerance, you may use trimmed material to fill low areas only if final grading and final compaction occurs within 48 hours of beginning initial compaction. Before placing trimmed material, scarify the surface of the area to be filled at least 2 inches deep.

Finish rolling of trimmed surfaces must be performed with at least 1 complete coverage with steel drum or pneumatic-tired rollers.

24-1.03G Curing

General

Choose the method of curing.

Apply the chosen cure method within 48 hours of completing the sheepsfoot or segmented wheel compaction. Apply the chosen cure method within the same day of any trimming and finish grading.

Water Cure

Water may be used to cure the finished surface before you place a moist material blanket, or apply curing seal. Keep the surface above the optimum moisture content of the lime stabilized soil. Use this method for no more than 3 days, after which you must place a curing seal or moist material blanket.

Curing Seal

Curing seal equipment must have a gage indicating the volume of curing seal in the storage tank. If curing seal is used, apply it:

- 1. To the finished surface of lime stabilized soil under Section 94-1.06, "Applying," of the Standard Specifications
- 2. At a rate from 0.10 to 0.20 gallon per square yard. The Engineer determines the exact rate
- 3. When the lime stabilized soil is at optimum moisture
- 4. When the ambient temperature is above 40 °F and rising

Repair damaged curing seal the same day the damage occurs.

Moist Material Blanket

Moist material blanket consists of moist structural material. Moist material blanket may be a temporary or permanent layer of material of sufficient thickness to prevent drying of the lime stabilized soil. You may use moist material blanket if the lime stabilized soil can bear the weight of construction equipment. Maintain the moist material blanket above the optimum moisture content, as appropriate, until the next structural layer is placed.

24-1.04 MEASUREMENT AND PAYMENT

Lime stabilized soil is measured by the square yard determined from horizontal measurements of the planned surface of the lime stabilized soil.

Curing seal is measured under Section 94, "Asphaltic Emulsions." The amount of curing seal used is determined from the gauge specified for the curing equipment.

The contract item prices for the work involved with lime stabilized soil are paid:

- 1. Per square yard for lime stabilized soil
- 2. Per ton for lime
- 3. Per ton for asphaltic emulsion (curing seal)

Payment for the contract items involved with lime stabilized soil includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the lime stabilized soil, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The Department does not adjust payment for lime.

Quantities of lime wasted or disposed of in a manner not specified, or remaining on hand after completion of the work, will not be paid for. If you use a partial load of lime, weigh the truck and the remaining lime on a scale under Section 9-1.01, "Measurement of Quantities," and submit a weighmaster certificate to the Engineer.

Full compensation for preparing soil to be stabilized is included in the contract price paid per square yard for lime stabilized soil, and no separate payment is made therefor, except removing and disposing of rocks and solids larger 1/3 of the layer thickness and larger than 4 inches from native soil or embankment other than imported borrow is paid for as extra work as provided in Section 4-1.03D, "Extra Work." Removing and disposing of rocks and solids larger than 1/3 of the lift thickness and larger than 4 inches from imported borrow is at your expense.

Full compensation for mixing, compacting, and maintaining the moisture content of the lime stabilized soil is included in the contract price paid per square yard for lime stabilized soil, and no separate payment is made therefor.

Full compensation for applying lime is included in the contract price paid per ton for lime, and no additional compensation is allowed therefor.

If the dispute resolution ITP determines the Engineer's test results are correct, the Engineer deducts the ITP's testing costs from payments. If the ITP determines your test results are correct, the State pays the ITP testing costs.

^^^^^

SECTION 25 AGGREGATE SUBBASES (Issued 02-16-07)

In Section 25-1.02A replace the 1st paragraph with:

Aggregate must be clean and free from organic matter and other deleterious substances. Aggregate must consist of any combination of:

- 1. Broken stone
- 2. Crushed gravel
- 3. Natural rough surfaced gravel
- 4 Sand
- 5. Up to 100 percent of any combination of processed:
 - 5.1. Asphalt concrete
 - 5.2. Portland cement concrete
 - 5.3. Lean concrete base

5.4. Cement treated base

Replace Section 25-1.02B with:

25-1.02B Class 4 Aggregate Subbase

Aggregate must be clean and free from organic matter and other deleterious substances. Aggregate must consist of any combination of:

- 1. Broken stone
- 2. Crushed gravel
- 3. Natural rough surfaced gravel
- Sand
- 5. Up to 100 percent of any combination of processed:
 - 5.1. Asphalt concrete
 - 5.2. Portland cement concrete
 - 5.3. Lean concrete base
 - 5.4. Cement treated base

^^^^^

SECTION 26 AGGREGATE BASES (Issued 02-16-07)

In Section 26-1.02A replace the 1st paragraph with:

Aggregate must be clean and free from organic matter and other deleterious substances. Aggregate must consist of any combination of:

- 1. Broken stone
- 2. Crushed gravel
- 3. Natural rough surfaced gravel
- Sand
- 5. Up to 100 percent of any combination of processed:
 - 5.1. Asphalt concrete
 - 5.2. Portland cement concrete
 - 5.3. Lean concrete base
 - 5.4. Cement treated base

In Section 26-1.02B replace the 1st paragraph with:

Aggregate must be clean and free from organic matter and other deleterious substances. Aggregate must consist of any combination of:

- 1. Broken stone
- 2. Crushed gravel
- 3. Natural rough surfaced gravel
- Sand
- 5. Up to 100 percent of any combination of processed:
 - 5.1. Asphalt concrete
 - 5.2. Portland cement concrete
 - 5.3. Lean concrete base
 - 5.4. Cement treated base

^^^^^^

SECTION 27 CEMENT TREATED BASES (Issued 07-31-07)

In Section 27-1.02 replace the 1st paragraph with:

Cement shall be Type II portland cement conforming to the provisions in Section 90-2.01A, "Cement."

In Section 27-1.02 replace the 3rd paragraph with:

Aggregate for use in Class A cement treated base shall be of such quality that when mixed with cement in an amount not to exceed 5 percent by weight of the dry aggregate and compacted at optimum moisture content, the compressive strength of a sample of the compacted mixture shall not be less than 750 pounds per square inch at 7 days, when tested by California Test 312.

In Section 27-1.02 replace the 4th paragraph with:

Aggregate for use in Class B cement treated base shall have a Resistance (R-value) of not less than 60 before mixing with cement and a Resistance (R-value) of not less than 80 after mixing with cement in an amount not to exceed 2.5 percent by weight of the dry aggregate.

In Section 27-1.07 replace the 9th paragraph with:

When surfacing material is hot mix asphalt, the low areas shall be filled with hot mix asphalt conforming to the requirements for the lowest layer of hot mix asphalt to be placed as surfacing. This filling shall be done as a separate operation prior to placing the lowest layer of surfacing, and full compensation for this filling will be considered as included in the contract price paid for cement treated base and no additional compensation will be allowed therefor.

^^^^^^

SECTION 28 LEAN CONCRETE BASE (Issued 05-15-09)

In Section 28-1.02 replace the 1st paragraph with:

Cement shall be Type II portland cement conforming to the provisions in Section 90-2.01A, "Cement."

In Section 28-1.02 replace the 6th paragraph with:

Aggregate shall be of such quality that, when mixed with cement in an amount not to exceed 300 pounds per cubic yard, and tested in conformance with the requirements in California Test 548, the compressive strength of a sample will be not less than 700 pounds per square inch at 7 days.

Replace Section 28-1.05 with:

Placing of lean concrete base shall conform to the provisions for placing concrete pavement in Section 40-3.04, "Placing Concrete," except that the third paragraph in Section 40-3.04A, "General," shall not apply.

Unless otherwise required by the plans or the special provisions, lean concrete base shall be constructed in not less than 12-foot widths separated by construction joints. Lean concrete base constructed monolithically in widths greater than 26 feet shall be constructed with a longitudinal contraction joint offset not more than 3 feet from the centerline of the width being constructed.

Longitudinal contraction joints in lean concrete base shall be constructed in conformance with the provisions in Section 40-3.08E, "Sawing Method."

When concrete pavement is to be placed over lean concrete base, longitudinal construction joints and longitudinal contraction joints in the lean concrete base shall not be within one foot of planned longitudinal contraction joints nor longitudinal construction joints in the concrete pavement.

Lean concrete base shall not be mixed nor placed while the atmospheric temperature is below 35 °F, and shall not be placed on frozen ground.

In Section 28-1.06 replace the 1st and 2nd paragraphs with:

Lean concrete base shall be spread, compacted, and shaped in conformance with the provisions in Section 40-3.04D, "Stationary Side Form Construction," and Section 40-3.04E, "Slip-Form Construction."

In advance of curing operations, lean concrete base to be surfaced with hot mix asphalt shall be textured with a drag strip of burlap, a broom or a spring steel tine device which will produce scoring in the finished surface. The scoring shall be parallel with the centerline or transverse thereto. The operation shall be performed at a time and in a manner to produce the coarsest texture practical for the method used.

In Section 28-1.08 replace the 2nd paragraph with:

Hardened lean concrete base with a surface lower than 0.05 foot below the grade established by the Engineer shall be removed and replaced with lean concrete base which complies with these specifications, or if permitted by the Engineer, the low areas shall be filled with pavement material as follows:

- 1. When pavement material is hot mix asphalt, the low areas shall be filled with hot mix asphalt conforming to the requirements for the lowest layer of hot mix asphalt to be placed as pavement. This shall be done as a separate operation prior to placing the lowest layer of pavement, and full compensation for this filling will be considered as included in the contract price paid per cubic yard for lean concrete base and no additional compensation will be allowed therefor.
- 2. When pavement material is portland cement concrete, the low areas shall be filled with pavement concrete at the time and in the same operation that the pavement is placed. Full compensation for this filling will be considered as included in the contract price paid per cubic yard for lean concrete base and no additional compensation will be allowed therefor.

^^^^^

SECTION 29 TREATED PERMEABLE BASES (Issued 05-15-09)

In Section 29-1.02B replace the 2nd paragraph with:

Cement shall be Type II portland cement conforming to the provisions in Section 90-2.01A, "Cement."

In Section 29-1.04A replace the 1st paragraph with:

Aggregates and asphalt for asphalt treated permeable base shall be stored, proportioned and mixed in the same manner provided for storing, proportioning and mixing aggregates and asphalt for hot mix asphalt in Section 39-1.08, "Production," except as follows:

- 1. The aggregate need not be separated into sizes.
- 2. The temperature of the aggregate before adding the asphalt binder shall be not less than 275° F nor more than 325° F.
- 3. Asphalt treated permeable base stored in excess of 2 hours shall not be used in the work.
- 4. The aggregate shall be combined with 2.5 percent paving asphalt by weight of the dry aggregate. After testing samples of the Contractor's proposed aggregate supply, the Engineer may order an increase or decrease in the asphalt content. If an increase or decrease is ordered, and the increase or decrease exceeds the specified amount by more than 0.1 percent by weight of the dry aggregate, the compensation payable to

- the Contractor for the asphalt treated permeable base will be increased or decreased on the basis of the total increase or decrease in asphalt.
- 5. The asphalt content of the asphalt mixture will be determined, at the option of the Engineer, by extraction tests in conformance with the requirements in California Test 310 or 362, or will be determined in conformance with the requirements in California Test 379. The bitumen ratio pounds of asphalt per 100 pounds of dry aggregate shall not vary by more than 0.5 pound of asphalt above or 0.5 pound of asphalt below the amount designated by the Engineer. Compliance with this requirement will be determined either by taking samples from trucks at the plant or from the mat behind the paver before rolling. If the sample is taken from the mat behind the paver, the bitumen ratio shall be not less than the amount designated by the Engineer, less 0.7 pound of asphalt per 100 pounds of dry aggregate.

In Section 29-1.04B replace the 2nd paragraph with:

Cement treated permeable base shall contain not less than 287 pounds of cement per cubic yard.

In Section 29-1.05 replace the 1st paragraph with:

Asphalt treated permeable base shall be spread and compacted as specified for hot mix asphalt under the "Method" construction process in Section 39, "Hot Mix Asphalt," and these specifications.

In Section 29-1.05 in the 8th paragraph, replace the 2nd sentence with:

The filter fabric shall conform to the provisions in Section 88-1.02, "Filtration," and shall be placed in conformance with the provisions for placing filter fabric for edge drains in Section 68-3.03, "Installation."

In Section 29-1.06 replace the 1st and 2nd paragraphs with:

Cement treated base shall be placed, spread, compacted, and shaped in conformance with the provisions in Section 40-3.04D, "Stationary Side Form Construction," and Section 40-3.04E, "Slip-Form Construction," except that vibrators shall not be used and the third paragraph in Section 40-3.04A, "General," shall not apply.

In Section 29-1.06 in the 9th paragraph, replace the 2nd sentence with:

The filter fabric shall conform to the provisions in Section 88-1.02, "Filtration," and shall be placed in conformance with the provisions for placing filter fabric for edge drains in Section 68-3.03, "Installation."

In Section 29-1.07 replace the 2nd paragraph with:

Hardened treated permeable base with a surface lower than 0.05 foot below the grade established by the Engineer shall be removed and replaced with treated permeable base which complies with these specifications, or if permitted by the Engineer, the low areas shall be filled with pavement material as follows:

- 1. When pavement material is hot mix asphalt, the low areas shall be filled with hot mix asphalt conforming to the requirements for the lowest layer of hot mix asphalt to be placed as pavement. This shall be done as a separate operation prior to placing the lowest layer of pavement.
- 2. When pavement material is portland cement concrete, the low areas shall be filled with pavement concrete at the time and in the same operation in which the pavement is placed.
- 3. Full compensation for filling low areas will be considered as included in the contract price paid per cubic yard for treated permeable base and no additional compensation will be allowed therefor.

^^^^^

SECTION 37 BITUMINOUS SEALS (Issued 06-05-09)

Contract No. 12-0E3104 109 of 297

In Section 37-1.03 replace the 4th through 6th paragraphs with:

On 2-lane two-way roadways, W8-7 "LOOSE GRAVEL" signs and W13-1 (35) speed advisory signs shall be furnished and placed adjacent to both sides of the traveled way where screenings are being spread on a traffic lane. The first W8-7 sign in each direction shall be placed where traffic first encounters loose screenings, regardless of which lane the screenings are being spread on. The W13-1 (35) signs need not be placed in those areas with posted speed limits of less than 40 MPH. The signs shall be placed at maximum 2,000-foot intervals along each side of the traveled way and at public roads or streets entering the seal coat area as directed by the Engineer.

On multilane roadways (freeways, expressways and multilane conventional highways) where screenings are being spread on a traffic lane, W8-7 "LOOSE GRAVEL" signs and W13-1 (35) speed advisory signs shall be furnished and placed adjacent to the outside edge of the traveled way nearest to the lane being worked on. The first W8-7 sign shall be placed where the screenings begin with respect to the direction of travel on that lane. The W13-1 (35) signs need not be placed in those areas with posted speed limits of less than 40 MPH. The signs shall be placed at maximum 2,000-foot intervals along the edge of traveled way and at on-ramps, public roads or streets entering the seal coat area as directed by the Engineer.

The W8-7 and W13-1 signs shall be maintained in place at each location until final brooming of the seal coat surface at that location is completed. The W8-7 and W13-1 signs shall conform to the provisions for construction area signs in Section 12, "Construction Area Traffic Control Devices." The signs may be set on temporary portable supports with the W13-1 below the W8-7 or on barricades with the W13-1 sign alternating with the W8-7 sign.

In Section 37-1.07 replace the 2nd paragraph with:

Rollers shall be oscillating type pneumatic-tired rollers. A minimum of 2 pneumatic-tired rollers conforming to the provisions in Section 39-3.03 "Spreading and Compacting Equipment," shall be furnished.

In Section 37-1.09 replace the 2nd paragraph with:

The above prices and payments shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in applying seal coat, complete in place, including furnishing, placing, maintaining, and removing W8-7 and W13-1 signs, when required, and temporary supports or barricades for the signs, as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer.

In Section 37-2.05 replace the 6th paragraph with:

In addition to conforming to the provisions in Section 5-1.10, "Equipment," the identifying number of mixer-spreader trucks shall be at least 2 inches in height, located on the front and rear of the vehicle.

SECTION 39 ASPHALT CONCRETE (Issued 04-20-12)

Replace Section 39 with: SECTION 39 HOT MIX ASPHALT

39-1 GENERAL

39-1.01 DESCRIPTION

Section 39 includes specifications for producing and placing hot mix asphalt (HMA) by mixing aggregate and asphalt binder at a mixing plant and spreading and compacting the HMA mixture.

The special provisions specify one or more types of HMA, including:

1. Type A

- 2. Type B
- 3. Open graded friction course (OGFC). OGFC includes hot mix asphalt (open graded)[HMA-O], rubberized hot mix asphalt (open graded) [RHMA-O] and rubberized hot mix asphalt (open graded high binder) [RHMA-O-HB]
- 4. Rubberized hot mix asphalt (gap graded) [RHMA-G]

The special provisions specify the HMA construction process, including:

- 1. Standard
- 2. Method
- 3. Quality Control / Quality Assurance (QC / QA)

39-1.02 MATERIALS

39-1.02A Geosynthetic Pavement Interlayer

Geosynthetic pavement interlayer must comply with the specifications for pavement fabric, paving mat, paving grid, paving geocomposite grid, or geocomposite strip membrane in Section 88-1.07, "Pavement Interlayer."

39-1.02B Tack Coat

Tack coat must comply with the specifications for asphaltic emulsion in Section 94, "Asphaltic Emulsion," or asphalt binder in Section 92, "Asphalts." Choose the type and grade.

Notify the Engineer if you dilute asphaltic emulsion with water. The weight ratio of added water to asphaltic emulsion must not exceed 1 to 1.

Measure added water either by weight or volume in compliance with the specifications for weighing, measuring, and metering devices under Section 9-1.01, "Measurement of Quantities," or you may use water meters from water districts, cities, or counties. If you measure water by volume, apply a conversion factor to determine the correct weight.

With each dilution, submit in writing:

- 1. The weight ratio of water to bituminous material in the original asphaltic emulsion
- 2. The weight of asphaltic emulsion before diluting
- 3. The weight of added water
- 4. The final dilution weight ratio of water to asphaltic emulsion

39-1.02C Asphalt Binder

Asphalt binder in HMA must comply with Section 92, "Asphalts," or Section 39-1.02D, "Asphalt Rubber Binder." The special provisions specify the grade.

Asphalt binder for geosynthetic pavement interlayer must comply with Section 92, "Asphalts." Choose from Grades PG 64-10, PG 64-16, or PG 70-10.

39-1.02D Asphalt Rubber Binder

General

Use asphalt rubber binder in RHMA-G, RHMA-O, and RHMA-O-HB. Asphalt rubber binder must be a combination of:

- 1. Asphalt binder
- 2. Asphalt modifier
- 3. Crumb rubber modifier (CRM)

The combined asphalt binder and asphalt modifier must be 80.0 ± 2.0 percent by weight of the asphalt rubber binder.

Asphalt Modifier

Asphalt modifier must be a resinous, high flash point, and aromatic hydrocarbon, and comply with:

Asphalt Modifier for Asphalt Rubber Binder

Quality Characteristic	ASTM	Specification
Viscosity, m ² /s (x 10 ⁻⁶) at 100 °C	D 445	X ± 3 ^a
Flash Point, CL.O.C., °C	D 92	207 minimum
Molecular Analysis		
Asphaltenes, percent by mass	D 2007	0.1 maximum
Aromatics, percent by mass	D 2007	55 minimum

Note:

Asphalt modifier must be from 2.0 percent to 6.0 percent by weight of the asphalt binder in the asphalt rubber binder.

Crumb Rubber Modifier

CRM consists of a ground or granulated combination of scrap tire CRM and high natural CRM. CRM must be 75.0 ± 2.0 percent scrap tire CRM and 25.0 ± 2.0 percent high natural CRM by total weight of CRM. Scrap tire CRM must be from any combination of automobile tires, truck tires, or tire buffings.

Sample and test scrap tire CRM and high natural CRM separately. CRM must comply with:

Crumb Rubber Modifier for Asphalt Rubber Binder

Quality Characteristic	Test Method	Specification
Scrap tire CRM gradation	LP-10	100
(% passing No. 8 sieve)		
High natural CRM gradation	LP-10	100
(% passing No. 10 sieve)		
Wire in CRM (% max.)	LP-10	0.01
Fabric in CRM (% max.)	LP-10	0.05
CRM particle length (inch max.) ^a		3/16
CRM specific gravity ^a	CT 208	1.1 – 1.2
Natural rubber content in high natural CRM (%) ^a	ASTM D 297	40.0 – 48.0

Note:

Only use CRM ground and granulated at ambient temperature. If steel and fiber are cryogenically separated, it must occur before grinding and granulating. Only use cryogenically produced CRM particles that can be ground or granulated and not pass through the grinder or granulator.

CRM must be dry, free-flowing particles that do not stick together. CRM must not cause foaming when combined with the asphalt binder and asphalt modifier. You may add calcium carbonate or talc up to 3 percent by weight of CRM.

Asphalt Rubber Binder Design and Profile

Submit in writing an asphalt rubber binder design and profile that complies with the asphalt rubber binder specifications. In the design, designate the asphalt, asphalt modifier, and CRM and their proportions. The profile is not a performance specification and only serves to indicate expected trends in asphalt rubber binder properties during binder production. The profile must include the same component sources for the asphalt rubber binder used.

Design the asphalt rubber binder from testing you perform for each quality characteristic and for the reaction temperatures expected during production. The 24-hour (1,440-minute) interaction period determines the design profile. At a minimum, mix asphalt rubber binder components, take samples, and perform and record the following tests:

^a The symbol "X" is the proposed asphalt modifier viscosity. "X" must be between 19 and 36. A change in "X" requires a new asphalt rubber binder design.

^a Test at mix design and for Certificate of Compliance.

Asphalt Rubber Binder Reaction Design Profile

Test]	Minute	s of Re	action	a		Limits
	45	60	90	120	240	360	1440	
Cone penetration @ 77 °F, 0.10-mm (ASTM D 217)	X b				X		X	25 - 70
Resilience @ 77 °F, percent rebound (ASTM D 5329)	X				X		X	18 min.
Field softening point, °F (ASTM D 36)	X				X		X	125 - 165
Viscosity, centipoises (LP-11)	X	X	X	X	X	X	X	1,500 - 4,000

Notes:

Asphalt Rubber Binder

After interacting for a minimum of 45 minutes, asphalt rubber binder must comply with:

Asphalt Rubber Binder

Quality Characteristic	Test for Quality	Test Method	Specif	ication
	Control or Acceptance		Minimum	Maximum
Cone penetration @ 77 °F, 0.10-mm	Acceptance	ASTM D 217	25	70
Resilience @ 77 °F, percent rebound	Acceptance	ASTM D 5329	18	
Field softening point, °F	Acceptance	ASTM D 36	125	165
Viscosity @ 375 °F, centipoises	Quality Control	LP-11	1,500	4,000

39-1.02E Aggregate

Aggregate must be clean and free from deleterious substances. Aggregate:

- 1. Retained on the No. 4 sieve is coarse
- 2. Passing the No. 4 sieve is fine
- 3. Added and passing the No. 30 sieve is supplemental fine, including:
 - 3.1. Hydrated lime
 - 3.2. Portland cement
 - 3.3. Fines from dust collectors

The special provisions specify the aggregate gradation for each HMA type.

The specified aggregate gradation is before the addition of asphalt binder and includes supplemental fines. The Engineer tests for aggregate grading under California Test 202, modified by California Test 105 if there is a difference in specific gravity of 0.2 or more between the coarse and fine parts of different aggregate blends.

Choose a sieve size target value (TV) within each target value limit presented in the aggregate gradation tables.

Contract No. 12-0E3104 113 of 297

^a Six hours (360 minutes) after CRM addition, reduce the oven temperature to 275 °F for a period of 16 hours. After the 16-hour (1320 minutes) cool-down after CRM addition, reheat the binder to the reaction temperature expected during production for sampling and testing at 24 hours (1440 minutes).

^b "X" denotes required testing

Aggregate Gradation (Percentage Passing) HMA Types A and B

3/4-inch HMA Types A and B

Sieve Sizes	Target Value Limits	Allowable Tolerance
1"	100	_
3/4"	90 - 100	TV ±5
1/2"	70 - 90	TV ±6
No. 4	45 - 55	TV ±7
No. 8	32 - 40	TV ±5
No. 30	12 - 21	TV ±4
No. 200	2 - 7	TV ±2

1/2-inch HMA Types A and B

Sieve Sizes	Target Value Limits	Allowable Tolerance
3/4"	100	_
1/2"	95 - 99	TV ±6
3/8"	75 - 95	TV ±6
No. 4	55 - 66	TV ±7
No. 8	38 - 49	TV ±5
No. 30	15 - 27	TV ±4
No. 200	2 - 8	TV ±2

3/8-inch HMA Types A and B

by a month of the part of the				
Sieve Sizes	Target Value Limits	Allowable Tolerance		
1/2"	100	_		
3/8"	95 - 100	TV ±6		
No. 4	58 - 72	TV ±7		
No. 8	34 - 48	TV ±6		
No. 30	18 - 32	TV ±5		
No. 200	2 - 9	TV ±2		

No. 4 HMA Types A and B

Sieve Sizes	Target Value Limits	Allowable Tolerance
3/8"	100	_
No. 4	95 - 100	TV ±7
No. 8	72 - 77	TV ±7
No. 30	37 - 43	TV ±7
No. 200	2 - 12	TV ±4

Rubberized Hot Mix Asphalt - Gap Graded (RHMA-G)

3/4-inch RHMA-G

Sieve Sizes	Target Value Limits	Allowable Tolerance
1"	100	_
3/4"	95 - 100	TV ±5
1/2"	83 - 87	TV ±6
3/8"	65 - 70	TV ±6
No. 4	28 - 42	TV ±7
No. 8	14 - 22	TV ±5
No. 200	0 - 6	TV ±2

1/2-inch RHMA-G

Sieve Sizes	Target Value Limits	Allowable Tolerance
3/4"	100	
1/2"	90 - 100	TV ±6
3/8"	83 - 87	TV ±6
No. 4	28 - 42	TV ±7
No. 8	14 - 22	TV ±5
No. 200	0 - 6	TV ±2

Open Graded Friction Course (OGFC)

1-inch OGFC

Sieve Sizes	Target Value Limits	Allowable Tolerance
1 1/2"	100	_
1"	99 - 100	TV ±5
3/4"	85 - 96	TV ±5
1/2"	55 - 71	TV ±6
No. 4	10 - 25	TV ±7
No. 8	6 - 16	TV ±5
No. 200	1 - 6	TV ±2

1/2-inch OGFC

Sieve Sizes	Target Value Limits	Allowable Tolerance
3/4"	100	_
1/2"	95 - 100	TV ±6
3/8"	78 - 89	TV ±6
No. 4	28 - 37	TV ±7
No. 8	7 - 18	TV ±5
No. 30	0 - 10	TV ±4
No. 200	0 - 3	TV ±2

3/8-inch OGFC

Sieve Sizes	Target Value Limits	Allowable Tolerance
1/2"	100	_
3/8"	90 - 100	TV ±6
No. 4	29 - 36	TV ±7
No. 8	7 - 18	TV ±6
No. 30	0 - 10	TV ±5
No. 200	0 - 3	TV ±2

Before the addition of asphalt binder and lime treatment, aggregate must comply with:

Aggregate Quality

Quality Characteristic	Test Method	HMA Type			
		A	В	RHMA-G	OGFC
Percent of crushed particles	CT 205				
Coarse aggregate (% min.)					
One fractured face		90	25		90
Two fractured faces		75		90	75
Fine aggregate (% min)					
(Passing No. 4 sieve					
and retained on No. 8 sieve.)					
One fractured face		70	20	70	90
Los Angeles Rattler (% max.)	CT 211				
Loss at 100 Rev.		12		12	12
Loss at 500 Rev.		45	50	40	40
Sand equivalent (min.) ^a	CT 217	47	42	47	
Fine aggregate angularity (% min.) b	CT 234				
		45	45	45	
Flat and elongated particles (% max.	CT 235				
by weight @ 5:1)		10	10	10	10

Notes:

39-1.02F Reclaimed Asphalt Pavement

You may produce HMA using reclaimed asphalt pavement (RAP). HMA produced using RAP must comply with the specifications for HMA except aggregate quality specifications do not apply to RAP. You may substitute RAP aggregate for a part of the virgin aggregate in HMA in a quantity not exceeding 15.0 percent of the aggregate blend. Do not use RAP in OGFC and RHMA-G.

Assign the substitution rate of RAP aggregate for virgin aggregate with the job mix formula (JMF) submittal. The JMF must include the percent of RAP used. If you change your assigned RAP aggregate substitution rate by more than 5 percent (within the 15.0 percent limit), submit a new JMF.

Process RAP from asphalt concrete. You may process and stockpile RAP throughout the project's life. Prevent material contamination and segregation. Store RAP in stockpiles on smooth surfaces free of debris and organic material. Processed RAP stockpiles must consist only of homogeneous RAP.

39-1.03 HOT MIX ASPHALT MIX DESIGN REQUIREMENTS

39-1.03A General

A mix design consists of performing California Test 367 and laboratory procedures on combinations of aggregate gradations and asphalt binder contents to determine the optimum binder content (OBC) and HMA mixture qualities. If RAP is used, use Laboratory Procedure LP-9. The result of the mix design becomes the proposed JMF.

Use Form CEM-3512 to document aggregate quality and mix design data. Use Form CEM-3511 to present the JMF.

Laboratories testing aggregate qualities and preparing the mix design and JMF must be qualified under the Department's Independent Assurance Program. Take samples under California Test 125.

The Engineer reviews the aggregate qualities, mix design, and JMF and verifies and accepts the JMF.

You may change the JMF during production. Do not use the changed JMF until the Engineer accepts it. Except when adjusting the JMF in compliance with Section 39-1.03E, "Job Mix Formula Verification," perform a new mix design and submit in writing a new JMF submittal for changing any of the following:

- 1. Target asphalt binder percentage
- 2. Asphalt binder supplier
- 3. Asphalt rubber binder supplier
- 4. Component materials used in asphalt rubber binder or percentage of any component materials
- 5. Combined aggregate gradation
- 6. Aggregate sources
- 7. Substitution rate for RAP aggregate of more than 5 percent

^a Reported value must be the average of 3 tests from a single sample.

^b The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.

8. Any material in the JMF

For OGFC, submit in writing a complete JMF submittal except asphalt binder content. The Engineer determines the asphalt binder content under California Test 368 within 20 days of your complete JMF submittal and provides you a Form CEM-3513.

39-1.03B Hot Mix Asphalt Mix Design

Perform a mix design that produces HMA in compliance with:

Hot Mix Asphalt Mix Design Requirements

Quality Characteristic	Test Method	HMA Type			
		A	В	RHMA-G	
Air voids content (%)	CT 367 ^a	4.0	4.0	Special	
				Provisions	
Voids in mineral aggregate (% min.)	LP-2				
No. 4 grading		17.0	17.0		
3/8" grading		15.0	15.0		
1/2" grading		14.0	14.0	$18.0 - 23.0^{b}$	
3/4" grading		13.0	13.0	$18.0 - 23.0^{b}$	
Voids filled with asphalt (%)	LP-3				
No. 4 grading		76.0 - 80.0	76.0 - 80.0	Note d	
3/8" grading		73.0 - 76.0	73.0 - 76.0		
1/2" grading		65.0 - 75.0	65.0 - 75.0		
3/4" grading		65.0 - 75.0	65.0 - 75.0		
Dust proportion	LP-4				
No. 4 and 3/8" gradings		0.9 - 2.0	0.9 - 2.0	Note d	
1/2" and 3/4" gradings		0.6 - 1.3	0.6 - 1.3		
Stabilometer value (min.) ^c	CT 366				
No. 4 and 3/8" gradings		30	30		
1/2" and 3/4" gradings		37	35	23	

Notes:

For stability and air voids content, prepare 3 briquettes at the OBC and test for compliance. Report the average of 3 tests. Prepare new briquettes and test if the range of stability for the 3 briquettes is more than 8 points. The average air void content may vary from the specified air void content by ± 0.5 percent.

You may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If you use the same briquettes and tests using bulk specific gravity fail, you may prepare 3 new briquettes and determine a new bulk specific gravity.

39-1.03C Job Mix Formula Submittal

Each JMF submittal must consist of:

- 1. Proposed JMF on Form CEM-3511
- 2. Mix design documentation on Form CEM-3512 dated within 12 months of submittal
- 3. JMF verification on Form CEM-3513, if applicable
- 4. JMF renewal on Form CEM-3514, if applicable
- 5. Materials Safety Data Sheets (MSDS) for:
 - 5.1. Asphalt binder
 - 5.2. Base asphalt binder used in asphalt rubber binder

^a Calculate the air voids content of each specimen using California Test 309 and Lab Procedure LP-1. Modify California Test 367, Paragraph C5, to use the exact air voids content specified in the selection of OBC.

^b Voids in mineral aggregate for RHMA-G must be within this range.

^c Modify California Test 304, Part 2.B.2.c: "After compaction in the compactor, cool to 140 °± 5 °F by allowing the briquettes to cool at room temperature for 0.5-hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."

^d Report this value in the JMF submittal.

- 5.3. CRM and asphalt modifier used in asphalt rubber binder
- 5.4. Blended asphalt rubber binder mixture
- 5.5. Supplemental fine aggregate except fines from dust collectors
- 5.6. Antistrip additives

If the Engineer requests in writing, sample the following materials in the presence of the Engineer and place in labeled containers weighing no more than 50 pounds each:

- 1. Coarse, fine, and supplemental fine aggregate from stockpiles, cold feed belts, or hot bins. Samples must include at least 120 pounds for each coarse aggregate, 80 pounds for each fine aggregate, and 10 pounds for each type of supplemental fines. The Department combines these aggregate samples to comply with the JMF target values submitted on Form CEM-3511.
- 2. RAP from stockpiles or RAP system. Samples must be at least 60 pounds.
- 3. Asphalt binder from the binder supplier. Samples must be in two 1-quart cylindrical shaped cans with open top and friction lids.
- 4. Asphalt rubber binder with the components blended in the proportions to be used. Samples must be in four 1-quart cylindrical shaped cans with open top and friction lids.

Notify the Engineer in writing at least 2 business days before sampling materials. For aggregate and RAP, split the samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing.

39-1.03D Job Mix Formula Review

The Engineer reviews each mix design and proposed JMF within 5 business days from the complete JMF submittal. The review consists of reviewing the mix design procedures and comparing the proposed JMF with the specifications.

The Engineer may verify aggregate qualities during this review period.

39-1.03E Job Mix Formula Verification

If you cannot submit a Department-verified JMF on Form CEM-3513 dated within 12 months before HMA production, the Engineer verifies the JMF.

Based on your testing and production experience, you may submit on Form CEM-3511 an adjusted JMF before the Engineer's verification testing. JMF adjustments may include a change in the:

- Asphalt binder content target value up to ±0.6 percent from the optimum binder content value submitted on Form CEM-3512 except do not adjust the target value for asphalt rubber binder for RHMA-G below 7.0 percent
- 2. Aggregate gradation target values within the target value limits specified in the aggregate gradation tables

For HMA Type A, Type B, and RHMA-G, the Engineer verifies the JMF from samples taken from HMA produced by the plant to be used. Notify the Engineer in writing at least 2 business days before sampling materials. In the Engineer's presence and from the same production run, take samples of:

- 1. Aggregate
- 2. Asphalt binder
- 3. RAP
- 4. HMA

Sample aggregate from cold feed belts or hot bins. Sample RAP from the RAP system. Sample HMA under California Test 125 except if you request in writing and the Engineer approves, you may sample from any of the following locations:

- 1. The plant
- 2. A truck
- 3. A windrow
- 4. The paver hopper
- 5. The mat behind the paver

You may sample from a different project including a non-Department project if you make arrangements for the Engineer to be present during sampling.

For aggregate, RAP, and HMA, split the samples into at least 4 parts and label their containers. Submit 3 split parts to the Engineer and use 1 part for your testing.

The Engineer verifies each proposed JMF within 20 days of receiving all verification samples and the JMF submittal has been accepted. If you request in writing, the Engineer verifies RHMA-G quality requirements within 3 business days of sampling. Verification is testing for compliance with the specifications for:

- 1. Aggregate quality
- 2. Aggregate gradation (JMF TV \pm tolerance)
- 3. Asphalt binder content (JMF TV \pm tolerance)
- 4. HMA quality specified in the table Hot Mix Asphalt Mix Design Requirements except:
 - 4.1. Air voids content (design value \pm 2.0 percent)
 - 4.2. Voids filled with asphalt (report only if an adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC)
 - 4.3. Dust proportion (report only if an adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC)

The Engineer prepares 3 briquettes from a single split sample. To verify the JMF for stability and air voids content, the Engineer tests the 3 briquettes and reports the average of 3 tests. The Engineer prepares new briquettes if the range of stability for the 3 briquettes is more than 8 points.

The Engineer may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If the Engineer uses the same briquettes and the tests using bulk specific gravity fail, the Engineer prepares 3 new briquettes and determines a new bulk specific gravity.

If the Engineer verifies the JMF, the Engineer provides you a Form CEM-3513.

If the Engineer's tests on plant-produced samples do not verify the JMF, the Engineer notifies you in writing and you must submit a new JMF submittal or submit an adjusted JMF based on your testing. JMF adjustments may include a change in the:

- Asphalt binder content target value up to ±0.6 percent from the optimum binder content value submitted on Form CEM-3512 except do not adjust the target value for asphalt rubber binder for RHMA-G below 7.0 percent
- 2. Aggregate gradation target values within the target value limits specified in the aggregate gradation tables

You may adjust the JMF only once due to a failed verification test. An adjusted JMF requires a new Form CEM-3511 and verification of a plant-produced sample.

A verified JMF is valid for 12 months.

For each HMA type and aggregate size specified, the Engineer verifies at the State's expense up to 2 proposed JMF including a JMF adjusted after verification failure. The Engineer deducts \$3,000 from payments for each verification exceeding this limit. This deduction does not apply to verifications initiated by the Engineer or JMF renewal.

39-1.03F Job Mix Formula Renewal

You may request a JMF renewal by submitting the following:

- 1. Proposed JMF on Form CEM-3511
- 2. A previously verified JMF documented on Form CEM-3513 dated within 12 months
- 3. Mix design documentation on Form CEM-3512 used for the previously verified JMF

If the Engineer requests in writing, sample the following materials in the presence of the Engineer and place in labeled containers weighing no more than 50 pounds each:

- 1. Coarse, fine, and supplemental fine aggregate from stockpiles, cold feed belts, or hot bins. Samples must include at least 120 pounds for each coarse aggregate, 80 pounds for each fine aggregate, and 10 pounds for each type of supplemental fines. The Department combines these aggregate samples to comply with the JMF target values submitted on Form CEM-3511.
- 2. RAP from stockpiles or RAP system. Samples must be at least 60 pounds.

- 3. Asphalt binder from the binder supplier. Samples must be in two 1-quart cylindrical shaped cans with open top and friction lids.
- 4. Asphalt rubber binder with the components blended in the proportions to be used. Samples must be in four 1-quart cylindrical shaped cans with open top and friction lids.

Notify the Engineer in writing at least 2 business days before sampling materials. For aggregate and RAP, split samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing.

The Engineer may verify aggregate qualities during this review period.

Notify the Engineer in writing at least 2 business days before sampling materials. For aggregate, RAP, and HMA, split the samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing.

The Engineer verifies the JMF renewal submittal under Section 39-1.03E, "Job Mix Formula Verification," except:

- 1. The Engineer retains samples until you provide test results for your part on Form CEM-3514.
- 2. The Engineer tests samples of materials obtained from the HMA production unit after you submit test results that comply with the specifications for the quality characteristics under Section 39-1.03E, "Job Mix Formula Verification."
- 3. The Engineer verifies each proposed JMF renewal within 20 days of receiving verification samples.
- 4. You may not adjust the JMF due to a failed verification.
- 5. For each HMA type and aggregate gradation specified, the Engineer verifies at the State's expense 1 proposed JMF renewal within a 12-month period.

The most recent aggregate quality test results within the past 12 months may be used for verification of JMF renewal or the Engineer may perform aggregate quality tests for verification of JMF renewal.

If the Engineer verifies the JMF renewal, the Engineer provides you a Form CEM-3513.

39-1.03G Job Mix Formula Modification

For an accepted JMF, you may change binder source one time during production.

Submit your modified JMF request a minimum of 3 business days before production. Each modified JMF submittal must consist of:

- 1. Proposed modified JMF on Form CEM-3511.
- 2. Mix design records on Form CEM-3512 for the accepted JMF to be modified.
- 3. JMF verification on Form CEM-3513 for the accepted JMF to be modified.
- 4. Quality characteristics test results for the modified JMF as specified in section 39-1.03B. Perform tests at the mix design OBC as shown on Form CEM-3512.
- 5. If required, California Test 371 test results for the modified JMF.

With an accepted modified JMF submittal, the Engineer verifies each modified JMF within 5 business days of receiving all verification samples. If California Test 371 is required, the Engineer tests for California Test 371 within 10 days of receiving verification samples.

The Engineer verifies the modified JMF after the modified JMF HMA is placed on the project and verification samples are taken within the first 750 tons following sampling requirements in Section 39-1.03E, "Job Mix Formula Verification." The Engineer tests verification samples for compliance with:

- 1. Stability as shown in the table titled "Hot Mix Asphalt Mix Design Requirements"
- 2. Air void content at design value ±2.0 percent
- 3. Voids in mineral aggregate as shown in the table titled "Hot Mix Asphalt Mix Design Requirements"
- 4. Voids filled with asphalt if an adjustment for asphalt binder content TV is more than ±0.3 percent from the original OBC shown on Form CEM-3512.
- 5. Dust proportion if an adjustment for asphalt binder content TV is more than ±0.3 percent from OBC shown on Form CEM-3512.

If the modified JMF is verified, the Engineer revises your Form CEM-3513 to include the new binder source. Your revised Form CEM-3513 will have the same expiration date as the original Form CEM-3513 for the accepted JMF that is modified.

If a modified JMF is not verified, stop production and any HMA placed using the modified JMF is rejected.

The Engineer deducts \$2,000 from payments for each modified JMF verification. The Engineer deducts an additional \$2,000 from payments for each modified JMF verification that requires California Test 371.

39-1.03H Job Mix Formula Acceptance

You may start HMA production if:

- 1. The Engineer's review of the JMF shows compliance with the specifications.
- 2. The Department has verified the JMF within 12 months before HMA production.
- 3. The Engineer accepts the verified JMF.

39-1.04 CONTRACTOR QUALITY CONTROL

39-1.04A General

Establish, maintain, and change a quality control system to ensure materials and work comply with the specifications. Submit quality control test results to the Engineer within 3 business days of a request except when QC / QA is specified.

You must identify the HMA sampling location in your Quality Control Plan. During production, take samples under California Test 125. You may sample HMA from:

- 1. The plant
- 2. The truck
- 3. A windrow
- 4. The paver hopper
- 5. The mat behind the paver

39-1.04B Prepaying Conference

Meet with the Engineer at a prepaving conference at a mutually agreed time and place. Discuss methods of performing the production and paving work.

39-1.04C Asphalt Rubber Binder

Take asphalt rubber binder samples from the feed line connecting the asphalt rubber binder tank to the HMA plant. Sample and test asphalt rubber binder under Laboratory Procedure LP-11.

Test asphalt rubber binder for compliance with the viscosity specifications in Section 39-1.02, "Materials." During asphalt rubber binder production and HMA production using asphalt rubber binder, measure viscosity every hour with not less than 1 reading for each asphalt rubber binder batch. Log measurements with corresponding time and asphalt rubber binder temperature. Submit the log daily in writing.

Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance." With the Certificate of Compliance, submit test results in writing for CRM and asphalt modifier with each truckload delivered to the HMA plant. A Certificate of Compliance for asphalt modifier must not represent more than 5,000 pounds. Use an AASHTO-certified laboratory for testing.

Sample and test gradation and wire and fabric content of CRM once per 10,000 pounds of scrap tire CRM and once per 3,400 pounds of high natural CRM. Sample and test scrap tire CRM and high natural CRM separately.

Submit certified weight slips in writing for the CRM and asphalt modifier furnished.

39-1.04D Aggregate

Determine the aggregate moisture content and RAP moisture content in continuous mixing plants at least twice a day during production and adjust the plant controller. Determine the RAP moisture content in batch mixing plants at least twice a day during production and adjust the plant controller.

39-1.04E Reclaimed Asphalt Pavement

Perform RAP quality control testing each day.

Sample RAP once daily and determine the RAP aggregate gradation under Laboratory Procedure LP-9 and submit the results to the Engineer in writing with the combined aggregate gradation.

39-1.04F Density Cores

To determine density for Standard and QC / QA projects, take 4-inch or 6-inch diameter density cores at least once every 5 business days. Take 1 density core for every 250 tons of HMA from random locations the Engineer

designates. Take density cores in the Engineer's presence and backfill and compact holes with material authorized by the Engineer. Before submitting a density core to the Engineer, mark it with the density core's location and place it in a protective container.

If a density core is damaged, replace it with a density core taken within 1 foot longitudinally from the original density core. Relocate any density core located within 1 foot of a rumble strip to 1 foot transversely away from the rumble strip.

39-1.04G Briquettes

Prepare 3 briquettes for each stability and air voids content determination. Report the average of 3 tests. Prepare new briquettes and test if the range of stability for the 3 briquettes is more than 12 points.

You may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If you use these briquettes and tests using bulk specific gravity fail, you may prepare 3 new briquettes and determine a new bulk specific gravity.

39-1.05 ENGINEER'S ACCEPTANCE

The Engineer's acceptance of HMA is specified in the sections for each HMA construction process.

The Engineer samples materials for testing under California Test 125 and the applicable test method except samples may be taken from:

- 1. The plant from:
 - 1.1. A truck
 - 1.2. An automatic sampling device
- 2. The mat behind the paver

Sampling must be independent of Contractor quality control, statistically-based, and random.

If you request, the Engineer splits samples and provides you with a part.

The Engineer accepts HMA based on:

- 1. Accepted JMF
- 2. Accepted QCP for Standard and QC / QA
- 3. Compliance with the HMA Acceptance tables
- 4. Acceptance of a lot for QC / QA
- 5. Visual inspection

The Engineer prepares 3 briquettes for each stability and air voids content determination. The Engineer reports the average of 3 tests. The Engineer prepares new briquettes and test if the range of stability for the 3 briquettes is more than 8 points.

The Engineer may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If the Engineer uses the same briquettes and the tests using bulk specific gravity fail, the Engineer prepares 3 new briquettes and determines a new bulk specific gravity.

39-1.06 DISPUTE RESOLUTION

You and the Engineer must work together to avoid potential conflicts and to resolve disputes regarding test result discrepancies. Notify the Engineer in writing within 5 business days of receiving a test result if you dispute the test result.

If you or the Engineer dispute each other's test results, submit written quality control test results and copies of paperwork including worksheets used to determine the disputed test results to the Engineer. An Independent Third Party (ITP) performs referee testing. Before the ITP participates in a dispute resolution, the ITP must be accredited under the Department's Independent Assurance Program. The ITP must be independent of the project. By mutual agreement, the ITP is chosen from:

- 1. A Department laboratory
- 2. A Department laboratory in a district or region not in the district or region the project is located
- 3. The Transportation Laboratory

4. A laboratory not currently employed by you or your HMA producer

If split quality control or acceptance samples are not available, the ITP uses any available material representing the disputed HMA for evaluation.

39-1.07 PRODUCTION START-UP EVALUATION

The Engineer evaluates HMA production and placement at production start-up.

Within the first 750 tons produced on the first day of HMA production, in the Engineer's presence and from the same production run, take samples of:

- 1. Aggregate
- 2. Asphalt binder
- 3. RAP
- 4. HMA

Sample aggregate from cold feed belts or hot bins. Take RAP samples from the RAP system. Sample HMA under California Test 125 except if you request in writing and the Engineer approves, you may sample HMA from:

- 1. The plant
- 2. The truck
- 3. A windrow
- 4. The paver hopper
- 5. The mat behind the paver

For aggregate, RAP, and HMA, split the samples into at least 4 parts and label their containers. Submit 3 split parts to the Engineer and keep 1 part.

For Standard and QC / QA projects, you and the Engineer must test the split samples and report test results in writing within 3 business days of sampling. If you proceed before receipt of the test results, the Engineer may consider the HMA placed to be represented by these test results.

For Standard and QC / QA projects, take 4-inch or 6-inch diameter density cores within the first 750 tons on the first day of HMA production. For each density core, the Engineer reports the bulk specific gravity determined under California Test 308, Method A in addition to the percent of maximum theoretical density. You may test for in-place density at the density core locations and include them in your production tests for percent of maximum theoretical density.

39-1.08 PRODUCTION

39-1.08A General

Produce HMA in a batch mixing plant or a continuous mixing plant. Proportion aggregate by hot or cold feed control.

HMA plants must be Department-qualified. Before production, the HMA plant must have a current qualification under the Department's Materials Plant Quality Program.

During production, you may adjust:

- 1. Hot or cold feed proportion controls for virgin aggregate and RAP
- 2. The set point for asphalt binder content

39-1.08B Mixing

Mix HMA ingredients into a homogeneous mixture of coated aggregates.

Asphalt binder must be between 275 °F and 375 °F when mixed with aggregate.

Asphalt rubber binder must be between 375 °F and 425 °F when mixed with aggregate.

When mixed with asphalt binder, aggregate must not be more than 325 °F except aggregate for OGFC with unmodified asphalt binder must be not more than 275 °F. Aggregate temperature specifications do not apply when you use RAP.

HMA with or without RAP must not be more than 325 °F.

39-1.08C Asphalt Rubber Binder

Deliver scrap tire CRM and high natural CRM in separate bags.

Either proportion and mix asphalt binder, asphalt modifier, and CRM simultaneously or premix the asphalt binder and asphalt modifier before adding CRM. If you premix asphalt binder and asphalt modifier, asphalt binder must be from 375 to 425 degrees F when you add the asphalt modifier. Mix them for at least 20 minutes. When you add CRM, the asphalt binder and asphalt modifier must be between 375 °F and 425 °F.

Do not use asphalt rubber binder during the first 45 minutes of the reaction period. During this period, the asphalt rubber binder mixture must be between 375 °F and the lower of 425 °F or 25 °F below the asphalt binder's flash point indicated in the MSDS.

If any asphalt rubber binder is not used within 4 hours after the reaction period, discontinue heating. If the asphalt rubber binder drops below 375 °F, reheat before use. If you add more scrap tire CRM to the reheated asphalt rubber binder, the binder must undergo a 45-minute reaction period. The added scrap tire CRM must not exceed 10 percent of the total asphalt rubber binder weight. Reheated and reacted asphalt rubber binder must comply with the viscosity specifications for asphalt rubber binder in Section 39-1.02, "Materials." Do not reheat asphalt rubber binder more than twice.

39-1.09 SUBGRADE, TACK COAT, AND GEOSYNTHETIC PAVEMENT INTERLAYER

39-1.09A General

Prepare subgrade or apply tack coat to surfaces receiving HMA. If specified, place geosynthetic pavement interlayer over a coat of asphalt binder.

39-1.09B Subgrade

Subgrade to receive HMA must comply with the compaction and elevation tolerance specifications in the sections for the material involved. Subgrade must be free of loose and extraneous material. If HMA is paved on existing base or pavement, remove loose paving particles, dirt, and other extraneous material by any means including flushing and sweeping.

39-1.09C Tack Coat

Apply tack coat:

- 1. To existing pavement including planed surfaces
- 2. Between HMA layers
- 3. To vertical surfaces of:
 - 3.1. Curbs
 - 3.2. Gutters
 - 3.3. Construction joints

Before placing HMA, apply tack coat in 1 application at the minimum residual rate specified for the condition of the underlying surface:

Tack Coat Application Rates for HMA Type A, Type B, and RHMA-G

	Minimum Residual Rates (gallons per square yard)				
	CSS1/CSS1h,	CRS1/CRS2,	Asphalt Binder and		
HMA over:	SS1/SS1h and	RS1/RS2 and	PMRS2/PMCRS2		
TIMA over.	QS1h/CQS1h	QS1/CQS1	and		
	Asphaltic	Asphaltic	PMRS2h/PMCRS2h		
	Emulsion	Emulsion	Asphaltic Emulsion		
New HMA (between layers)	0.02	0.03	0.02		
PCC and existing HMA (AC)	0.03	0.04	0.03		
surfaces	0.03	0.04	0.03		
Planed PCC and HMA (AC)	0.05	0.06	0.04		
surfaces	0.03	0.00	0.04		

Tack Coat Application Rates for OGFC

	Minimum Residual Rates (gallons per square yard)				
	CSS1/CSS1h,	CRS1/CRS2,	Asphalt Binder and		
OGFC over:	SS1/SS1h and	RS1/RS2 and	PMRS2/PMCRS2		
OGI'C over.	QS1h/CQS1h	QS1/CQS1	and		
	Asphaltic	Asphaltic	PMRS2h/PMCRS2h		
	Emulsion	Emulsion	Asphaltic Emulsion		
New HMA	0.03	0.04	0.03		
PCC and existing HMA (AC) surfaces	0.05	0.06	0.04		
Planed PCC and HMA (AC) surfaces	0.06	0.07	0.05		

If you dilute asphaltic emulsion, mix until homogeneous before application.

Apply to vertical surfaces with a residual tack coat rate that will thoroughly coat the vertical face without running off.

If you request in writing and the Engineer authorizes, you may:

- 1. Change tack coat rates
- 2. Omit tack coat between layers of new HMA during the same work shift if:
 - 2.1. No dust, dirt, or extraneous material is present
 - 2.2. The surface is at least 140 °F

Immediately in advance of placing HMA, apply additional tack coat to damaged areas or where loose or extraneous material is removed.

Close areas receiving tack coat to traffic. Do not track tack coat onto pavement surfaces beyond the job site. Asphalt binder tack coat must be between 285 °F and 350 °F when applied.

39-1.09D Geosynthetic Pavement Interlayer

Place geosynthetic pavement interlayer in compliance with the manufacturer's recommendations. Before placing the geosynthetic pavement interlayer and asphalt binder:

- 1. Repair cracks 1/4 inch and wider, spalls, and holes in the pavement. The State pays for this repair work under Section 4-1.03D, "Extra Work."
- 2. Clean the pavement of loose and extraneous material.

Immediately before placing the interlayer, apply 0.25 gallon ± 0.03 gallon of asphalt binder per square yard of interlayer or until the fabric is saturated. Apply asphalt binder the width of the geosynthetic pavement interlayer plus 3 inches on each side. At interlayer overlaps, apply asphalt binder on the lower interlayer the same overlap distance as the upper interlayer.

Asphalt binder must be from 285 °F to 350 °F and below the minimum melting point of the geosynthetic pavement interlayer when applied.

Align and place the interlayer with no overlapping wrinkles, except a wrinkle that overlaps may remain if it is less than 1/2 inch thick. If the overlapping wrinkle is more than 1/2 inch thick, cut the wrinkle out and overlap the interlayer no more than 2 inches.

The minimum HMA thickness over the interlayer must be 0.12 foot thick including conform tapers. Do not place the interlayer on a wet or frozen surface.

Overlap the interlayer borders between 2 inches and 4 inches. In the direction of paving, overlap the following roll with the preceding roll at any break.

You may use rolling equipment to correct distortions or wrinkles in the interlayer.

If asphalt binder tracked onto the interlayer or brought to the surface by construction equipment causes interlayer displacement, cover it with a small quantity of HMA.

Before placing HMA on the interlayer, do not expose the interlayer to:

- 1. Traffic except for crossings under traffic control and only after you place a small HMA quantity
- 2. Sharp turns from construction equipment
- 3. Damaging elements

Pave HMA on the interlayer during the same work shift.

39-1.10 SPREADING AND COMPACTING EQUIPMENT

Paving equipment for spreading must be:

- 1. Self-propelled
- 2. Mechanical
- 3. Equipped with a screed or strike-off assembly that can distribute HMA the full width of a traffic lane
- 4. Equipped with a full-width compacting device
- 5. Equipped with automatic screed controls and sensing devices that control the thickness, longitudinal grade, and transverse screed slope

Install and maintain grade and slope references.

The screed must produce a uniform HMA surface texture without tearing, shoving, or gouging.

The paver must not leave marks such as ridges and indentations unless you can eliminate them by rolling.

Rollers must be equipped with a system that prevents HMA from sticking to the wheels. You may use a parting agent that does not damage the HMA or impede the bonding of layers.

In areas inaccessible to spreading and compacting equipment:

- 1. Spread the HMA by any means to obtain the specified lines, grades and cross sections.
- 2. Use a pneumatic tamper, plate compactor, or equivalent to achieve thorough compaction.

39-1.11 TRANSPORTING, SPREADING, AND COMPACTING

Do not pave HMA on a wet pavement or frozen surface.

You may deposit HMA in a windrow and load it in the paver if:

- 1. Paver is equipped with a hopper that automatically feeds the screed
- 2. Loading equipment can pick up the windrowed material and deposit it in the paver hopper without damaging base material
- 3. Activities for deposit, pick-up, loading, and paving are continuous
- 4. HMA temperature in the windrow does not fall below 260 °F

You may pave HMA in 1 or more layers on areas less than 5 feet wide and outside the traveled way including shoulders. You may use mechanical equipment other than a paver for these areas. The equipment must produce a uniform smoothness and texture.

HMA handled, spread, or windrowed must not stain the finished surface of any improvement including pavement.

Do not use petroleum products such as kerosene or diesel fuel to release HMA from trucks, spreaders, or compactors.

HMA must be free of:

- 1. Segregation
- 2. Coarse or fine aggregate pockets
- 3. Hardened lumps

Longitudinal joints in the top layer must match specified lane edges. Alternate longitudinal joint offsets in lower layers at least 0.5 foot from each side of the specified lane edges. You may request in writing other longitudinal joint placement patterns.

Until the adjoining through lane's top layer has been paved, do not pave the top layer of:

- 1. Shoulders
- 2. Tapers
- 3. Transitions
- 4. Road connections
- 5. Driveways
- 6. Curve widenings
- 7. Chain control lanes

- 8. Turnouts
- 9. Turn pockets

If the number of lanes change, pave each through lane's top layer before paving a tapering lane's top layer. Simultaneous to paving a through lane's top layer, you may pave an adjoining area's top layer including shoulders. Do not operate spreading equipment on any area's top layer until completing final compaction.

If HMA (leveling) is specified, fill and level irregularities and ruts with HMA before spreading HMA over base, existing surfaces, or bridge decks. You may use mechanical equipment other than a paver for these areas. The equipment must produce a uniform smoothness and texture. HMA used to change an existing surface's cross slope or profile is not HMA (leveling).

If placing HMA against the edge of existing pavement, sawcut or grind the pavement straight and vertical along the joint and remove extraneous material without damaging the surface remaining in place. If placing HMA against the edge of a longitudinal or transverse construction joint and the joint is damaged or not placed to a neat line, sawcut or grind the pavement straight and vertical along the joint and remove extraneous material without damaging the surface remaining in place. Repair or remove and replace damaged pavement at your expense.

Rolling must leave the completed surface compacted and smooth without tearing, cracking, or shoving. Complete finish rolling activities before the pavement surface temperature is:

- 1. Below 150 °F for HMA with unmodified binder
- 2. Below 140 °F for HMA with modified binder
- 3. Below 200 °F for RHMA-G

If a vibratory roller is used as a finish roller, turn the vibrator off.

Do not use a pneumatic tired roller to compact RHMA-G.

For Standard and QC/QA, if a 3/4-inch aggregate grading is specified, you may use a 1/2-inch aggregate grading if the specified total paved thickness is at least 0.15 foot and less than 0.20 foot thick.

Spread and compact HMA under Section 39-3.03, "Spreading and Compacting Equipment," and Section 39-3.04, "Transporting, Spreading, and Compacting," for any of the following:

- 1. Specified paved thickness is less than 0.15 foot.
- 2. Specified paved thickness is less than 0.20 foot and a 3/4-inch aggregate grading is specified and used.
- 3. You spread and compact at:
 - 3.1. Asphalt concrete surfacing replacement areas
 - 3.2. Leveling courses
 - 3.3. Areas the Engineer determines conventional compaction and compaction measurement methods are impeded

Do not open new HMA pavement to public traffic until its mid-depth temperature is below 160 °F.

If you request in writing and the Engineer authorizes, you may cool HMA Type A and Type B with water when rolling activities are complete. Apply water under Section 17, "Watering."

Spread sand at a rate between 1 pound and 2 pounds per square yard on new RHMA-G, RHMA-O, and RHMA-O-HB pavement when finish rolling is complete. Sand must be free of clay or organic matter. Sand must comply with Section 90-3.03, "Fine Aggregate Grading." Keep traffic off the pavement until spreading sand is complete.

39-1.12 SMOOTHNESS

39-1.12A General

Determine HMA smoothness with a profilograph and a straightedge.

Smoothness specifications do not apply to OGFC placed on existing pavement not constructed under the same project.

If portland cement concrete is placed on HMA:

- 1. Cold plane the HMA finished surface to within specified tolerances if it is higher than the grade specified by the Engineer.
- 2. Remove and replace HMA if the finished surface is lower than 0.05 foot below the grade specified by the Engineer.

39-1.12B Straightedge

The HMA pavement top layer must not vary from the lower edge of a 12-foot long straightedge:

- 1. More than 0.01 foot when the straight edge is laid parallel with the centerline
- 2. More than 0.02 foot when the straightedge is laid perpendicular to the centerline and extends from edge to edge of a traffic lane
- 3. More than 0.02 foot when the straightedge is laid within 24 feet of a pavement conform

39-1.12C Profilograph

Under California Test 526, determine the zero (null) blanking band Profile Index (PI_0) and must-grinds on the top layer of HMA Type A, Type B, and RHMA-G pavement. Take 2 profiles within each traffic lane, 3 feet from and parallel with the edge of each lane.

A must-grind is a deviation of 0.3 inch or more in a length of 25 feet. You must correct must-grinds.

For OGFC, only determine must-grinds when placed over HMA constructed under the same project. The top layer of the underlying HMA must comply with the smoothness specifications before placing OGFC.

Profile pavement in the Engineer's presence. Choose the time of profiling.

On tangents and horizontal curves with a centerline radius of curvature 2,000 feet or more, the PI_0 must be at most 2.5 inches per 0.1-mile section.

On horizontal curves with a centerline radius of curvature between 1,000 feet and 2,000 feet including pavement within the superelevation transitions, the PI₀ must be at most 5 inches per 0.1-mile section.

Before the Engineer accepts HMA pavement for smoothness, submit written final profilograms.

Submit 1 electronic copy of profile information in Microsoft Excel and 1 electronic copy of longitudinal pavement profiles in ".erd" format or other ProVAL compatible format to the Engineer and to:

Smoothness@dot.ca.gov

The following HMA pavement areas do not require a PI_0 . You must measure these areas with a 12-foot straightedge and determine must-grinds with a profilograph:

- 1. New HMA with a total thickness less than 0.25 foot
- 2. HMA sections of city or county streets and roads, turn lanes and collector lanes that are less than 1,500 feet in length

The following HMA pavement areas do not require a PI_0 . You must measure these areas with a 12-foot straightedge:

- 1. Horizontal curves with a centerline radius of curvature less than 1,000 feet including pavement within the superelevation transitions of those curves
- 2. Within 12 feet of a transverse joint separating the pavement from:
 - 2.1. Existing pavement not constructed under the same project
 - 2.2. A bridge deck or approach slab
- 3. Exit ramp termini, truck weigh stations, and weigh-in-motion areas
- 4. If steep grades and superelevation rates greater than 6 percent are present on:
 - 4.1. Ramps
 - 4.2. Connectors
- 5. Turn lanes
- 6. Areas within 15 feet of manholes or drainage transitions
- 7. Acceleration and deceleration lanes for at-grade intersections
- 8. Shoulders and miscellaneous areas
- 9. HMA pavement within 3 feet from and parallel to the construction joints formed between curbs, gutters, or existing pavement

39-1.12D Smoothness Correction

If the top layer of HMA Type A, Type B, or RHMA-G pavement does not comply with the smoothness specifications, grind the pavement to within tolerances, remove and replace it, or place a layer of HMA. The Engineer must authorize your choice of correction before the work begins.

Remove and replace the areas of OGFC not in compliance with the must-grind and straightedge specifications, except you may grind OGFC for correcting smoothness:

- 1. At a transverse joint separating the pavement from pavement not constructed under the same project
- 2. Within 12 feet of a transverse joint separating the pavement from a bridge deck or approach slab

Corrected HMA pavement areas must be uniform rectangles with edges:

- 1. Parallel to the nearest HMA pavement edge or lane line
- 2. Perpendicular to the pavement centerline

Measure the corrected HMA pavement surface with a profilograph and a 12-foot straightedge and correct the pavement to within specified tolerances. If a must-grind area or straightedged pavement cannot be corrected to within specified tolerances, remove and replace the pavement.

On ground areas not overlaid with OGFC, apply fog seal coat under Section 37-1, "Seal Coats."

39-1.13 MISCELLANEOUS AREAS AND DIKES

Miscellaneous areas are outside the traveled way and include:

- 1. Median areas not including inside shoulders
- 2. Island areas
- 3. Sidewalks
- 4. Gutters
- 5. Gutter flares
- 6. Ditches
- 7. Overside drains
- 8. Aprons at the ends of drainage structures

Spread miscellaneous areas in 1 layer and compact to the specified lines and grades.

For miscellaneous areas and dikes:

- 1. Do not submit a JMF.
- 2. Choose the 3/8-inch or 1/2-inch HMA Type A and Type B aggregate gradations.
- 3. Minimum asphalt binder content must be 6.8 percent for 3/8-inch aggregate and 6.0 percent for 1/2-inch aggregate. If you request in writing and the Engineer authorizes, you may reduce the minimum asphalt binder content.
- 4. Choose asphalt binder Grade PG 70-10 or the same grade specified for HMA.

39-2 STANDARD

39-2.01 DESCRIPTION

If HMA is specified as Standard, construct it under Section 39-1, "General," this Section 39-2, "Standard," and Section 39-5, "Measurement and Payment."

39-2.02 CONTRACTOR QUALITY CONTROL

39-2.02A Quality Control Plan

Establish, implement, and maintain a Quality Control Plan (QCP) for HMA. The QCP must describe the organization and procedures you will use to:

- 1. Control the quality characteristics
- 2. Determine when corrective actions are needed (action limits)
- 3. Implement corrective actions

When you submit the proposed JMF, submit the written QCP. You and the Engineer must discuss the QCP during the prepaying conference.

The QCP must address the elements affecting HMA quality including:

- 1. Aggregate
- 2. Asphalt binder
- 3. Additives
- 4. Production
- 5. Paving

The Engineer reviews each QCP within 5 business days from the submittal. Hold HMA production until the Engineer accepts the QCP in writing. The Engineer's QCP acceptance does not mean your compliance with the QCP will result in acceptable HMA. Section 39-1.05, "Engineer's Acceptance," specifies HMA acceptance.

39-2.02B Quality Control Testing

Perform sampling and testing at the specified frequency for the following quality characteristics:

Minimum Quality Control – Standard

		Minimum (Quality Control	– Standard		
Quality	Test	Minimum		HMA	Туре	
Characteristic	Method	Sampling				
		and	A	В	RHMA-G	OGFC
		Testing				
		Frequency				
Aggregate gradation ^a	CT 202	1 per 750	JMF ±	JMF ±	JMF ±	JMF ±
1188108uto Bruduttoti	01202	tons and	Tolerance b	Tolerance b	Tolerance b	Tolerance b
Sand equivalent	CT 217	any	47	42	47	
(min.) ^c	C1 217	remaining	7/	72	7/	
Asphalt binder	CT 379 or	part at the	JMF ± 0.45	JMF ± 0.45	JMF ± 0.50	JMF ± 0.50
content (%)	382	end of the	JMF ± 0.43	JMF ± 0.43	JMIF ± 0.30	JMIF ± 0.30
Content (70)	362	project				
HMA moisture	CT 226 or	1 per	1.0	1.0	1.0	1.0
content (%, max.)	CT 370	2,500 tons	1.0	1.0	1.0	1.0
content (70, max.)	C1 370	but not				
		less than 1				
		per paving				
		day				
Field compaction,	Quality	2 per	91 - 97	91 - 97	91 - 97	
(%, max. theoretical	control	business	71 - J/	91 - 9 <i>1</i>	91 - 91	
density) d,e	plan	day (min.)				
Stabilometer value	CT 366	•				
(min.) c, f	C1 300	One per 4,000 tons				
No. 4 and 3/8"			30	30		
		or 2 per 5 business	30	30		
gradings			27	25	22	
1/2" and 3/4"		days,	37	35	23	
gradings	OT 267	which-	4.1.2	4.1.0	C	
Air voids content (%) c, g	CT 367	ever is	4 ± 2	4 ± 2	Specification	
		more			± 2	
Aggregate moisture	CT 226 or					
content at	CT 370					
continuous mixing		2 per day				
plants and RAP		during				
moisture content at		production				
continuous mixing		P				
plants and batch						
mixing plants h	OF 2					
Percent of crushed	CT 205					
particles coarse						
aggregate (%, min.)			_			_
One fractured			90	25		90
face					_	
Two fractured		As	75		90	75
faces		necessary				
Fine aggregate (%,		and				
min)		designat-				
(Passing No. 4		ed in the				
sieve and		QCP. At				
retained on No.		least once				
8 sieve.)		per project				
One fractured		per project	70	20	70	90
face						
Los Angeles Rattler	CT 211					
(%, max.)						
Loss at 100 rev.			12		12	12
Loss at 500 rev.			45	50	40	40
· · · · · · · · · · · · · · · · · · ·	•	-	•	•		

Flat and elongated	CT 235		Report only	Report only	Report only	Report only
particles (%, max.						
by weight @ 5:1)						
Fine aggregate	CT 234					
angularity (%, min.)			45	45	45	
Voids filled with	LP-3					
asphalt (%) ^j						
No. 4 grading			76.0 - 80.0	76.0 - 80.0	Report only	
3/8" grading			73.0 - 76.0	73.0 - 76.0		
1/2" grading			65.0 - 75.0	65.0 - 75.0		
3/4" grading			65.0 - 75.0	65.0 - 75.0		
Voids in mineral	LP-2					
aggregate (% min.) j						
No. 4 grading			17.0	17.0		
3/8" grading			15.0	15.0		
1/2" grading			14.0	14.0	$18.0 - 23.0^{k}$	
3/4" grading			13.0	13.0	$18.0 - 23.0^{k}$	
Dust proportion j	LP-4					
No. 4 and 3/8"						
gradings			0.9 - 2.0	0.9 - 2.0	Report only	
1/2" and 3/4"						
gradings			0.6 - 1.3	0.6 - 1.3		
Smoothness	Section		12-foot	12-foot	12-foot	12-foot
	39-1.12		straightedge,	straightedge,	straightedge,	straightedge
			must-grind,	must-grind,	must-grind,	and must-
			and PI ₀	and PI ₀	and PI ₀	grind
Asphalt rubber	Section	Section				
binder viscosity @	39-1.02D	39-1.04C			1,500 - 4,000	1,500 - 4,000
375 °F, centipoises						
Asphalt modifier	Section	Section			Section 39-	Section 39-
	39-1.02D	39-1.04C			1.02D	1.02D
Crumb rubber	Section	Section			Section 39-	Section 39-
modifier	39-1.02D	39-1.04C			1.02D	1.02D

Notes:

- 1. 1/2-inch, 3/8-inch, No. 4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot.
- 2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.

- 1. In-place density measurements using the method specified in your QC.
- 2. California Test 309 to determine maximum theoretical density at the frequency specified in California Test 375, Part 5C.

^a Determine combined aggregate gradation containing RAP under Laboratory Procedure LP-9.

^b The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."

^c Report the average of 3 tests from a single split sample.

^d Determine field compaction for any of the following conditions:

^e To determine field compaction use:

 $^{^{\}rm f}$ Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 $^{\rm o}$ F \pm 5 $^{\rm o}$ F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 $^{\rm o}$ F for a minimum of 2 hours and not more than 3 hours."

^g Determine the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.

^h For adjusting the plant controller at the HMA plant.

¹The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.

^j Report only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC.

^k Voids in mineral aggregate for RHMA-G must be within this range.

For any single quality characteristic except smoothness, if 2 consecutive quality control test results do not comply with the action limits or specifications:

- 1. Stop production.
- 2. Notify the Engineer in writing.
- 3. Take corrective action.
- 4. Demonstrate compliance with the specifications before resuming production and placement on the State highway.

39-2.03 ENGINEER'S ACCEPTANCE

39-2.03A Testing

The Engineer samples for acceptance testing and tests for:

Contract No. 12-0E3104 133 of 297 **HMA Acceptance - Standard**

O1'-	Chana	-4:-4	: _		MA Acceptance		A T	
Quality	Cnara	cterist	ıc	Test			A Type	OCEC
			0	Method	A	В	RHMA-G	OGFC
Aggreg	gate gra			CT 202	$JMF \pm$	JMF ±	JMF ±	$\mathrm{JMF}\pm$
Sieve	3/4"	1/2"	3/8"		Tolerance c	Tolerance c	Tolerance c	Tolerance c
1/2"	X^{b}							
3/8"		X						
No. 4			X					
	X	X	X					
				-				
No. 200	X	X	X	CE 215	4.5	40	4.5	
Sand equiv				CT 217	47	42	47	
Asphalt bin	ider coi	ntent (%)	CT 379 or	$JMF \pm 0.45$	$JMF \pm 0.45$	$JMF \pm 0.50$	$JMF \pm 0.50$
				382				
HMA mois	ture co	ntent (%,	CT 226 or	1.0	1.0	1.0	1.0
max.)				CT 370				
Field comp	action	(% ma	Χ.	CT 375	91 – 97	91 – 97	91 – 97	
theoretical				010,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	71 71	,,,,	
Stabilomete			\ d,g	CT 366				
				C1 300	20	20		
No. 4 a		_	_		30	30		
1/2" an	na 3/4"	gradin	igs		37	35	23	
Air voids co	ontent	(%) ^{u, n}		CT 367	4 ± 2	4 ± 2	Specification ±	
							2	
Percent of o	crushed	l partic	eles	CT 205				
Coarse agg								
One fra			/		90	25		90
Two fr					75		90	75
Fine aggreg					7.5		70	73
(Passin								
retaine			eve.)		= 0	20	=0	0.0
One fra					70	20	70	90
Los Angele	es Rattl	er (%,		CT 211				
max.)					12		12	12
Loss at	t 100 re	ev.			45	50	40	40
Loss at	t 500 re	ev.						
Fine aggreg	gate an	gularit	v (%.	CT 234				
min.)	· · · · · ·	J	, (·)		45	45	45	
Flat and elo	ngated	nartic	les	CT 235	Report only	Report only	Report only	Report only
(%, max. by	_	-		C1 233	report only	Report only	report only	Report only
				ID2				
Voids filled			. (%)	LP-3	760 000	760 000	D .	
No. 4 g		,			76.0 – 80.0	76.0 – 80.0	Report only	
3/8" gr					73.0 - 76.0	73.0 - 76.0		
1/2" gr					65.0 - 75.0	65.0 - 75.0		
3/4" gr	ading				65.0 - 75.0	65.0 - 75.0		
Voids in m	ineral a	ggreg	ate	LP-2				
(% min.) ^j								
No. 4 g	oradino				17.0	17.0		
3/8" gr		,			15.0	15.0		
1/2" gr					14.0	14.0	$18.0 - 23.0^{k}$	
							$18.0 - 23.0^{k}$ $18.0 - 23.0^{k}$	
3/4" grading			I.D. 4	13.0	13.0	16.0 – 23.0		
	Dust proportion ^J		_	LP-4				
	No. 4 and 3/8" gradings				0.9 - 2.0	0.9 - 2.0	Report only	
1/2" an		gradin	ıgs		0.6 - 1.3	0.6 – 1.3		
Smoothness	s			Section	12-foot	12-foot	12-foot	12-foot
				39-1.12	straightedge,	straightedge,	straightedge,	straightedge
					must-grind,	must-grind, and	must-grind, and	and must-grind
					and PI_0	PI_0	PI_0	Simo
Asphalt bin	nder			Various	Section 92	Section 92	Section 92	Section 92
A raphant offi	1401			7 arrous	50000011 32	Section 32	Section 32	Section 32

Asphalt rubber binder	Various	 	Section 92- 1.02(C) and Section 39- 1.02D	Section 92- 1.02(C) and Section 39- 1.02D
Asphalt modifier	Various	 	Section 39- 1.02D	Section 39- 1.02D
Crumb rubber modifier	Various	 	Section 39- 1.02D	Section 39- 1.02D

^a The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.

- 1. 1/2-inch, 3/8-inch, or No.4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot.
- 2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.

- 1. California Test 308, Method A, to determine in-place density of each density core.
- 2. California Test 309 to determine maximum theoretical density at the frequency specified in California Test 375, Part 5C.
- ^g Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F ±5 °F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."
- ^h The Engineer determines the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.
- ¹ The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.
- ^j Report only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC.

No single test result may represent more than the smaller of 750 tons or 1 day's production.

For any single quality characteristic except smoothness, if 2 consecutive acceptance test results do not comply with the specifications:

- 1. Stop production.
- 2. Take corrective action.
- 3. In the Engineer's presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts.
- 4. Demonstrate compliance with the specifications before resuming production and placement on the State highway.

The Engineer tests the density core you take from each 250 tons of HMA production. The Engineer determines the percent of maximum theoretical density for each density core by determining the density core's density and dividing by the maximum theoretical density.

The Engineer determines the percent of maximum theoretical density from density cores taken from the final layer measured the full depth of the total paved HMA thickness if any of the following applies:

- 1. 1/2-inch, 3/8-inch, or No. 4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot and any layer is less than 0.15 foot.
- 2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot and any layer is less than 0.20 foot.

For percent of maximum theoretical density, the Engineer determines a deduction for each test result outside the specifications in compliance with:

^b "X" denotes the sieves the Engineer considers for the specified aggregate gradation.

^c The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."

^d The Engineer reports the average of 3 tests from a single split sample.

^e The Engineer determines field compaction for any of the following conditions:

^f To determined field compaction, the Engineer uses:

^k Voids in mineral aggregate for RHMA-G must be within this range.

Reduced Payment Factors for Percent of Maximum Theoretical Density

HMA Type A and B	Reduced Payment	HMA Type A and B	Reduced Payment
and RHMA-G	Factor	and RHMA-G	Factor
Percent of Maximum		Percent of Maximum	
Theoretical Density		Theoretical Density	
91.0	0.0000	97.0	0.0000
90.9	0.0125	97.1	0.0125
90.8	0.0250	97.2	0.0250
90.7	0.0375	97.3	0.0375
90.6	0.0500	97.4	0.0500
90.5	0.0625	97.5	0.0625
90.4	0.0750	97.6	0.0750
90.3	0.0875	97.7	0.0875
90.2	0.1000	97.8	0.1000
90.1	0.1125	97.9	0.1125
90.0	0.1250	98.0	0.1250
89.9	0.1375	98.1	0.1375
89.8	0.1500	98.2	0.1500
89.7	0.1625	98.3	0.1625
89.6	0.1750	98.4	0.1750
89.5	0.1875	98.5	0.1875
89.4	0.2000	98.6	0.2000
89.3	0.2125	98.7	0.2125
89.2	0.2250	98.8	0.2250
89.1	0.2375	98.9	0.2375
89.0	0.2500	99.0	0.2500
< 89.0	Remove and Replace	> 99.0	Remove and Replace

39-2.04 TRANSPORTING, SPREADING, AND COMPACTING

Determine the number of rollers needed to obtain the specified density and surface finish.

39-3 METHOD

39-3.01 DESCRIPTION

If HMA is specified as Method, construct it under Section 39-1, "General," this Section 39-3, "Method," and Section 39-5, "Measurement and Payment."

39-3.02 ENGINEER'S ACCEPTANCE

39-3.02A Testing

The Engineer samples for acceptance testing and tests for:

HMA Acceptance - Method

HMA Acceptance - Method									
Quality Characteristic	Test		HMA	Туре					
	Method	A	В	RHMA-G	OGFC				
Aggregate gradation ^a	CT 202	JMF ±	JMF ±	JMF ±	JMF ±				
		Tolerance b	Tolerance b	Tolerance b	Tolerance b				
Sand equivalent (min.) ^c	CT 217	47	42	47					
Asphalt binder content (%)	CT 379 or	$JMF \pm 0.45$	$JMF \pm 0.45$	JMF ± 0.50	JMF ± 0.50				
rispitate officer content (70)	382	JIVII ± 0.43	JWII ± 0.43	3WII ± 0.50	3WII ± 0.50				
HMA moisture content (%,	CT 226 or	1.0	1.0	1.0	1.0				
max.)	CT 370	1.0	1.0	1.0	1.0				
Stabilometer value	CT 366								
(min.) ^{c,d}	C1 300								
No. 4 and 3/8"		30	30						
gradings		30	30						
1/2" and 3/4" gradings		37	35	23					
Percent of crushed	CT 205	31	33	23					
particles	C1 203								
Coarse aggregate (% min.)									
One fractured face		90	25		90				
Two fractured faces		75		90	75				
Fine aggregate (% min)		7.5		70	7.5				
(Passing No. 4 sieve									
and retained on No. 8									
sieve.)									
One fractured face		70	20	70	90				
Los Angeles Rattler (%	CT 211	, 0		, ,	, , ,				
max.)	01 211								
Loss at 100 rev.		12		12	12				
Loss at 500 rev.		45	50	40	40				
Air voids content (%) c, e	CT 367	4 ± 2	4 ± 2	Specification ±					
		2	2	2					
Fine aggregate angularity	CT 234								
(% min.) ^f		45	45	45					
Flat and elongated particles	CT 235								
(% max. by weight @ 5:1)		Report only	Report only	Report only	Report only				
Voids filled with asphalt	LP-3	1 5	1 ,	1 ,	1 ,				
(%) ^g				Report only					
No. 4 grading		76.0 - 80.0	76.0 - 80.0						
3/8" grading		73.0 - 76.0	73.0 - 76.0						
1/2" grading		65.0 - 75.0	65.0 - 75.0						
3/4" grading		65.0 - 75.0	65.0 - 75.0						
Voids in mineral aggregate	LP-2								
(% min.) ^g									
No. 4 grading		17.0	17.0						
3/8" grading		15.0	15.0						
1/2" grading		14.0	14.0	18.0 – 23.0 ^h					
3/4" grading		13.0	13.0	$18.0 - 23.0^{h}$					
Dust proportion ^g	LP-4								
No. 4 and 3/8"		0.9 - 2.0	0.9 - 2.0	Report only					
gradings		0.6 - 1.3	0.6 - 1.3						
1/2" and 3/4" gradings									
Smoothness	Section	12-foot	12-foot	12-foot	12-foot				
	39-1.12	straightedge	straightedge	straightedge	straightedge				
		and must-grind	and must-grind	and must-grind	and must-grind				
Asphalt binder	Various	Section 92	Section 92	Section 92	Section 92				
Asphalt rubber binder	Various			Section 92-	Section 92-				
_				1.02(C) and	1.02(C) and				
	l .		1						

			Section 39-	Section 39-
			1.02D	1.02D
Asphalt modifier	Various	 	Section 39- 1.02D	Section 39- 1.02D
Crumb rubber modifier	Various	 	Section 39- 1.02D	Section 39- 1.02D

^a The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.

No single test result may represent more than the smaller of 750 tons or 1 day's production.

For any single quality characteristic except smoothness, if 2 consecutive acceptance test results do not comply with the specifications:

- 1. Stop production.
- 2. Take corrective action.
- 3. In the Engineer's presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts.
- 4. Demonstrate compliance with the specifications before resuming production and placement on the State highway.

39-3.03 SPREADING AND COMPACTING EQUIPMENT

Each paver spreading HMA Type A and Type B must be followed by 3 rollers:

- 1. One vibratory roller specifically designed to compact HMA. The roller must be capable of at least 2,500 vibrations per minute and must be equipped with amplitude and frequency controls. The roller's gross static weight must be at least 7.5 tons.
- 2. One oscillating type pneumatic-tired roller at least 4 feet wide. Pneumatic tires must be of equal size, diameter, type, and ply. The tires must be inflated to 60 psi minimum and maintained so that the air pressure does not vary more than 5 psi.
- 3. One steel-tired, 2-axle tandem roller. The roller's gross static weight must be at least 7.5 tons.

Each roller must have a separate operator. Rollers must be self-propelled and reversible.

Compact RHMA-G under the specifications for compacting HMA Type A and Type B except do not use pneumatic-tired rollers.

Compact OGFC with steel-tired, 2-axle tandem rollers. If placing over 300 tons of OGFC per hour, use at least 3 rollers for each paver. If placing less than 300 tons of OGFC per hour, use at least 2 rollers for each paver. Each roller must weigh between 126 pounds to 172 pounds per linear inch of drum width. Turn the vibrator off.

39-3.04 TRANSPORTING, SPREADING, AND COMPACTING

Pave HMA in maximum 0.25-foot thick compacted layers.

If the surface to be paved is both in sunlight and shade, pavement surface temperatures are taken in the shade. Spread HMA Type A and Type B only if atmospheric and surface temperatures are:

^b The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."

^c The Engineer reports the average of 3 tests from a single split sample.

^d Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F ±5 °F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."

^e The Engineer determines the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.

^f The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.

^g Report only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC.

^h Voids in mineral aggregate for RHMA-G must be within this range.

Minimum Atmospheric and Surface Temperatures

Compacted Layer					
Thickness, feet	Atmospl	heric,° F	Surface,° F		
	Unmodified Asphalt	Modified Asphalt	Unmodified Asphalt	Modified Asphalt	
	Binder	Binder ^a	Binder	Binder ^a	
< 0.15	55	50	60	55	
0.15 - 0.25	45	45	50	50	

Note:

If the asphalt binder for HMA Type A and Type B is:

- 1. Unmodified asphalt binder, complete:
 - 1.1. First coverage of breakdown compaction before the surface temperature drops below 250 °F
 - 1.2. Breakdown and intermediate compaction before the surface temperature drops below 200 °F
 - 1.3. Finish compaction before the surface temperature drops below 150 °F
- 2. Modified asphalt binder, complete:
 - 2.1. First coverage of breakdown compaction before the surface temperature drops below 240 °F
 - 2.2. Breakdown and intermediate compaction before the surface temperature drops below 180 °F
 - 2.3. Finish compaction before the surface temperature drops below 140 °F

For RHMA-G:

- 1. Only spread and compact if the atmospheric temperature is at least 55 °F and the surface temperature is at least 60 °F.
- 2. Complete the first coverage of breakdown compaction before the surface temperature drops below 285 °F.
- 3. Complete breakdown and intermediate compaction before the surface temperature drops below 250 °F.
- 4. Complete finish compaction before the surface temperature drops below 200 °F.
- 5. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver's hopper or to the pavement surface.

For OGFC with unmodified asphalt binder:

- 1. Only spread and compact if the atmospheric temperature is at least 55 °F and the surface temperature is at least 60 °F.
- 2. Complete first coverage using 2 rollers before the surface temperature drops below 240 °F.
- 3. Complete all compaction before the surface temperature drops below 200 °F.
- 4. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver's hopper or to the pavement surface.

For OGFC with modified asphalt binder except asphalt rubber binder:

- 1. Only spread and compact if the atmospheric temperature is at least 50 °F and the surface temperature is at least 50 °F.
- 2. Complete first coverage using 2 rollers before the surface temperature drops below 240 °F.
- 3. Complete all compaction before the surface temperature drops below 180 °F.
- 4. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver's hopper or to the pavement surface.

For RHMA-O and RHMA-O-HB:

^a Except asphalt rubber binder.

- 1. Only spread and compact if the atmospheric temperature is at least 55 $^{\circ}F$ and surface temperature is at least 60 $^{\circ}F$.
- 2 Complete the 1st coverage using 2 rollers before the surface temperature drops below 280 °F.
- 3. Complete compaction before the surface temperature drops below 250 °F.
- 4. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until the mixture is transferred to the paver's hopper or to the pavement surface.

For RHMA-G and OGFC, tarpaulins are not required if the time from discharge to truck until transfer to the paver's hopper or the pavement surface is less than 30 minutes.

HMA compaction coverage is the number of passes needed to cover the paving width. A pass is 1 roller's movement parallel to the paving in either direction. Overlapping passes are part of the coverage being made and are not a subsequent coverage. Do not start a coverage until completing the prior coverage.

Start rolling at the lower edge and progress toward the highest part.

Perform breakdown compaction of each layer of HMA Type A, Type B, and RHMA-G with 3 coverages using a vibratory roller. The speed of the vibratory roller in miles per hour must not exceed the vibrations per minute divided by 1,000. If the HMA layer thickness is less than 0.08 foot, turn the vibrator off. The Engineer may order fewer coverages if the HMA layer thickness is less than 0.15 foot.

Perform intermediate compaction of each layer of HMA Type A and Type B with 3 coverages using a pneumatic-tired roller at a speed not to exceed 5 mph.

Perform finish compaction of HMA Type A, Type B, and RHMA-G with 1 coverage using a steel-tired roller. Compact OGFC with 2 coverages using steel-tired rollers.

39-4 QUALITY CONTROL / QUALITY ASSURANCE

39-4.01 DESCRIPTION

If HMA is specified as Quality Control / Quality Assurance, construct it under Section 39-1, "General," this Section 39-4, "Quality Control / Quality Assurance," and Section 39-5, "Measurement and Payment."

39-4.02 GENERAL

The QC / QA construction process consists of:

- 1. Establishing, maintaining, and changing if needed a quality control system providing assurance the HMA complies with the specifications
- 2. Sampling and testing at specified intervals, or sublots, to demonstrate compliance and to control process
- 3. The Engineer sampling and testing at specified intervals to verify testing process and HMA quality
- 4. The Engineer using test results, statistical evaluation of verified quality control tests, and inspection to accept HMA for payment

A lot is a quantity of HMA. The Engineer designates a new lot when:

- 1. 20 sublots are complete
- 2. The JMF changes
- 3. Production stops for more than 30 days

Each lot consists of no more than 20 sublots. A sublot is 750 tons except HMA paved at day's end greater than 250 tons is a sublot. If HMA paved at day's end is less than 250 tons, you may either make this quantity a sublot or include it in the previous sublot's test results for statistical evaluation.

39-4.03 CONTRACTOR QUALITY CONTROL

39-4.03A General

Use a composite quality factor, QF_C , and individual quality factors, QF_{QCi} , to control your process and evaluate your quality control program. For quality characteristics without quality factors, use your quality control plan's action limits to control process.

Control HMA quality including:

- 1. Materials
- 2. Proportioning

- 3. Spreading and compacting
- 4. Finished roadway surface

Develop, implement, and maintain a quality control program that includes:

- 1. Inspection
- 2. Sampling
- 3. Testing

39-4.03B Quality Control Plan

With the JMF submittal, submit a written Quality Control Plan (QCP). The QCP must comply with the Department's Quality Control Manual for Hot Mix Asphalt Production and Placement. Discuss the QCP with the Engineer during the prepaying conference.

The Engineer reviews each QCP within 5 business days from the submittal. Hold HMA production until the Engineer accepts the QCP in writing. The Engineer's QCP acceptance does not mean your compliance with the QCP will result in acceptable HMA. Section 39-1.05, "Engineer's Acceptance," specifies HMA acceptance.

The QCP must include the name and qualifications of a Quality Control Manager. The Quality Control Manager administers the QCP and during paving must be at the job site within 3 hours of receiving notice. The Quality Control Manager must not be any of the following on the project:

- 1. Foreman
- 2. Production or paving crewmember
- 3. Inspector
- 4. Tester

The QCP must include action limits and details of corrective action you will take if a test result for any quality characteristic falls outside an action limit.

As work progresses, you must submit a written QCP supplement to change quality control procedures, personnel, tester qualification status, or laboratory accreditation status.

39-4.03C Quality Control Inspection, Sampling, And Testing

Sample, test, inspect, and manage HMA quality control.

Provide a roadway inspector while HMA paving activities are in progress. Provide a plant inspector during HMA production.

Inspectors must comply with the Department's Quality Control Manual for Hot Mix Asphalt Production and Placement.

Provide a testing laboratory and personnel for quality control testing. Provide the Engineer unrestricted access to the quality control activities. Before providing services for the project, the Engineer reviews, accredits, and qualifies the testing laboratory and personnel under the Department's Independent Assurance Program.

The minimum random sampling and testing for quality control is:

Contract No. 12-0E3104 141 of 297 Minimum Quality Control – OC / OA

Minimum Quality Control – QC / QA									
Quality	Test	Min-		HMA Type		Location	Max.		
Characteristic	Method	imum				of	Report-		
		Sampl-				Sampling	ing Time		
		ing and					Allow-		
		Testing					ance		
		Frequen	A	В	RHMA-G		unce		
		-cy	Α	Б	KIIWIA-O				
A = === == 4 =		-cy	IME	JMF ±	JMF ±				
Aggregate	CT 202		JMF ±	JMF ±	JMF ±	CT 125			
gradation ^a			Tolerance b	Tolerance b	Tolerance b				
Asphalt binder content (%)	CT 379 or 382	1 per 750 tons	JMF ±0.45	JMF ±0.45	JMF ±0.5	Loose Mix Behind Paver See CT 125	24 hours		
Field compaction (% max. theoretical density) c,d	QC Plan		92 - 96	92 - 96	91 - 96	QC Plan			
Aggregate moisture content at continuous mixing plants and RAP moisture content at continuous mixing plants and batch mixing plants c	CT 226 or CT 370	2 per day during produc- tion				Stock- piles or cold feed belts	1		
Sand equivalent (min.) ^f	CT 217	1 per 750 tons	47	42	47	CT 125	24 hours		
HMA moisture content (%,max.)	CT 226 or CT 370	1 per 2,500 tons but not less than 1 per paving day	1.0	1.0	1.0	Loose Mix Behind	24 hours		
Stabilometer		1 per				Paver			
Value (min.) ^{f, g} No. 4 and 3/8" gradings	CT 366	4,000 tons or 2 per 5	30	30		See CT 125			
1/2" and 3/4" gradings		bus- iness	37	35	23		48 hours		
Air voids content (%) ^{f, h}	CT 367	days, which- ever is more	4 ± 2	4 ± 2	Specification ± 2				

Percent of crushed particles coarse aggregate (% min.) One fractured face Two fractured faces Fine aggregate (% min) (Passing No. 4 sieve and retained on No.	CT 205		90 75	25	 90	CT 125	
8 sieve.) One fractured face			70	20	70		
Los Angeles Rattler (% max.) Loss at 100 rev. Loss at 500 rev.	CT 211	As neces- sary and	12 45	 50	12 40	CT 125	
Fine aggregate angularity (% min.) i	CT 234	designat -ed in	45	45	45	CT 125	
Flat and elongated particle (% max. by weight @ 5:1)	CT 235	QCP. At least once per	Report only	Report only	Report only	CT 125	48 hours
Voids filled with asphalt (%) ^j No. 4 grading 3/8" grading 1/2" grading 3/4" grading	LP-3	project.	76.0 - 80.0 73.0 - 76.0 65.0 - 75.0 65.0 - 75.0	76.0 - 80.0 73.0 - 76.0 65.0 - 75.0 65.0 - 75.0	Report only	LP-3	
Voids in mineral aggregate (% min.) ^j No. 4 grading 3/8" grading 1/2" grading 3/4" grading	LP-2		17.0 15.0 14.0 13.0	17.0 15.0 14.0 13.0	 18.0 - 23.0 ^k 18.0 - 23.0 ^k	LP-2	
Dust proportion J No. 4 and 3/8" gradings 1/2" and 3/4" gradings	LP-4		0.9 – 2.0 0.6 – 1.3	0.9 – 2.0 0.6 – 1.3	Report only	LP-4	
Smoothness	Section 39-1.12		12-foot straight- edge, must- grind, and PI ₀	12-foot straight- edge, must- grind, and PI ₀	12-foot straight- edge, must- grind, and PI ₀		
Asphalt rubber binder viscosity @ 375 °F, centipoises	Section 39-1.02D				1,500 – 4,000	Section 39-1.02D	24 hours
Crumb rubber modifier	Section 39-1.02D				Section 39- 1.02D	Section 39-1.02D	48 hours

Notes:

^a Determine combined aggregate gradation containing RAP under Laboratory Procedure LP-9. ^b The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."

- ^c Determine field compaction for any of the following conditions:
 - 1. 1/2-inch, 3/8-inch, No. 4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot.
 - 2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.
- ^d To determine field compaction use:
 - 1. In-place density measurements using the method specified in your QC.
 - 2. California Test 309 to determine maximum theoretical density at the frequency specified in California Test 375, Part 5C.
- ^e For adjusting the plant controller at the HMA plant.
- f Report the average of 3 tests from a single split sample.
- ^g Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F \pm 5 °F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours."
- ^h Determine the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.
- ⁱ The Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.
- ^jReport only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC.

Within the specified reporting time, submit written test results including:

- 1. Sampling location, quantity, and time
- 2. Testing results
- 3. Supporting data and calculations

If test results for any quality characteristic are beyond the action limits in the QCP, take corrective actions. Document the corrective actions taken in the inspection records under Section 39-4.03E, "Records of Inspection and Testing."

Stop production, notify the Engineer in writing, take corrective action, and demonstrate compliance with the specifications before resuming production and placement on the State highway if:

- 1. A lot's composite quality factor, QF_C , or an individual quality factor, QF_{QCi} for i = 3, 4, or 5, is below 0.90 determined under Section 39-4.03F, "Statistical Evaluation," using quality control data
- 2. An individual quality factor, QF_{QCi} for i = 1 or 2, is below 0.75 using quality control data
- 3. Quality characteristics for which a quality factor, QF_{QCi}, is not determined has 2 consecutive quality control tests not in compliance with the specifications

39-4.03D Charts And Records

Record sampling and testing results for quality control on forms provided in the "Quality Control Manual for Hot Mix Asphalt," or on forms you submit with the QCP. The QCP must also include form posting locations and submittal times.

Submit quality control test results using the Department's statistical evaluation program, HMAPay, available at

www.dot.ca.gov/hq/construc/hma/index.htm

39-4.03E Records Of Inspection And Testing

During HMA production, submit in writing a daily:

- 1. HMA Construction Daily Record of Inspection. Also make this record available at the HMA plant and job site each day.
- 2. HMA Inspection and Testing Summary. Include in the summary:
 - 2.1. QC worksheet with updated test results from the HMAPay program
 - 2.2. Test forms with the testers' signatures and Quality Control Manager's initials.
 - 2.3. Inspection forms with the inspectors' signatures and Quality Control Manager's initials.
 - 2.4. A list and explanation of deviations from the specifications or regular practices.

^k Voids in mineral aggregate for RHMA-G must be within this range.

2.5. A signed statement by the Quality Control Manager that says:

"It is hereby certified that the information contained in this record is accurate, and that information, tests, or calculations documented herein comply with the specifications of the contract and the standards set forth in the testing procedures. Exceptions to this certification are documented as part of this record."

Retain for inspection the records generated as part of quality control including inspection, sampling, and testing for at least 3 years after final acceptance.

39-4.03F Statistical Evaluation

General

Determine a lot's composite quality factor, QF_C , and the individual quality factors, QF_{QCi} . Perform statistical evaluation calculations to determine these quality factors based on quality control test results for:

- 1. Aggregate gradation
- 2. Asphalt binder content
- 3. Percent of maximum theoretical density

The Engineer grants a waiver and you must use 1.0 as the individual quality factor for percent of maximum theoretical density, QF_{QC5} , for HMA paved in:

- 1. Areas where the total paved thickness is less than 0.15 foot
- 2. Areas where the total paved thickness is less than 0.20 foot and a 3/4-inch grading is specified and used
- 3. Dig outs
- 4. Leveling courses
- 5. Areas where, in the opinion of the Engineer, compaction or compaction measurement by conventional methods is impeded

Statistical Evaluation Calculations

Use the Variability-Unknown / Standard Deviation Method to determine the percentage of a lot not in compliance with the specifications.

Determine the percentage of work not in compliance with the specification limits for each quality characteristic as follows:

1. Calculate the arithmetic mean ($\overline{\boldsymbol{X}}$) of the test values

$$\overline{X} = \frac{\sum x}{n}$$

where:

x = individual test valuesn = number of test values

2. Calculate the standard deviation

$$s = \sqrt{\frac{n (\Sigma x^2) - (\Sigma x)^2}{n(n-1)}}$$

where:

 $\sum (x^2) = \text{sum of the squares of individual test values}$ $(\sum x)^2 = \text{sum of the individual test values squared}$ n = number of test values

3. Calculate the upper quality index (Qu)

$$Q_u = \frac{USL - \overline{X}}{s}$$

where:

USL = target value plus the production tolerance or upper specification limit

s = standard deviation $\overline{X} = arithmetic mean$

4. Calculate the lower quality index (QL);

$$Q_L = \frac{\overline{X} - LSL}{s}$$

where:

LSL = target value minus production tolerance or lower specification limit

s = standard deviation $\overline{X} =$ arithmetic mean

5. From the table, Upper Quality Index Q_U or Lower Quality Index Q_L , of this Section 39-4.03F, "Statistical Evaluation", determine P_U ;

where:

 P_U = the estimated percentage of work outside the USL. P_U = 0, when USL is not specified.

6. From the table, Upper Quality Index Q_U or Lower Quality Index Q_L , of this Section 39-4.03F, "Statistical Evaluation," determine P_L ;

where:

 P_L = the estimated percentage of work outside the LSL. P_L = 0, when LSL is not specified.

7. Calculate the total estimated percentage of work outside the USL and LSL, percent defective

Percent defective = $P_U + P_L$

 P_U and P_L are determined from:

P_U				Upper	Quality		Q_U or Le		ıality In	$\operatorname{dex} \mathbf{Q}_L$			
or	-		7		0		ple Size		10.00	22.20	20.42	12.66	
P_L	5	6	7	8	9	10-11	12-14	15-17	18-22	23-29	30-42	43-66	>66
0	1.72	1.88	1.99	2.07	2.13	2.20	2.28	2.34	2.39	2.44	2.48	2.51	2.56
1	1.64	1.75	1.82	1.88	1.91	1.96	2.01	2.04	2.07	2.09	2.12	2.14	2.16
2	1.58	1.66	1.72	1.75	1.78	1.81	1.84	1.87	1.89	1.91	1.93	1.94	1.95
3	1.52	1.59	1.63	1.66	1.68	1.71	1.73	1.75	1.76	1.78	1.79	1.80	1.81
4	1.47	1.52	1.56	1.58	1.60	1.62	1.64	1.65	1.66	1.67	1.68	1.69	1.70
5	1.42	1.47	1.49	1.51	1.52	1.54	1.55	1.56	1.57	1.58	1.59	1.59	1.60
6	1.38	1.41	1.43	1.45	1.46	1.47	1.48	1.49	1.50	1.50	1.51	1.51	1.52
7	1.33	1.36	1.38	1.39	1.40	1.41	1.41	1.42	1.43	1.43	1.44	1.44	1.44
8	1.29	1.31	1.33	1.33	1.34	1.35	1.35	1.36	1.36	1.37	1.37	1.37	1.38
9	1.25	1.27	1.28	1.28	1.29	1.29	1.30	1.30	1.30	1.31	1.31	1.31	1.31
10	1.21	1.23	1.23	1.24	1.24	1.24	1.25	1.25	1.25	1.25	1.25	1.26	1.26
11	1.18	1.18	1.19	1.19	1.19	1.19	1.20	1.20	1.20	1.20	1.20	1.20	1.20
12	1.14	1.14	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
13	1.10	1.10	1.10	1.10	1.10	1.10	1.11	1.11	1.11	1.11	1.11	1.11	1.11
14 15	1.07 1.03	1.07 1.03	1.07 1.03	1.06 1.03	1.06 1.02	1.06 1.02	1.06 1.02	1.06 1.02	1.06 1.02	1.06 1.02	1.06 1.02	1.06 1.02	1.06
16		0.99	0.99	0.99	0.99	0.98	0.98				0.98		1.02 0.98
17	1.00 0.97	0.99	0.99	0.99	0.99	0.98	0.98	0.98 0.94	0.98 0.94	0.98 0.94	0.98	0.98 0.94	0.98
18	0.97	0.90	0.93	0.93	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94	0.94
19	0.93	0.92	0.92	0.92	0.91	0.91	0.91	0.91	0.90	0.90	0.90	0.90	0.90
20	0.90	0.89	0.85	0.85	0.84	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
21	0.84	0.82	0.83	0.83	0.81	0.84	0.80	0.80	0.80	0.80	0.80	0.80	0.83
22	0.84	0.82	0.82	0.31	0.78	0.31	0.30	0.30	0.30	0.30	0.36	0.30	0.76
23	0.31	0.76	0.75	0.75	0.74	0.74	0.74	0.77	0.73	0.73	0.73	0.70	0.73
24	0.74	0.73	0.73	0.73	0.71	0.71	0.70	0.70	0.70	0.70	0.70	0.70	0.70
25	0.71	0.70	0.69	0.69	0.68	0.68	0.67	0.67	0.67	0.67	0.67	0.67	0.66
26	0.68	0.67	0.67	0.65	0.65	0.65	0.64	0.64	0.64	0.64	0.64	0.64	0.63
27	0.65	0.64	0.63	0.62	0.62	0.62	0.61	0.61	0.61	0.61	0.61	0.61	0.60
28	0.62	0.61	0.60	0.59	0.59	0.59	0.58	0.58	0.58	0.58	0.58	0.58	0.57
29	0.59	0.58	0.57	0.57	0.56	0.56	0.55	0.55	0.55	0.55	0.55	0.55	0.54
30	0.56	0.55	0.54	0.54	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.52
31	0.53	0.52	0.51	0.51	0.50	0.50	0.50	0.49	0.49	0.49	0.49	0.49	0.49
32	0.50	0.49	0.48	0.48	0.48	0.47	0.47	0.47	0.46	0.46	0.46	0.46	0.46
33	0.47	0.48	0.45	0.45	0.45	0.44	0.44	0.44	0.44	0.43	0.43	0.43	0.43
34	0.45	0.43	0.43	0.42	0.42	0.42	0.41	0.41	0.41	0.41	0.41	0.41	0.40
35	0.42	0.40	0.40	0.39	0.39	0.39	0.38	0.38	0.38	0.38	0.38	0.38	0.38
36	0.39	0.38	0.37	0.37	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
37	0.36	0.35	0.34	0.34	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.32
38	0.33	0.32	0.32	0.31	0.31	0.31	0.30	0.30	0.30	0.30	0.30	0.30	0.30
39	0.30	0.30	0.29	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
40	0.28	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
41	0.25	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23
42	0.23	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
43	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
44	0.16	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
45	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
46	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
47	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
48	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
49	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

If the value of Q_U or Q_L does not correspond to a value in the table, use the next lower value.
 If Q_U or Q_L are negative values, P_U or P_L is equal to 100 minus the table value for P_U or P_L.

Quality Factor Determination

Determine individual quality factors, QF_{QCi}, using percent defective = $P_U + P_L$ and:

Quality Factors

				Max		uanty F Ilowable		t Defect	ive (P _n .	+ P _r)			
Quality				111421	11114111 7 1		ple Size		1,0 (10	· • L)			
Factor	5	6	7	8	9	10-11	12-14	15-17	18-22	23-29	30-42	43-66	>66
1.05				0	0	0	0	0	0	0	0	0	0
1.04			0	1	3	5	4	4	4	3	3	3	3
1.03		0	2	4	6	8	7	7	6	5	5	4	4
1.02		1	3	6	9	11	10	9	8	7	7	6	6
1.01	0	2	5	8	11	13	12	11	10	9	8	8	7
1.00	22	20	18	17	16	15	14	13	12	11	10	9	8
0.99	24	22	20	19	18	17	16	15	14	13	11	10	9
0.98	26	24	22	21	20	19	18	16	15	14	13	12	10
0.97	28	26	24	23	22	21	19	18	17	16	14	13	12
0.96	30	28	26	25	24	22	21	19	18	17	16	14	13
0.95	32	29	28	26	25	24	22	21	20	18	17	16	14
0.94	33	31	29	28	27	25	24	22	21	20	18	17	15
0.93	35	33	31	29	28	27	25	24	22	21	20	18	16
0.92	37	34	32	31	30	28	27	25	24	22	21	19	18
0.91	38	36	34	32	31	30	28	26	25	24	22	21	19
0.90	39	37	35	34	33	31	29	28	26	25	23	22	20
0.89	41	38	37	35	34	32	31	29	28	26	25	23	21
0.88	42	40	38	36	35	34	32	30	29	27	26	24	22
0.87	43	41	39	38	37	35	33	32	30	29	27	25	23
0.86	45	42	41	39	38	36	34	33	31	30	28	26	24
0.85	46	44	42	40	39	38	36	34	33	31	29	28	25
0.84	47	45	43	42	40	39	37	35	34	32	30	29	27
0.83	49	46	44	43	42	40	38	36	35	33	31	30	28
0.82	50	47	46	44	43	41	39	38	36	34	33	31	29
0.81	51	49	47	45	44	42	41	39	37	36	34	32	30
0.80	52	50	48	46	45	44	42	40	38	37	35	33	31
0.79	54	51	49	48	46	45	43	41	39	38	36	34	32
0.78	55	52	50	49	48	46	44	42	41	39	37	35	33
0.77	56	54	52	50	49	47	45	43	42	40	38	36	34
0.76	57 59	55	53	51	50	48	46	44	43	41	39	37	35
0.75	58	56	54	52	51	49	47	46	44	42	40	38	36
	60	57	55	53	52	51	48	47	45	43	41	40	37
Doi:	61	58 59	56 57	55 56	53 54	52 52	50 51	48	46 47	44 45	43	41	38 39
Reject	62 63		57 58	56 57	54 55	53 54	51 52	49 50	47	45 47	44 45	42 43	39 40
	64	61 62	58 60	57 58	55 57	54 55	52 53	50	48 49	47 48		43	
	04	02								48	46	44	41
			K	eject val	ues Gre	ater Tha	ıı ınose	SHOWN	ADOVE				

Notes:

1. To obtain a quality factor when the estimated percent outside specification limits from table, "Upper Quality Index Q_U or Lower Quality Index Q_L ," does not correspond to a value in the table, use the next larger value.

Compute the composite of single quality factors, QF_C, for a lot using:

$$QF_C = \sum_{i=1}^{5} w_i QF_{QC_i}$$

where:

 $QF_C =$ the composite quality factor for the lot rounded to 2 decimal places.

 QF_{QCi} = the quality factor for the individual quality characteristic.

w = the weighting factor listed in the table HMA Acceptance – QC / QA. i = the quality characteristic index number in the table HMA Acceptance – QC / QA.

39-4.04 ENGINEER'S QUALITY ASSURANCE

39-4.04A General

The Engineer assures quality by:

- 1. Reviewing mix designs and proposed JMF
- 2. Inspecting procedures
- 3. Conducting oversight of quality control inspection and records
- 4. Verification sampling and testing during production and paving

39-4.04B Verification Sampling And Testing

General

The Engineer samples:

- 1. Aggregate to verify gradation
- 2. HMA to verify asphalt binder content

Verification

For aggregate gradation and asphalt binder content, the minimum ratio of verification testing frequency to quality control testing frequency is 1:5. The Engineer performs at least 3 verification tests per lot.

Using the t-test, the Engineer compares quality control tests results for aggregate gradation and asphalt binder content with corresponding verification test results. The Engineer uses the average and standard deviation of up to 20 sequential sublots for the comparison. The Engineer uses production start-up evaluation tests to represent the first sublot. When there are less than 20 sequential sublots, the Engineer uses the maximum number of sequential sublots available. The 21st sublot becomes the 1st sublot (n = 1) in the next lot.

The t-value for a group of test data is computed as follows:

$$t = \frac{|\overline{X_c} - \overline{X_l}|}{S_p \sqrt{\frac{1}{n} + \frac{1}{n}}}$$
 and
$$S_p^2 = \frac{S_c^2(\eta_c - 1) + S_v^2(\eta_v - 1)}{\eta_c + \eta_v - 2}$$

where:

 $n_c = Number of quality control tests (2 minimum, 20 maximum).$

 $n_v = Number of verification tests (minimum of 1 required).$

 $\overline{X}_a = Mean of quality control tests.$

 \overline{X} = Mean of verification tests.

 $S_p =$ Pooled standard deviation (When $n_v = 1$, $S_p = S_c$).

 $S_c = Standard deviation of quality control tests.$

 $S_v = Standard deviation of verification tests (when <math>n_v > 1$).

The comparison of quality control test results and the verification test results is at a level of significance of α = 0.025. The Engineer computes t and compares it to the critical t-value, t_{crit} , from:

Critical T-Value

Degrees of freedom	t_{crit}	Degrees of freedom	t_{crit}
(n_c+n_v-2)	$(\text{for } \alpha = 0.025)$	(n_c+n_v-2)	$(\text{for } \alpha = 0.025)$
1	24.452	18	2.445
2	6.205	19	2.433
3	4.177	20	2.423
4	3.495	21	2.414
5	3.163	22	2.405
6	2.969	23	2.398
7	2.841	24	2.391
8	2.752	25	2.385
9	2.685	26	2.379
10	2.634	27	2.373
11	2.593	28	2.368
12	2.560	29	2.364
13	2.533	30	2.360
14	2.510	40	2.329
15	2.490	60	2.299
16	2.473	120	2.270
17	2.458	∞	2.241

If the t-value computed is less than or equal to t_{crit}, quality control test results are verified.

If the t-value computed is greater than t_{crit} and both \overline{X}_{ν} and \overline{X}_{c} comply with acceptance specifications, the quality control tests are verified. You may continue to produce and place HMA with the following allowable differences:

- 1. $\left| \overline{X}_{v} \overline{X}_{c} \right| \leq 1.0$ percent for any grading
- 2. $\left| \overline{X}_{v} \overline{X}_{c} \right| \leq 0.1$ percent for asphalt binder content

If the t-value computed is greater than t_{crit} and the $\left|\overline{X}_{v} - \overline{X}_{c}\right|$ for grading or asphalt binder content are greater than the allowable differences, quality control test results are not verified and:

- 1. The Engineer notifies you in writing.
- 2. You and the Engineer must investigate why the difference exist.
- If the reason for the difference cannot be found and corrected, the Engineer's test results are used for acceptance and pay.

39-4.05 ENGINEER'S ACCEPTANCE

39-4.05A Testing

The Engineer samples for acceptance testing and tests for:

HMA Acceptance – QC / QA

				HMA A	Acceptano	e – QC / QA				
Index	Q	uality Char	racteristic		Weight	Test		HMA Type		
(i)					-ing	Method				
					Factor					
					(w)					
							A	В	RHMA-G	
		Aggreg	gate gradati	ion ^a						
	Sieve	3/4"	1/2"	3/8"						
1	1/2"	X^{b}			0.05	CT 202	11	/IF ± Tolerance	, c	
1	3/8"	1	X		0.05	C1 202	JIV	IF ± 10lerance	3	
1	No. 4	1		X	0.05					
2	No. 8	X	X	X	0.10					
3	No. 200	X	X	X	0.15					
4	Asphalt bi	inder conte	nt (%)		0.30	CT 379 or 382	$JMF \pm 0.45$	$JMF \pm 0.45$	$JMF \pm 0.5$	
5	Field com density)	paction (%	max. theo	retical	0.40	CT 375	92 – 96	92 – 96	91 – 96	
	Sand equi	valent (min	n.) ^f			CT 217	47	42	47	
	Stabilome	ter value (r	nin.) f,, g			CT 366		· <u>-</u>		
		and 3/8" g					30	30		
		and 3/4" gra					37	35	23	
	Air voids	content (%) ^{f, h}			CT 367	4 ± 2	4 ± 2	Specifica- tion ± 2	
	Percent of	f crushed pa	articles coa	irse		CT 205				
	aggregate									
	One f	ractured fa	ce				90	25		
	Two	fractured fa	ices				75		90	
		egate (% m								
		ing No. 4 s	sieve and r	etained						
		o. 8 sieve.)								
		ractured fa					70	20	70	
		isture conte		x.)		CT 226 or CT 370	1.0	1.0	1.0	
	Los Ange	les Rattler ((% max.)			CT 211				
	Loss	at 100 rev.					12		12	
		at 500 rev.					45	50	40	
		egate angul				CT 234	45	45	45	
		longated pa	article (% r	nax.		CT 235	Report	Report	Report	
	by weight					01 233	only	only	only	
		nineral agg	regate (%	min.) ^J					(Note k)	
		grading					17.0	17.0		
		grading				LP-2	15.0	15.0		
		grading					14.0	14.0	18.0 - 23.0	
		grading	1 1, (et) i				13.0	13.0	18.0 - 23.0	
		ed with asp	nalt (%)			1.0.2	760 000	76.0 00.0	D	
		grading				LP-3	76.0 - 80.0	76.0 - 80.0	Report	
		grading					73.0 - 76.0	73.0 - 76.0	only	
1		grading					65.0 - 75.0 65.0 - 75.0	65.0 - 75.0		
-	Dust prop	grading ortion ^j				LP-4	05.0 - 75.0	65.0 - 75.0		
1		ordon* and 3/8" g	radings			Lr-4	0.9 - 2.0	0.9 - 2.0	Report	
1		and 3/4" gra					0.9 - 2.0	0.9 - 2.0 0.6 - 1.3	only	
L	1/4 0	1114 JI4 gI	aumgs		1		0.0 - 1.5	0.0 - 1.3	omy	

Smoothness	Section	12-foot	12-foot	12-foot
	39-1.12	straight-	straight-	straight-
		edge, must-	edge, must-	edge,
		grind, and	grind, and	must-
		PI_0	PI_0	grind, and
				PI_0
Asphalt binder	Various	Section 92	Section 92	Section 92
Asphalt rubber binder	Various		÷	Section 92- 1.02(C) and Section 39-1.02D
Asphalt modifier	Various			Section 39-1.02D
Crumb rubber modifier	Various			Section 39-1.02D

Notes:

- 1. 1/2-inch, 3/8-inch, or No.4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot.
- 2. 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.
- ^e To determined field compaction, the Engineer uses:
 - 1. California Test 308, Method A, to determine in-place density of each density core.
 - 2. California Test 309 to determine maximum theoretical density at the frequency specified in California Test 375, Part 5C.

The Engineer determines the percent of maximum theoretical density from the average density of 3 density cores you take from every 750 tons of production or part thereof divided by the maximum theoretical density.

The Engineer determines the percent of maximum theoretical density from density cores taken from the final layer measured the full depth of the total paved HMA thickness if any of the following applies:

- 1. If 1/2-inch, 3/8-inch, or No. 4 aggregate grading is used and the specified total paved thickness is at least 0.15 foot and any layer is less than 0.15 foot.
- 2. If 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot and any layer is less than 0.20 foot.

The Engineer calculates QF_{QCi} for i = 1, 2, 3, and 4 using quality control data and QF_{QCi} for i = 5 using quality assurance data.

The Engineer stops production and terminates a lot if:

- 1. The lot's composite quality factor, QF_C , or an individual quality factor, QF_{QCi} for i = 3, 4, or 5, is below 0.90 determined under Section 39-4.03F, "Statistical Evaluation"
- 2. An individual quality factor, QF_{OCi} for i = 1 or 2, is below 0.75

^a The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.

^b "X" denotes the sieves the Engineer considers for the specified aggregate gradation.

^c The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate."

^d The Engineer determines field compaction for any of the following conditions:

^f The Engineer reports the average of 3 tests from a single split sample.

^g Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to $140 \, ^{\circ}\text{F} \pm 5 \, ^{\circ}\text{F}$ by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 $^{\circ}\text{F}$ for a minimum of 2 hours and not more than 3 hours."

^h The Engineer determines the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309.

ⁱThe Engineer waives this specification if HMA contains 10 percent or less of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel.

^jReport only if the adjustment for asphalt binder content target value is less than or equal to ± 0.3 percent from OBC

^k Voids in mineral aggregate for RHMA-G must be within this range.

3. Quality characteristics for which a quality factor, QF_{QCi}, is not determined has 2 consecutive acceptance or quality control tests not in compliance with the specifications

For any single quality characteristic for which a quality factor, QF_{QCi} , is not determined, except smoothness, if 2 consecutive acceptance test results do not comply with specifications:

- 1. Stop production.
- 2. Take corrective action.
- 3. In the Engineer's presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts.
- 4. Demonstrate compliance with the specifications before resuming production and placement on the State highway.

39-4.05B Statistical Evaluation, Determination Of Quality Factors And Acceptance Statistical Evaluation and Determination of Quality Factors

To determine the individual quality factor, QF_{QCi} , for any quality factor i = 1 through 5 or a lot's composite quality factor, QF_C , for acceptance and payment adjustment, the Engineer uses the evaluation specifications under Section 39-4.03F, "Statistical Evaluation," and:

- 1. Verified quality control test results for aggregate gradation
- 2. Verified quality control test results for asphalt binder content
- 3. The Engineer's test results for percent of maximum theoretical density

Lot Acceptance Based on Quality Factors

The Engineer accepts a lot based on the quality factors determined for aggregate gradation and asphalt binder content, QF_{QCi} for i = 1 through 4, using the total number of verified quality control test result values and the total percent defective $(P_U + P_L)$.

The Engineer accepts a lot based on the quality factor determined for maximum theoretical density, QF_{QC5}, using the total number of test result values from density cores and the total percent defective $(P_U + P_L)$.

The Engineer calculates the quality factor for the lot, QF_C , which is a composite of weighted individual quality factors, QF_{QCi} , determined for each quality characteristic in the HMA Acceptance – QC / QA table in Section 39-4.05A, "Testing."

The Engineer accepts a lot based on quality factors if:

- 1. The current composite quality factor, QF_C, is 0.90 or greater
- 2. Each individual quality factor, QF_{QCi} for i = 3, 4, and 5, is 0.90 or greater
- 3. Each individual quality factor, QF_{OCi} for i = 1 and 2, is 0.75 or greater

No single quality characteristic test may represent more than the smaller of 750 tons or 1 day's production.

Payment Adjustment

If a lot is accepted, the Engineer adjusts payment with the following formula:

$$PA = \sum_{i=1}^{n} HMACP^* w_i * \left[QFQC_i * (HMATT - WHMATT_i) + WHMATT_i \right] - \left(HMACP * HMATT_i \right) + WHMATT_i + WHMATT$$

where:

PA = Payment adjustment rounded to 2 decimal places.

HMACP = HMA contract price.

HMATT = HMA total tons represented in the lot.

 $WHMATT_i$ = Total tons of waived quality characteristic HMA.

 QF_{OCi} = Running quality factor for the individual quality characteristic.

 QF_{QCi} for i = 1 through 4 must be from verified Contractor's QC results. QF_{QC5} must be determined from the Engineer's results on density cores taken for percent of maximum theoretical density determination.

Contract No. 12-0E3104 153 of 297 w = Weighting factor listed in the HMA acceptance table.

i = Quality characteristic index number in the HMA acceptance table.

If the payment adjustment is a negative value, the Engineer deducts this amount from payment. If the payment adjustment is a positive value, the Engineer adds this amount to payment.

The 21st sublot becomes the 1st sublot (n = 1) in the next lot. When the 21st sequential sublot becomes the 1st sublot, the previous 20 sequential sublots become a lot for which the Engineer determines a quality factor. The Engineer uses this quality factor to pay for the HMA in the lot. If the next lot consists of less than 8 sublots, these sublots must be added to the previous lot for quality factor determination using 21 to 27 sublots.

39-4.05C Dispute Resolution

For a lot, if you or the Engineer dispute any quality factor, QF_{QCi}, or verification test result, every sublot in that lot must be retested.

Referee tests must be performed under the specifications for acceptance testing.

Any quality factor, QF_{OCi}, must be determined using the referee tests.

For any quality factor, QF_{QCi} , for i = 1 through 5, dispute resolution:

- 1. If the difference between the quality factors for QF_{QCi} using the referee test result and the disputed test result is less than or equal to 0.01, the original test result is correct.
- If the difference between the quality factor for QF_{QCi} using the referee test result and the disputed test result
 is more than 0.01, the quality factor determined from the referee tests supersedes the previously determined
 quality factor.

39-5 MEASUREMENT AND PAYMENT

39-5.01 MEASUREMENT

The contract item for HMA is measured by weight. The weight of each HMA mixture designated in the Engineer's Estimate must be the combined mixture weight.

If tack coat, asphalt binder, and asphaltic emulsion are paid with separate contract items, their contract items are measured under Section 92, "Asphalts," or Section 94, "Asphaltic Emulsions," as the case may be.

If recorded batch weights are printed automatically, the contract item for HMA is measured by using the printed batch weights, provided:

- 1. Total aggregate and supplemental fine aggregate weight per batch is printed. If supplemental fine aggregate is weighed cumulatively with the aggregate, the total aggregate batch weight must include the supplemental fine aggregate weight.
- 2. Total asphalt binder weight per batch is printed.
- 3. Each truckload's zero tolerance weight is printed before weighing the first batch and after weighing the last
- 4. Time, date, mix number, load number and truck identification is correlated with a load slip.
- 5. A copy of the recorded batch weights is certified by a licensed weighmaster and submitted to the Engineer.

The contract item for placing HMA dike is measured by the linear foot along the completed length. The contract item for placing HMA in miscellaneous areas is measured as the in-place compacted area in square yards. In addition to the quantities measured on a linear foot or square yard basis, the HMA for dike and miscellaneous areas are measured by weight.

The contract item for geosynthetic pavement interlayer is measured by the square yard for the actual pavement area covered.

39-5.02 PAYMENT

The contract prices paid per ton for hot mix asphalt as designated in the Engineer's Estimate include full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in constructing hot mix asphalt, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

If HMA is specified to comply with Section 39-4, "Quality Control / Quality Assurance," the Engineer adjusts payment under that section.

Full compensation for the Quality Control Plan and prepaying conference is included in the contract prices paid per ton for hot mix asphalt as designated in the Engineer's Estimate and no additional compensation will be allowed therefor.

Full compensation for performing and submitting mix designs and for Contractor sampling, testing, inspection, testing facilities, and preparation and submittal of results is included in the contract prices paid per ton for HMA as designated in the Engineer's Estimate and no additional compensation will be allowed therefor.

Full compensation for reclaimed asphalt pavement is included in the contract prices paid per ton for HMA as designated in the Engineer's Estimate and no additional compensation will be allowed therefor.

The contract price paid per ton for hot mix asphalt (leveling) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in hot mix asphalt (leveling), complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The State pays for HMA dike at the contract price per linear foot for place HMA dike and by the ton for HMA. The contract prices paid per linear foot for place hot mix asphalt dike as designated in the Engineer's Estimate include full compensation for furnishing all labor, tools, equipment, and incidentals, and for doing all the work involved in placing HMA dike, complete in place, including excavation, backfill, and preparation of the area to receive the dike, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The State pays for HMA specified to be a miscellaneous area at the contract price per square yard for place hot mix asphalt (miscellaneous area) and per ton for hot mix asphalt. The contract price paid per square yard for place hot mix asphalt (miscellaneous area) includes full compensation for furnishing all labor, tools, equipment, and incidentals, and for doing all the work involved in placing HMA (miscellaneous area) complete in place, including excavation, backfill, and preparation of the area to receive HMA (miscellaneous area), as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

If the Quality Control / Quality Assurance construction process is specified, HMA placed in dikes and miscellaneous areas is paid for at the contract price per ton for hot mix asphalt under Section 39-4, "Quality Control / Quality Assurance." Section 39-4.05B, "Statistical Evaluation, Determination of Quality Factors and Acceptance," does not apply to HMA placed in dikes and miscellaneous areas.

If there are no contract items for place hot mix asphalt dike and place hot mix asphalt (miscellaneous area) and the work is specified, full compensation for constructing HMA dikes and HMA (miscellaneous areas) including excavation, backfill, and preparation of the area to receive HMA dike or HMA (miscellaneous area) is included in the contract price paid per ton for the hot mix asphalt designated in the Engineer's Estimate and no separate payment will be made therefor.

The contract price paid per square yard for geosynthetic pavement interlayer includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing geosynthetic pavement interlayer, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per ton for paving asphalt (binder, geosynthetic pavement interlayer) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying paving asphalt (binder, geosynthetic pavement interlayer), complete in place, including spreading sand to cover exposed binder material, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

Full compensation for small quantities of HMA placed on geosynthetic pavement interlayer to prevent displacement during construction is included in the contract price paid per ton for the HMA being paved over the interlayer and no separate payment will be made therefor.

The contract price paid per ton for tack coat includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying tack coat, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The Engineer does not adjust payment for increases or decreases in the quantities for tack coat, regardless of the reason for the increase or decrease. Section 4-1.03B, "Increased or Decreased Quantities," does not apply to the items for tack coat.

Full compensation for performing smoothness testing, submitting written and electronic copies of tests, and performing corrective work including applying fog seal coat is included in the contract price paid per ton for the HMA designated in the Engineer's Estimate and no separate payment will be made therefor.

Full compensation for spreading sand on RHMA-G, RHMA-O, and RHMA-O-HB surfaces and for sweeping and removing excess sand is included in the contract price paid per ton for rubberized hot mix asphalt as designated in the Engineer's Estimate and no separate payment will be made therefor.

If the dispute resolution ITP determines the Engineer's test results are correct, the Engineer deducts the ITP's testing costs from payments. If the ITP determines your test results are correct, the State pays the ITP's testing costs. If, in the Engineer's opinion, work completion is delayed because of incorrect Engineer test results, the Department makes payment and time adjustments under Section 8-1.09, "Delays."

SECTION 40 PORTLAND CEMENT CONCRETE PAVEMENT (Issued 01-20-12)

Replace Section 40 with: SECTION 40 CONCRETE PAVEMENT

40-1 GENERAL

40-1.01 SUMMARY

Section 40 includes specifications for constructing concrete pavement on a prepared subgrade.

40-1.02 SUBMITTALS

40-1.02A Certificates of Compliance

Submit Certificates of Compliance under Section 6-1.07, "Certificates of Compliance." Include a test result report for any specified test with certification that test was performed within 12 months before the tested material's use.

Submit Certificates of Compliance for:

- 1. Tie bars
- 2. Threaded tie bar splice couplers
- 3. Dowel bars
- 4. Tie bar baskets
- 5. Dowel bar baskets
- 6. Chemical adhesive (drill and bond)
- 7. Silicone joint sealant
- 8. Asphalt rubber joint sealant
- 9. Preformed compression seal
- 10. Backer rods. Include the manufacturer's statement of compatibility with the sealant to be used.
- 11. Joint filler material
- 12. Curing compound. For each delivery to the job site, submit a copy of the Certificate of Compliance to the Engineer and the Transportation Laboratory. Each Certificate of Compliance must not represent more than 10,000 gallons and must include a test result report for:
 - 12.1. Moisture loss at 24 hours under California Test 534
 - 12.2. Reflectance under ASTM E 1347
 - 12.3. Viscosity under ASTM D 2196
 - 12.4. Nonvolatile content under ASTM D 2369
 - 12.5. Pigment content under ASTM D 3723
- 13. Epoxy powder coating

40-1.02B Curing Compound Samples

Submit split curing compound samples to the Transportation Laboratory.

40-1.02C Drilled Corings

Submit each core taken for Engineer's acceptance in a plastic bag. Mark each core with a location description.

40-1.02D Independent Third Party Air Content Testing Laboratory

Before testing, submit for the Engineer's approval the name of a laboratory that will test drilled core specimens for air content in cases of dispute.

40-1.02E Dowel Bars

Before placing dowel bars, submit a procedure for identifying transverse contraction joint locations relative to the dowel bars' longitudinal center and a procedure for consolidating concrete around the dowel bars.

40-1.02F Concrete Field Qualification

Submit field qualification data and test reports including:

- 1. Mixing date
- 2. Mixing equipment and procedures used
- 3. Batch volume in cubic yards
- 4. Type and source of ingredients used
- 5. Penetration of the concrete
- 6. Air content of the plastic concrete
- 7. Age and strength at time of concrete beam testing

Field qualification test reports must be certified with a signature by an official in responsible charge of the laboratory performing the tests.

40-1.02G Frequency Measuring Device (Tachometer)

Submit calibration documentation and operational guidelines for frequency measuring devices for concrete consolidation vibrators.

40-1.02H Manufacturer's Recommendations and Instructions

If used and at least 15 days before delivery to the job site, submit manufacturer's recommendations and instructions for storage and installation of:

- 1. Threaded tie bar splice couplers
- 2. Chemical adhesive (drill and bond)
- 3. Silicone liquid sealant
- 4. Asphalt rubber liquid sealant
- 5. Preformed compression seals
- 6. Joint filler material

40-1.02I Mix Proportions

At least 15 days before starting testing for mix proportions, submit a copy of the AASHTO accreditation for your laboratory determining the mix proportions. At least 30 days before starting field qualification, submit the proposed concrete mix proportions, the corresponding mix identifications, and laboratory test reports including the modulus of rupture for each trial mixture at 10, 21, 28, and 42 days.

40-1.02J Preformed Compression Seal

Submit the manufacturer's data sheet used to develop the recommended preformed compression seal based on the joint dimensions.

40-1.02K Concrete Pavement Early Age Crack Mitigation System

At least 24 hours before each paving shift, submit:

- 1. Early age stress and strength predictions
- 2. Scheduled sawing and curing activities
- 3. Contingency plan if volunteer cracking occurs

At least 24 hours before paving, meet with the Engineer to review the submittals for the early age crack mitigation system.

During paving, update the system with current weather data obtained from a portable weather station. Before paving concrete pavement with these updates, submit new stress and strength predictions and curing and sawing activity schedules.

40-1.02L Profilograms

Submit profilograms within 5 business days of initial profiling and within 2 business days of profiling corrected sections.

Submit 1 electronic copy of profile information in ".erd" format or other ProVAL compatible format to the Engineer and to:

Smoothness@dot.ca.gov

Submit the original of final profilograms before the Engineer accepts the contract.

Submitted profilograms become the Department's property.

40-1.02M Protecting Concrete Pavement During Cold Weather

Submit a plan for protecting concrete pavement during the initial 72 hours after paving when the forecasted minimum ambient temperature is below 40 degrees F.

40-1.02N Quality Control Charts

Submit updated quality control charts each paving day.

40-1.02O Quality Control Plan

At least 30 days before the start of field qualification, submit a concrete pavement quality control plan (QCP).

40-1.03 QUALITY CONTROL AND ASSURANCE

40-1.03A Contractor Quality Control Plan

Establish, implement, and maintain a QCP for concrete pavement. The QCP must describe the organization and procedures you use to:

- 1. Control the production process
- 2. Determine if changes to the production process are needed
- 3. Implement changes

The QCP must address the elements affecting concrete pavement quality including:

- 1. Mix proportions
- 2. Aggregate gradation
- 3. Materials quality
- 4. Stockpile management
- 5. Line and grade control
- 6. Proportioning
- 7. Mixing and transportation
- 8. Placing and consolidation
- 9. Contraction and construction joints
- 10. Dowel bar placement, alignment, and anchorage
- 11. Tie bar placement
- 12. Modulus of rupture
- 13. Finishing and curing
- 14. Surface smoothness
- 15. Joint sealant and compression seal installation

The QCP must include details of corrective action to be taken if any process is out of control. As a minimum, a process is out of control if any of the following occurs:

1. For fine and coarse aggregate gradation, 2 consecutive running averages of 4 tests are outside the specification limits

2. For

individual penetration or air content measurements:

- 2.1. One point falls outside the suspension limit line
- 2.2. Two points in a row fall outside the action limit line

Stop production and take corrective action for out of control processes or the Engineer rejects subsequent material.

40-1.03B Quality Control Testing

Select random locations and perform sampling and testing in compliance with:

Quality Control Testing

Test	Frequency	Test Method
Cleanness value	2 per day	CT 227
Sand equivalent	2 per day	CT 217
Aggregate gradation	2 per day	CT 202
Air content (freeze thaw) ^a	1 per hour	CT 504
Air content (non-freeze thaw)	1 per 4 hours	CT 504
Density	1 per 4 hours	CT 518
Penetration	1 per 4 hours	CT 533
Calibration of moisture meter b, c	1 per day	CT 223 or CT 226

Notes:

If air entrainment is specified, the testing laboratory and tester must be qualified under the Department's Independent Assurance Manual. The manual is available from the Transportation Laboratory.

40-1.03C Control Charts

Maintain control charts to identify potential problems and assignable causes. Post a copy of each control chart at a location determined by the Engineer.

Individual measurement control charts must use the target values in the mix proportions as indicators of central tendency.

Develop linear control charts for:

- 1. Cleanness value
- 2. Sand equivalent
- 3. Fine and coarse aggregate gradation
- 4. Air content
- 5. Penetration

Control charts must include:

- 1. Contract number
- 2. Mix proportions
- 3. Test number
- 4. Each test parameter
- 5. Action and suspension limits
- 6. Specification limits
- 7. Quality control test results

For fine and coarse aggregate gradation control charts, record the running average of the previous 4 consecutive gradation tests for each sieve and superimpose the specification limits.

^a If air entrainment is specified, make at least 1 air content measurement per hour. If air entrainment is not specified, make at least 1 air content measurement per 4 hours.

^b Make at least 1 measurement of moisture content per week to check the calibration of an electronically actuated moisture meter.

^c Random location sampling and testing is not applicable.

For penetration and air content control charts, record the individual measurements and superimpose the following action and suspension limits:

Penetration and Air Content Action and Suspension Limits

	Individual Measurements	
Control Parameter	Action Limit	Suspension Limit
Penetration, CT 533	1 inch	1-1/2 inch
Air content, CT 504	±1.0 percent	±1.5 percent

40-1.03D Contractor's Laboratory

Use a laboratory that complies with ASTM C 1077 to determine the mix proportions for concrete pavement. The laboratory must have a current AASHTO accreditation for:

- 1. AASHTO T 97 or ASTM C 78
- 2. ASTM C 192/C 192M

40-1.03E Joint Sealant and Compression Seal Installation Training

Before installing joint sealant or compression seals, arrange for a representative from the joint sealant or compression seal manufacturer to provide training on the cleaning and preparation of the joint and installing the sealant or seal. Until your personnel and the Department's personnel have been trained, do not install joint sealant or compression seals.

40-1.03F Frequency Measuring Device (Tachometer)

Before each day's concrete pavement placement and at intervals not to exceed 4 hours of production, test and record vibration frequency for concrete consolidation vibrators.

40-1.03G Early Age Concrete Pavement Crack Mitigation System

Develop and implement a system for predicting concrete pavement stresses and strength during the initial 72 hours after paving. The system must include:

- 1. Subscribing to a weather service to obtain forecasts for wind speed, ambient temperatures, humidity, and cloud cover
- 2. Portable weather station with anemometer, temperature and humidity sensors, located at the paving site
- 3. Early age concrete pavement stress and strength prediction computer program
- 4. Analyzing, monitoring, updating, and reporting the system's predictions

40-1.03H Curing Compound

Sample curing compound from shipping containers at the manufacturer's source of supply. Split the samples.

40-1.03I Concrete Pavement Smoothness

Within 10 days after paving, measure the Profile Index (PI_0) of the concrete pavement surface using a zero (null) blanking band under California Test 526.

For the following concrete pavement areas, the Engineer does not require a profilograph and you must test and correct high points determined by a 12-foot straightedge placed parallel with and perpendicular to the centerline:

- 1. Horizontal curves with a centerline radius of curvature less than 1,000 feet including concrete pavement within the superelevation transitions of those curves.
- 2. Exit ramp termini, truck weigh stations, and weigh-in-motion areas
- 3. Where steep grades and superelevation rates greater than 6 percent are present on:
 - 3.1. Ramps
 - 3.2. Connectors
- 4. Turn lanes and areas around manholes or drainage transitions
- 5. Acceleration and deceleration lanes for at-grade intersections
- 6. Shoulders and miscellaneous gore areas

Use a California Profilograph to determine the concrete pavement profile. If the profilograph uses a mechanical recorder, use an electronic scanner to reduce the profilogram.

The profilograph operator must be qualified under the Department's Independent Assurance Manual. The manual is available from the Department's Materials Engineering and Testing Services Web site.

40-1.03J Profilograph Test Procedure

Notify the Engineer at least 2 business days before performing profilograph testing. Each day before performing profilograph testing, notify the Engineer of the start location. Perform profilograph testing in the Engineer's presence.

Before starting profilograph testing, remove foreign objects from the concrete pavement surface.

Before starting profilograph testing, calibrate the profilograph in the Engineer's presence. If the Engineer chooses not to be present during profilograph testing, you may perform the testing with the Engineer's written approval. Note the Engineer's absence on the profilogram.

Determine PI_0 values for the final concrete pavement surface of each 0.1-mile section of a traffic lane. Take 2 profiles within each traffic lane, 3 feet from and parallel with the edge of each lane. Each section's PI_0 is the average of the PI_0 values for the measurements within that traffic lane. A section that is less than 0.01 mile and is the result of an interruption to continuous concrete pavement surface must comply with the PI_0 specifications for a full section. Adjust the PI_0 for a partial section to reflect a full section.

Use stationing to locate vertical deviations greater than 0.3 inches. The profilogram stationing must be the same as the project stationing. Note 0.1-mile segments on the profilogram.

Label the profilogram with:

- 1. Contract number
- 2. County and route number
- 3. Stationing
- 4. Operator's name
- 5. Test date
- 6. Test number
- 7. Traffic direction
- 8. Traffic lane (numbered from left to right in direction of travel)
- 9. Test wheel path (left or right in direction of travel)
- 10. Test direction
- 11. Paving direction

40-1.03K Smoothness Corrective Action

Correct concrete pavement not complying with the Engineer's acceptance specifications for smoothness by grinding under Section 42-2, "Grinding."

Do not grind before:

- 1. Ten days after concrete pavement placement
- 2. The concrete has developed a modulus of rupture of at least 550 psi

Grind the entire lane width. When completed, the lane width must be uniform in texture and appearance. Square the corrected area's start and end normal to the paved surface's centerline.

Retest sections where corrections were made.

40-1.03L Acceptance Criteria

General

Concrete pavement is accepted based on the Department's testing for the concrete pavement quality characteristics shown in the following table:

Concrete Pavement Acceptance Testing

Quality Characteristic	Quantity	Test
28-day modulus of rupture	1,000 cubic yards	CT 523
Thickness	1,200 square yards for primary area	CT 531
	measurements	
Dowel bar placement	700 square yards	Measurement
Tie bar placement	4,000 square yards	Measurement
Coefficient of friction	One day's paving	CT 342
Air content (freeze-thaw) ^a	One day's paving	CT 504

Note:

Pavement smoothness may be accepted based on the Department's testing. A single test represents no more than 0.1 mile.

Acceptance of modulus of rupture, thickness, dowel bar and tie bar placement, coefficient of friction, smoothness, and air content, does not constitute final concrete pavement acceptance.

Modulus of Rupture

The Engineer accepts concrete pavement for modulus of rupture on a lot basis. The minimum modulus of rupture for each lot is 570 psi at 28 days.

For each lot of concrete for concrete pavement:

- 1. Quantity must not exceed 1,000 cubic yards.
- 2. Department determines the modulus of rupture of test beams aged 10 days and 28 days.
- 3. Department calculates the modulus of rupture by averaging the individual test results of 2 beams aged for 28 days.

The Department provides molds and machines for modulus of rupture acceptance testing. Provide material and labor the Engineer may require.

Concrete Pavement Smoothness

If the Department tests for smoothness, the tests are performed under Section 40-1.03I, "Concrete Pavement Smoothness."

The Engineer accepts concrete pavement for smoothness in compliance with the following:

- 1. For tangents and horizontal curves having a centerline radius of curvature 2,000 feet or more, the PI₀ must be at most 2-1/2 inches per 0.1-mile section.
- 2. For horizontal curves having a centerline radius of curvature from 1,000 to 2,000 feet including concrete pavement within the superelevation transitions of those curves, the PI_0 must be at most 5 inches per 0.1-mile section.
- 3. If using a profilograph to measure smoothness, the surface must not have individual high points greater than 0.3 inch.
- 4. If using a straightedge to measure smoothness, the surface must be within 0.02 foot of the straightedge's lower edge.

Profile index specifications apply to existing pavement within 50 feet of the transverse joint separating new concrete pavement and the existing pavement.

If the Department's profilograph test results do not match yours, the Engineer may order you to recalibrate your profilograph equipment and perform a retest. If your test results are inaccurate due to operator error, the Engineer may disqualify your profilograph operator. If the Engineer determines your test results are inaccurate, the Engineer does not make adjustments to payment or contract time for recalibrating, retesting, and delays.

Concrete Pavement Thickness

The Engineer accepts concrete pavement for thickness based on coring in the primary area, which is the area placed in 1 day for each thickness. Concrete pavement thickness must not be deficient by more than 0.05 foot.

^a Air content tests must be performed under California Test 504 if air entrainment is specified.

After corrective grinding has been completed, core concrete pavement in the primary area under Section 40-3.16, "Obtaining Drilled Cores," at locations determined by the Engineer and in the Engineer's presence. The core specimen diameter must be 4 inches. To identify the limits of concrete pavement deficient in thickness by more than 0.05 foot, you may divide primary areas into secondary areas. Specifications that may affect concrete pavement thickness such as allowable tolerances for subgrade construction do not change the thickness specified for concrete pavement.

In each primary area, the Engineer measures concrete pavement thickness every 1,200 square yards and any remaining area. The Engineer measures cores under California Test 531 to the nearest 0.01 foot. Core at least 1 foot from existing, contiguous, and parallel concrete pavement not constructed as part of this contract.

You may request the Engineer make additional thickness measurements and use them to determine the average thickness variation. The Engineer determines the locations with random sampling methods.

If each thickness measurement in a primary area is less than 0.05 foot deficient, the Engineer calculates the average thickness deficiency in that primary area. The Engineer uses 0.02 foot for a thickness difference more than 0.02 foot over the specified thickness.

For each thickness measurement in a primary area deficient by more than 0.05 foot, the Engineer determines a secondary area where the thickness deficiency is more than 0.05 foot. The Engineer determines this secondary area by measuring the thickness of each concrete pavement slab adjacent to the measurement found to be more than 0.05 foot deficient. The Engineer continues to measure the thickness until an area that is bound by slabs with thickness deficient by 0.05 foot or less is determined.

Slabs without bar reinforcement are defined as the areas bound by longitudinal and transverse joints and concrete pavement edges. Slabs with bar reinforcement are defined as the areas bound by longitudinal joints and concrete pavement edges and 15-foot lengths. Secondary area thickness measurements in a slab determine that entire slab's thickness.

The Engineer measures the remaining primary area thickness after removing the secondary areas from consideration for determining the average thickness deficiency.

The Engineer determines the slabs to remove and replace.

Required Use of Air-Entraining Admixtures

If air-entraining admixtures are specified, the Engineer may choose to accept concrete pavement for air content based on your air content quality control tests. The Engineer decides to use your air content quality control tests based on a *t*-test that determines the difference in the means of your test and the Engineer's verification tests. The Engineer calculates the t-value of the test data as follows:

$$t = \frac{|\overline{X}_c - \overline{X}|}{S_p \sqrt{\frac{1}{n} + \frac{1}{n}}}$$
 and
$$S_p^2 = \frac{S_c^2(n_c - 1) + S_v^2(n_v - 1)}{n_c + n_v - 2}$$

where:

 n_c = Number of your quality control tests (minimum of 6 required)

 n_v = Number of verification tests (minimum of 2 required)

 X_c = Mean of your quality control tests

X_y = Mean of the verification tests

 S_p = Pooled standard deviation

(When $n_v = 1$, $S_p = S_c$)

 S_c = Standard deviation of your quality control tests

 S_v = Standard deviation of the verification tests (when $n_v > 1$)

The Engineer compares your quality control test results with the Department's verification test results at a level of significance of $\alpha = 0.01$. The Engineer compares the *t*-value to t_{crit} , determined from:

L _{crit}		
degrees of freedom	t_{crit}	
(n_c+n_v-2)	$(\text{for } \alpha = 0.01)$	
1	63.657	
2	9.925	
3	5.841	
4	4.604	
5	4.032	
6	3.707	
7	3.499	
8	3.355	
9	3.250	
10	3.169	

If the t-value calculated is less than or equal to t_{crit} , your quality control test results are verified. If the t-value calculated is greater than t_{crit} , quality control test results are not verified.

If your quality control test results are not verified, core at least 3 specimens from concrete pavement under Section 40-3.16, "Obtaining Drilled Cores." The Engineer selects the core locations. Your approved third party independent testing laboratory must test these specimens for air content under ASTM C 457. The Engineer compares these test results with your quality control test results using the *t*-test method. If your quality control test results are verified based on this comparison, the Engineer uses the quality control test results for acceptance of concrete pavement for air content. If your quality control test results are not verified based on this comparison, the Engineer uses the air content of core specimens determined under ASTM C 457 for acceptance.

Dowel Bar and Tie Bar Placement

Dowel bar alignment must comply with section 40-3.06. Tie bar alignment must comply with Section 40-3.05. Except for CRCP, core specimens for:

- 1. Dowel bar placement
- 2. Tie bar placement
- 3. Concrete consolidation

Obtain cores under Section 40-3.16, "Obtaining Drilled Cores." The Engineer determines the core locations. Each core must have a nominal diameter of 4 inches. Core each day's paving within 2 business days in compliance with:

- 1. One test for every 700 square yards of doweled concrete pavement or remaining fraction of that area. Each dowel bar test consists of 2 cores, 1 on each dowel bar end to expose both ends and allow measurement.
- 2. One test for every 4,000 square yards of concrete pavement with tie bars or remaining fraction of that area. Each tie bar test consists of 2 cores, 1 on each tie bar end to expose both ends and allow measurement.

If the tests indicate dowel or tie bars are not placed within the specified tolerances or if there are air voids around the dowel or tie bars, core additional specimens to determine the limits of unacceptable work.

The Engineer determines the slabs to remove and replace.

If the Engineer approves your request, slabs may remain in place with an adjustment in payment for:

- 1. Dowel bars with centers from ±2 inches to ±3 inches from the saw cut of a transverse contraction joint or with deficient concrete consolidation around the dowel bars
- 2. Tie bars placed outside their specified placement and position or with deficient concrete consolidation around the tie bars

Bar Reinforcing Steel

The Engineer accepts concrete pavement for bar reinforcing steel based on inspection before concrete placement.

Curing Compound

Curing compound sampled from shipping containers from the manufacturer's supply source or from the job site must match the test results for viscosity, nonvolatile content, and pigment content within the specified tolerances listed in the precision and bias statements for the test methods.

40-2 MATERIALS

40-2.01 CONCRETE

40-2.01A General

Concrete must comply with Section 90, "Portland Cement Concrete."

40-2.01B Aggregate

The specifications for reduction in Operating Range and Contract Compliance for cleanness value and sand equivalent specified under Section 90-2.02A, "Coarse Aggregate," and Section 90-2.02B, "Fine Aggregate," do not apply to concrete pavement.

Combined aggregate gradings must comply with Section 90-3, "Aggregate Gradings," and the difference between the percent passing the 3/8-inch sieve and the percent passing the No. 8 sieve must not be less than 16 percent of the total aggregate.

40-2.01C Cementitious Material

Concrete for concrete pavement must contain from 505 pounds to 675 pounds cementitious material per cubic yard. Determine the minimum cementitious materials content. Use your value for minimum cementitious material content for *MC* in equation 1 and equation 2 of section 90-1.02B(3).

40-2.01D Mix Proportions

Your laboratory determining mix proportions must determine the minimum cementitious materials content or the maximum water to cementitious materials ratio and:

- 1. You must make trial mixtures no more than 24 months before field qualification.
- 2. Modulus of rupture used to determine the minimum cementitious materials content or maximum water to cementitious materials ratio must be 570 psi at 28 days age and 650 psi at 42 days age.
- 3. Your laboratory must determine an increase in the cementitious materials content or a decrease in the water to cementitious materials ratio from the trial mixtures to ensure concrete pavement complies with the specifications.

If changing an aggregate supply source or the mix proportions, produce a trial batch and field-qualify the new concrete. The Engineer does not adjust contract time for performing sampling, testing, and qualifying new mix proportions or changing an aggregate supply source.

40-2.01E Field Qualification

Proposed mix proportions must be field qualified before you place concrete pavement. Use an American Concrete Institute (ACI) certified "Concrete Laboratory Technician, Grade I" to perform field qualification tests and calculations.

The Engineer accepts field qualification if five beams made and tested under California Test 523 comply with the following:

- 1. At a minimum, beams are tested at 10, 21, and 28 days of age
- 2. At your choice of age not later than 28 days, no single beam's modulus of rupture is less than 550 psi and the average modulus of rupture is at least 570 psi

40-2.02 TIE BARS

Tie bars must be deformed bars.

If the project is not shown to be in high desert or any mountain climate region, tie bars must be one of the following:

- Epoxy-coated bar reinforcement. Bars must comply with Section 52-1.02B, "Epoxy-coated Reinforcement" except bars must comply with either ASTM A 706/A 706M; ASTM A 996/A 996M; or ASTM A 615/A 615M, Grade 40 or 60.
- 2. Stainless-steel bars. Bars must be descaled, pickled, polished, and solid stainless-steel bars under ASTM A 955/A 955M, Grade 60, UNS Designation S31603 or S31803.
- 3. Low carbon, chromium-steel bars complying with ASTM A 1035/A 1035M.

If the project is shown to be in high desert or any mountain climate region, tie bars must be one of the following:

- 1. Epoxy-coated bar reinforcement. Bars must comply with "Epoxy-coated Prefabricated Reinforcement" in the special provisions except bars must comply with either ASTM A 706/A 706M; ASTM A 996/A 996M; or ASTM A 615/A 615M, Grade 40 or 60.
- Stainless-steel bars. Bars must be descaled, pickled, polished, and solid stainless-steel bars under ASTM A 955/A 955M, Grade 60, UNS Designation S31603 or S31803.

Fabricate, sample, and handle epoxy-coated deformed tie bars at the job site under ASTM D 3963/D 3963M and Section 52-1.02B, "Epoxy-coated Reinforcement."

Do not bend tie bars.

40-2.03 DOWEL BARS

40-2.03A General

Dowel bars must be plain bars. Fabricate, sample, and handle epoxy-coated dowel bars under ASTM D 3963/D 3963M and section 52-1.02B, "Epoxy-coated Reinforcement," except each sample must be 18 inches long.

If the project is not shown to be in high desert or any mountain climate region, dowel bars must be one of the following:

- 1. Epoxy-coated bars. Bars must comply with ASTM A 615/A 615M, Grade 40 or 60. Epoxy coating must comply with either (1) Section 52-1.02B, "Epoxy-coated Reinforcement" or (2) "Epoxy-coated Prefabricated Reinforcement" in the special provisions.
- Stainless-steel bars. Bars must be descaled, pickled, polished, and solid stainless-steel bars under ASTM A 955/A 955M, Grade 60, UNS Designation S31603 or S31803.
- 3. Low carbon, chromium-steel bars under ASTM A 1035/A 1035M.

If the project is shown to be in high desert or any mountain climate region, dowel bars must be one of the following:

- 1. Epoxy-coated bars. Bars must comply with ASTM A 615/A 615M, Grade 40 or 60. Epoxy coating must comply with "Epoxy-coated Prefabricated Reinforcement" in the special provisions.
- Stainless-steel bars. Bars must be descaled, pickled, polished, and solid stainless-steel bars under ASTM A 955/A 955M, Grade 60, UNS Designation S31603 or S31803.

40-2.03B Dowel Bar Lubricant

Dowel bar lubricant must be either (1) petroleum paraffin based or (2) curing compound no. 3. Paraffin-based lubricant must be either Dayton Superior DSC BB-Coat, Valvoline Tectyl 506, or an approved equal. Petroleum paraffin based lubricant must be factory-applied.

40-2.04 CURING COMPOUND

Curing compound must be curing compound (1) or (2) with white pigment under Section 90-7.01B, "Curing Compound Method."

Reflectance must be at least 60 percent when tested under ASTM E 1347.

40-2.05 CHEMICAL ADHESIVE (DRILL AND BOND)

Chemical adhesive for drilling and bonding dowels and tie bars must be prequalified. A list of prequalified chemical adhesives is available on the Department's Materials Engineering and Testing Services website. The

prequalified list indicates the appropriate chemical adhesive system for the concrete temperature and installation conditions.

Each chemical adhesive system must clearly and permanently show the following:

- 1. Manufacturer's name
- 2. Model number of the system
- 3. Manufacture date
- 4. Batch number
- 5. Expiration date
- 6. Current International Conference of Building Officials Evaluation Report number
- 7. Directions for use
- 8. Warnings or precautions required by state and federal laws and regulations

40-2.06 DOWEL AND TIE BAR BASKETS

For dowel and tie bar baskets, wire must comply with ASTM A 82/A 82M and be welded under ASTM A 185/A 185M, Section 7.4. The minimum wire-size no. is W10. Use either U-frame or A-frame shaped assemblies.

If the project is not shown to be in high desert or any mountain climate region. Baskets may be epoxy-coated, and the epoxy coating must comply with either (1) Section 52-1.02B, "Epoxy-coated Reinforcement" or (2) "Epoxy-coated Prefabricated Reinforcement" in the special provisions.

If the project is shown to be in high desert or any mountain climate region, wire for dowel bar and tie bar baskets must be one of the following:

- 1. Epoxy-coated wire under "Epoxy-coated Prefabricated Reinforcement" in the special provisions
- 2. Stainless-steel wire. Wire must be descaled, pickled, and polished solid stainless-steel. Wire must comply with (1) the chemical requirements in ASTM A 276/A 276M, UNS Designation S31603 or S31803 and (2) the tension requirements in ASTM A 1022/ A 1022M.

Handle epoxy-coated tie bar and dowel bar baskets under ASTM D 3963/D 3963M and either (1) Section 52-1.02B, "Epoxy-coated Reinforcement" or (2) "Epoxy-coated Prefabricated Reinforcement" in the special provisions.

Fasteners must be driven fasteners under ASTM F 1667. Fasteners on lean concrete base or HMA must have a minimum shank diameter of 3/16 inch and a minimum shank length of 2-1/2 inches. For asphalt treated permeable base or cement treated permeable base, the shank diameter must be at least 3/16 inch and the shank length must be at least 5 inches.

Fasteners, clips, and washers must have a minimum 0.2-mil thick zinc coating applied either by electroplating or galvanizing.

40-2.07 BACKER RODS

Backer rods must be Type 1 under ASTM D 5249. Backer rod diameter must be at least 25 percent greater than the sawcut joint width. Backer rod material must be expanded, crosslinked, closed-cell polyethylene foam. No bond or adverse reaction may occur between the backer rod and sealant.

40-2.08 JOINT FILLER MATERIAL

Joint filler for isolation joints must be preformed expansion joint filler for concrete (bituminous type) under ASTM D 994.

40-2.09 HYDRAULIC CEMENT GROUT (NON-SHRINK)

Hydraulic cement grout (non-shrink) must comply with ASTM C 1107/ C 1107M. Use clean, uniform, rounded aggregate filler to extend the grout. Aggregate filler must not exceed 60 percent of the grout mass or the maximum recommended by the manufacturer, whichever is less. Aggregate filler moisture content must not exceed 0.5 percent. Aggregate filler must comply with:

Aggregate Filler Grading

Sieve Size	Percentage Passing
1/2-inch	100
3/8-inch	85 - 100
No. 4	10 - 30
No. 8	0 - 10
No. 16	0 - 5

40-2.10 BAR REINFORCEMENT

Bar reinforcement must be deformed bars.

If the project is not shown to be in high desert or any mountain climate region, bar reinforcement must comply with section 52.

If the project is shown to be in high desert or any mountain climate regions, bar reinforcement must be one of the following:

- 1. Epoxy-coated bar reinforcement under section 52-2.03B except bars must comply with either ASTM A 706/A 706M; ASTM A 996/A 996M; or ASTM A 615/A 615M, Grade 40 or 60. Bars must be handled under ASTM D 3963/D 3963M and section 52-2.02C.
- 2. Low carbon, chromium steel bar complying with ASTM A 1035/A 1035M

40-2.11 JOINT SEALANT

40-2.11A General

Do not use hot-pour sealant that will melt the backer rod.

40-2.11B Silicone Joint Sealant

Silicone joint sealant must be prequalified. A list of prequalified silicone joint sealant available on the Department's Materials Engineering and Testing Services Web site at:

http://www.dot.ca.gov/hq/esc/approved_products_list/

40-2.11C Asphalt Rubber Joint Sealant

Asphalt rubber joint sealant must:

- 1. Be a mixture of paving asphalt and ground rubber containing not less than 22 percent ground rubber by weight. One hundred percent of ground rubber must pass a No. 8 sieve. Ground rubber must be vulcanized or a combination of vulcanized and devulcanized materials.
- 2. Comply with ASTM D 6690, Type II except:
 - 2.1. The cone penetration requirement must not exceed 120 at 77 F, 5 ounces, 5 seconds.
 - 2.2. The resilience requirement must be a minimum 50 percent recovery when tested at 77 F.
- 3. Have a Ring and Ball softening point of 135 °F minimum when tested under AASHTO T 53.
- 4. Be capable of being melted and applied to cracks and joints at temperatures below 400 °F.
- 5. Not be applied when the concrete pavement surface temperature is below 50 °F.

40-2.11D Preformed Compression Joint Seals

Preformed compression joint seals must comply with ASTM D 2628. Lubricant adhesive used with the seals must comply with ASTM D 2835. Preformed compression joint seals must have 5 or 6 cells, except seals for Type A2 and Type B joints may have 4 cells. Install preformed compression joint seals in compliance with the manufacturer's recommendations. Show evidence that the seals are compressed from 30 to 50 percent for the joint width at the time of installation.

40-2.12 WATER

Water for core drilling may be obtained from a potable water source, or submit proof that it does not contain:

- 1. More than 1,000 parts per million of chlorides as Cl
- 2. More than 1,300 parts per million of sulfates as SO₄

3. Impurities that cause pavement discoloration or surface etching

40-3 CONSTRUCTION

40-3.01 WATER SUPPLY

Before placing concrete pavement, develop enough water supply for the work.

40-3.02 SUBGRADE PREPARATION

Immediately before placing concrete, the subgrade to receive concrete pavement must be:

- 1. In compliance with the specified compaction and elevation tolerances
- 2. Free of loose and extraneous material
- 3. Uniformly moist, but free of standing or flowing water
- 4. Excavated for thickened parts of concrete pavement end anchors with no disturbed compaction outside the end anchor dimensions

If cement treated permeable base is specified, cover the base surface with asphaltic emulsion before placing concrete pavement. Apply the asphaltic emulsion uniformly at a rate of 0.1 gallons per square yard. Asphaltic emulsion must comply with anionic slow-setting type, SS1h grade in Section 94, "Asphaltic Emulsions." Repair damaged asphaltic emulsion before placing concrete pavement.

40-3.03 PROPORTIONING

Proportion aggregate and bulk cementitious materials under Section 90-5, "Proportioning."

40-3.04 PLACING CONCRETE

40-3.04A General

Place concrete pavement with stationary side forms or slip-form paving equipment.

Place consecutive concrete loads within 30 minutes of each other. Construct a transverse construction joint when concrete placement is interrupted by more than 30 minutes. The transverse construction joint must coincide with the next contraction joint location, or you must remove fresh concrete pavement to the preceding transverse joint location.

Place concrete pavement in full slab widths separated by construction joints or monolithically in multiples of full lane widths with a longitudinal contraction joint at each traffic lane line.

Do not retemper concrete.

If the concrete pavement surface width is constructed as specified, you may construct concrete pavement sides on a batter not flatter than 6:1 (vertical:horizontal).

40-3.04B Concrete Pavement Widening

If concrete pavement is placed adjacent to existing pavement not constructed as part of the contract, grind the existing concrete pavement lane or shoulder adjacent to the new concrete pavement. Perform the grinding before new concrete pavement is placed. The new concrete pavement must match the elevation of the existing concrete pavement after grinding. Grind existing concrete pavement under Section 42-2, "Grinding," except profile index must comply with the pavement smoothness specifications in Section 40-1.03, "Quality Control and Assurance."

Use paving equipment with padded crawler tracks or rubber-tired wheels on the existing concrete pavement with enough offset to avoid breaking or cracking the existing concrete pavement's edge.

40-3.04C Concrete Pavement Transition Panel

For concrete pavement placed in a transition panel, texture the surface with a drag strip of burlap, a broom, or a spring steel tine device that produces scoring in the finished surface. The scoring must be either parallel with or transverse to the centerline. For the method you choose, texture at the time that produces the coarsest texture.

40-3.04D Stationary Side Form Construction

Stationary side forms must be straight and without defects including warps, bends, and indentations. Side forms must be metal except at end closures and transverse construction joints where other materials may be used.

You may build up side forms by attaching a section to the top or bottom. If attached to the top of metal forms, the attached section must be metal.

The side form's base width must be at least 80 percent of the specified concrete pavement thickness.

Side forms including interlocking connections with adjoining forms must be rigid enough to prevent springing from subgrading and paving equipment and concrete pressure.

Construct subgrade to final grade before placing side forms. Side forms must bear fully on the foundation throughout their length and base width. Place side forms to the specified grade and alignment of the finished concrete pavement's edge. Support side forms during concrete placing, compacting, and finishing.

After subgrade work is complete and immediately before placing concrete, true side forms and set to line and grade for a distance that avoids delays due to form adjustment.

Clean and oil side forms before each use.

Side forms must remain in place for at least 1 day after placing concrete and until the concrete pavement edge no longer requires protection from the forms.

Spread, screed, shape, and consolidate concrete with 1 or more machines. The machine must uniformly distribute and consolidate the concrete. The machines must operate to place the concrete pavement to the specified cross section with minimal hand work.

Consolidate the concrete without segregation. If vibrators are used:

- 1. The vibration rate must be at least 3,500 cycles per minute for surface vibrators and 5,000 cycles per minute for internal vibrators
- 2. Amplitude of vibration must cause perceptible concrete surface movement at least 1 foot from the vibrating element
- 3. Use a calibrated tachometer for measuring frequency of vibration
- 4. Vibrators must not rest on side forms or new concrete pavement
- 5. Power to vibrators must automatically cease when forward or backward motion of the paving machine is stopped

Use high-frequency internal vibrators within 15 minutes of depositing concrete on the subgrade to uniformly consolidate the concrete across the paving width including adjacent to forms. Do not use vibrators to shift the mass of concrete.

40-3.04E Slip-Form Construction

If slip-form construction is used, spread, screed, shape, and consolidate concrete to the specified cross section with slip-form machines and minimal hand work. Slip-form paving machines must be equipped with traveling side forms and must not segregate the concrete.

Do not deviate from the specified concrete payement alignment by more than 0.1 foot.

Slip-form paving machines must use high frequency internal vibrators to consolidate concrete. You may mount vibrators with their axes parallel or normal to the concrete pavement alignment. If mounted with axes parallel to the concrete pavement alignment, space vibrators no more than 2.5 feet measured center to center. If mounted with axes normal to the concrete pavement alignment, space the vibrators with a maximum 0.5-foot lateral clearance between individual vibrators.

Each vibrator must have a vibration rate from 5,000 cycles per minute to 8,000 cycles per minute. The amplitude of vibration must cause perceptible concrete surface movement at least 1 foot from the vibrating element. Use a calibrated tachometer to measure frequency of vibration.

40-3.05 TIE BAR PLACEMENT

Place tie bars in compliance with the tolerances shown in the following table:

Tie Bar Tolerance

Dimension	Tolerance
Horizontal and vertical skew	10 degrees maximum
Longitudinal translation	±2 inch maximum
Horizontal offset (embedment)	±2 inch maximum
Vertical depth	 Not less than 1/2 inch below the saw cut depth of joints When measured at any point along the bar, not less than 2 inches clear of the pavement's surface and bottom

Install tie bars at longitudinal joints by 1 of the following methods:

- Drill concrete and bond tie bars with chemical adhesive in compliance with the manufacturer's instructions.
 Clean and dry drilled holes before placing chemical adhesive and tie bars. After inserting tie bars into chemical adhesive, support the bars to prevent movement during curing. If the Engineer rejects a tie bar installation, cut the tie bar flush with the joint face and coat the exposed end of the tie bar with chemical adhesive under Section 40-2, "Materials." Offset new holes 3 inches horizontally from the rejected hole's center.
- 2. Insert tie bars into plastic slip-formed concrete before finishing. Inserted tie bars must have full contact between the bar and the concrete. If tie bars are inserted through the plastic concrete surface, eliminate evidence of the insertion by reworking the concrete over the tie bars.
- 3. Use threaded tie bar splice couplers fabricated from deformed bar reinforcement free of external welding or machining.
- 4. Use tie bar baskets. Anchor baskets at least 200 feet in advance of concrete pavement placement activity. If you request a waiver, describe the construction limitations or restricted access preventing the advanced anchoring. After the baskets are anchored and before paving, demonstrate the tie bars do not move from their specified depth and alignment during paving. Use fasteners to anchor tie bar baskets.

If tie bars are not placed correctly, stop paving activities until you demonstrate to the Engineer correction of the cause.

40-3.06 DOWEL BAR PLACEMENT

Center dowel bars within 2 inches in the longitudinal direction on transverse contraction joints or construction joints.

If using curing compound as lubricant, apply the curing compound to dowels in 2 separate applications. Lubricate each dowel bar entirely with bond breaker before placement. The last application must be applied not more than 8 hours before placing the dowel bars. Apply each curing compound application at a rate of 1 gallon per 150 square feet.

If dowel bars are placed by mechanical insertion, eliminate evidence of the insertion by reworking the concrete over the dowel bars. If drilling and bonding dowel bars at construction joints, use a grout retention ring.

If using dowel bar baskets, anchor them with fasteners.

Use at least 10 fasteners for basket sections greater than 12 feet and less than or equal to 16 feet. Baskets must be anchored at least 200 feet in advance of the concrete placement activity unless the Engineer approves your waiver request. If requesting a waiver, describe the construction limitations or restricted access preventing the advanced anchoring. After the baskets are anchored and before the concrete is placed, cut and remove temporary spacer wires and demonstrate the dowel bars do not move from their specified depth and alignment during concrete placement.

Place dowel bars in compliance with:

Contract No. 12-0E3104 171 of 297

Dowel Bar Tolerances

Dimension	Tolerance
Horizontal offset	±1 inch
Longitudinal translation	±2 inches
Horizontal skew	3/8 inch, max
Vertical skew	3/8 inch, max
Vertical depth	The minimum distance below the
	concrete pavement surface must be:
	DB = d/3 + 1/2 inch where: DB = vertical distance in inches, measured from concrete pavement surface to any point along the top of dowel bar d = concrete pavement thickness in inches
	The maximum distance below the
	depth shown must be 5/8 inch

If dowel bars are not placed correctly, stop paving activities until you demonstrate to the Engineer correction of the cause.

Remove and replace the concrete pavement 3 feet on either side of a joint with a rejected dowel bar.

40-3.07 BAR REINFORCEMENT

Place bar reinforcement under Section 52, "Reinforcement." Bar reinforcement must be more than 1/2 inch below the saw cut depth at concrete pavement joints.

40-3.08 JOINTS

40-3.08A General

Concrete pavement joints consist of:

- 1. Longitudinal and transverse construction joints
- 2. Longitudinal and transverse contraction joints
- 3. Isolation joints

Construction joints must be normal to the concrete pavement surface.

Until contract acceptance and except for joint filler material, keep joints free of foreign material including soil, gravel, concrete, or asphalt mix.

Volunteer cracks are cracks not coincident with constructed joints.

Repair concrete pavement damaged during joint construction under Section 40-3.17B, "Repair of Spalls, Raveling, and Tearing."

Do not bend tie bars or reinforcement in existing concrete pavement joints.

40-3.08B Construction Joints

Construction joints form where fresh concrete is placed against hardened concrete, existing pavements, or structures.

Before placing concrete at construction joints, apply a curing compound under Section 90-7.01B, "Curing Compound Method," to the vertical surface of existing or hardened concrete and allow it to dry.

Use a metal or wooden bulkhead to form transverse construction joints. If dowel bars are specified, the bulkhead must allow dowel bar installation.

40-3.08C Contraction Joints

In multilane monolithic concrete pavement, use the sawing method to construct longitudinal contraction joints. Construct transverse contraction joints by the sawing method.

Construct transverse contraction joints within 1 foot of their specified spacing. If a slab length of less than 5 feet would be formed, adjust the transverse contraction joint spacing.

Construct transverse contraction joints across the full concrete pavement width regardless of the number or types of longitudinal joints crossed. In areas of converging and diverging pavements, space transverse contraction joints so their alignment is continuous across the full width where converging and diverging pavements are contiguous. Longitudinal contraction joints must be parallel with the concrete pavement centerline. Transverse and longitudinal contraction joints must not deviate by more than 0.1 foot from either side of a 12-foot straight line, except for longitudinal joints parallel to a curving centerline.

40-3.08D Isolation Joints

Construct isolation joints by saw cutting a minimum 1/8-inch width to full concrete pavement depth at the existing concrete pavement's edge and removing the concrete to expose a flat vertical surface. Before placing concrete, secure joint filler material that prevents new concrete from adhering to the existing concrete face.

Dispose of concrete saw cutting residue under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way."

40-3.08E Sawing Method

The sawing method is cutting a groove in the concrete pavement with a power driven concrete saw. Grooves for longitudinal and transverse contraction joints must be the minimum width possible for the type of saw used. If necessary, the top of the joint must be sawn wider to provide space for joint sealant. Immediately wash slurry from the joint with water under 100 psi maximum pressure.

Saw longitudinal and transverse contraction joints before volunteer cracking occurs and after the concrete is hard enough to saw without spalling, raveling, or tearing.

To keep foreign material out of grooves before joint sealant or compression seal installation, you may use joint filler in sawed contraction joints. Joint filler must not react adversely with the concrete or cause concrete pavement damage. After sawing and washing a joint, install joint filler material that keeps moisture in the adjacent concrete during the 72 hours after paving. If you install joint filler material, the specifications for spraying the sawed joint with additional curing compound under Section 40-3.13, "Curing," do not apply. If using absorptive filler material, moisten the filler immediately before or after installation.

40-3.09 JOINT SEALANT AND COMPRESSION SEAL INSTALLATION

40-3.09A General

At least 7 days after concrete pavement placement and not more than 4 hours before installing joint sealant or compression seal materials, use dry sand blasting and other methods to clean the joint walls of objectionable material such as soil, asphalt, curing compound, paint, and rust. The maximum sand blasting nozzle diameter must be 1/4 inch. The minimum pressure must be 90 psi. Sand blast each side of the joint at least once, in at least 2 separate passes. Hold the nozzle at an angle to the joint from 1 to 2 inches from the concrete pavement. Using a vacuum, collect sand, dust, and loose material at least 2 inches on each side of the joint. Remove surface moisture and dampness at the joints with compressed air that may be moderately hot.

Before you install joint sealant or compression seal, the joint wall must be free of moisture, residue, or film.

If grinding or grooving over or adjacent to sealed joints, remove joint sealant or compression seal materials and dispose of them under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way." After grinding or grooving, replace the joint sealant or compression seal materials.

40-3.09B Liquid Sealant

Do not install liquid sealant in construction joints.

Install backer rods when the concrete pavement temperature is above the air dew point and when the air temperature is at least 40 °F.

Install liquid sealant immediately after installing the backer rod. Install sealant using a mechanical device with a nozzle shaped to introduce the sealant from inside the joint. Extrude sealant evenly and with continuous contact with the joint walls. Recess the sealant surface after placement. Remove excess sealant from the concrete pavement surface.

Do not allow traffic over sealed joints until the sealant is set.

40-3.09C Preformed Compression Seal

Install preformed compression seal in construction or isolation joints when specified in the special provisions.

Install longitudinal seals before transverse seals. Longitudinal seals must be continuous except splicing is allowed at intersections with transverse seals. Transverse seals must be continuous for the entire transverse length of concrete pavement except splices are allowed for widenings and staged construction. With a sharp instrument, cut across the longitudinal seal at the intersection with transverse construction joints. If the longitudinal seal does not relax enough to properly install the transverse seal, trim the longitudinal seal to form a tight seal between the 2 joints.

If splicing is authorized, splicing must comply with the manufacturer's written instructions.

Use a machine specifically designed for preformed compression seal installation. The machine must install the seal:

- 1. To the specified depth
- 2. To make continuous contact with the joint walls
- 3. Without cutting, nicking, or twisting the seal
- 4. With less than 4 percent stretch

Lay a length of preformed compression seal material cut to the exact length of the pavement joint to be sealed. The Engineer measures this length. After you install the length of preformed compression joint sealant, the Engineer measures the excess amount of material at the joint end. The Engineer divides the excess amount length by the original measured length to determine the percentage of stretch.

40-3.10 SHOULDER RUMBLE STRIP

If specified, construct shoulder rumble strips by rolling or grinding indentations in new concrete pavement.

Select the method and equipment for constructing ground-in indentations.

Do not construct shoulder rumble strips on structures or approach slabs.

Construct rumble strips within 2 inches of the specified alignment. Roller or grinding equipment must be equipped with a sighting device enabling the operator to maintain the rumble strip alignment.

Indentations must not vary from the specified dimensions by more than 1/16 inch in depth or more than 10 percent in length and width.

The Engineer orders grinding or removal and replacement of noncompliant rumble strips to bring them within specified tolerances. Ground surface areas must be neat and uniform in appearance.

The grinding equipment must be equipped with a vacuum attachment to remove residue.

Dispose of removed material under Section 7-1.13, "Disposal of Material Outside the Highway Right of Way."

40-3.11 PRELIMINARY FINISHING

40-3.11A General

Preliminary finishing must produce a smooth and true-to-grade finish. After preliminary finishing, mark each day's concrete pavement with a stamp. The stamp must be approved by the Engineer before paving starts. The stamp must be approximately 1' x 2' in size. The stamp must form a uniform mark from 1/8 to 1/4 inch deep. Locate the mark 20 feet \pm 5 feet from the transverse construction joint formed at each day's start of paving and 1 foot \pm 0.25 foot from the concrete pavement's outside edge. The stamp mark must show the month, day, and year of placement and the station of the transverse construction joint. Orient the stamp mark so it can be read from the concrete pavement's outside edge.

Do not apply more water to the concrete pavement surface than can evaporate before float finishing and texturing are completed.

40-3.11B Stationary Side Form Finishing

If stationary side form construction is used, give the concrete a preliminary finish by the machine float method or the hand method.

If using the machine float method:

- 1. Use self-propelled machine floats.
- Determine the number of machine floats required to perform the work at a rate equal to the concrete
 delivery rate. When the time from concrete placement to machine float finishing exceeds 30 minutes, stop
 concrete delivery. When machine floats are in proper position, you may resume concrete delivery and
 paving.

- Machine floats must run on side forms or adjacent concrete pavement lanes. If running on adjacent concrete pavement, protect the adjacent concrete pavement surface under Section 40-3.15, "Protecting Concrete Pavement."
- 4. Floats must be hardwood, steel, or steel-shod wood. Floats must be equipped with devices that adjust the underside to a true flat surface.

If using the hand method, finish concrete smooth and true to grade with manually operated floats or powered finishing machines.

40-3.11C Slip-Form Finishing

If slip-form construction is used, the slip-form paver must give the concrete pavement a preliminary finish. You may supplement the slip-form paver with machine floats.

Before the concrete hardens, correct concrete pavement edge slump in excess of 0.02 foot exclusive of edge rounding.

40-3.12 FINAL FINISHING

After completing preliminary finishing, round the edges of the initial paving widths to a 0.04-foot radius. Round transverse and longitudinal construction joints to a 0.02-foot radius.

Before curing, texture the pavement. Perform initial texturing with a burlap drag or broom device that produces striations parallel to the centerline. Perform final texturing with a steel-tined device that produces grooves parallel with the centerline.

Construct longitudinal grooves with a self-propelled machine designed specifically for grooving and texturing concrete pavement. The machine must have tracks to maintain constant speed, provide traction, and maintain accurate tracking along the pavement surface. The machine must have a single row of rectangular spring steel tines. The tines must be from 3/32 to 1/8 inch wide, on 3/4-inch centers, and must have enough length, thickness, and resilience to form grooves approximately 3/16 inch wide. The machine must have horizontal and vertical controls. The machine must apply constant down pressure on the pavement surface during texturing. The machines must not cause ravels.

Construct grooves over the entire pavement width in a single pass except do not construct grooves 3 inches from the concrete pavement edges and longitudinal joints. Final texture must be uniform and smooth. Use a guide to properly align the grooves. Grooves must be parallel and aligned to the pavement edge across the pavement width. Grooves must be from 1/8 to 3/16 inch deep after concrete has hardened.

For irregular areas and areas inaccessible to the grooving machine, you may hand-construct grooves in compliance with the hand method under Section 40-3.11B, "Stationary Side Form Finishing." Hand-constructed grooves must comply with the specifications for machine-constructed grooves.

Initial and final texturing must produce a coefficient of friction of at least 0.30 when tested under California Test 342. Notify the Engineer when the concrete pavement is scheduled to be opened to traffic to allow at least 25 days for the Department to schedule for test for coefficient of friction. Notify the Engineer when the pavement is ready for testing which is the latter of:

- 1. Seven days after concrete placement
- 2. When the concrete pavement has attained a modulus of rupture of 550 psi

The Department tests for coefficient of friction within 7 days of receiving notification that the pavement is ready for testing.

Do not open the concrete pavement to traffic unless the coefficient of friction is at least 0.30.

Correct concrete pavement not complying with the Engineer's acceptance criteria for coefficient of friction by grooving or grinding under Section 42, "Groove and Grind Pavement."

Do not grind before:

- 1. Ten days after concrete pavement placement
- 2. Concrete has developed a modulus of rupture of at least 550 psi

Before opening to traffic, allow at least 25 days for the Department to retest sections for coefficient of friction after corrections are made.

40-3.13 CURING

Cure the concrete pavement's exposed area with waterproof membrane or curing compound (1) or (2) under Section 90-7.01, "Methods of Curing." When side forms are removed within 72 hours of the start of curing, also cure the concrete pavement edges.

If curing compound is used, apply it with mechanical sprayers. Reapply curing compound to sawcuts and disturbed areas.

40-3.14 EARLY USE OF CONCRETE PAVEMENT

If requesting early use of concrete pavement:

- 1. Furnish molds and machines for modulus of rupture testing
- 2. Sample concrete
- 3. Fabricate beam specimens
- 4. Test for modulus of rupture under California Test 523

When you request early use, concrete pavement must have a modulus of rupture of at least 350 psi. Protect concrete pavement under Section 40-3.15, "Protecting Concrete Pavement."

40-3.15 PROTECTING CONCRETE PAVEMENT

Protect concrete pavement under Section 90-8, "Protecting Concrete."

Maintain the concrete pavement temperature at not less than 40 °F for the initial 72 hours.

Protect the concrete pavement surface from activities that cause damage and reduce texture and coefficient of friction. Do not allow soil, gravel, petroleum products, concrete, or asphalt mixes on the concrete pavement surface.

Construct crossings for traffic convenience. If the Engineer approves your request, you may use rapid strength concrete for crossings. Do not open crossings until the Department determines by California Test 523 the concrete pavement's modulus of rupture is at least 550 psi.

Do not open concrete pavement to traffic or use equipment on the concrete pavement for 10 days after paving nor before the concrete has attained a modulus of rupture of 550 psi except:

- 1. If the equipment is for sawing contraction joints
- 2. If the Engineer approves your request, one side of paving equipment's tracks may be on the concrete pavement after a modulus of rupture of 350 psi has been attained, provided:
 - 2.1. Unit pressure exerted on the concrete pavement by the paver does not exceed 20 psi
 - 2.2. You change the paving equipment tracks to prevent damage or the paving equipment tracks travel on protective material such as planks
 - 2.3. No part of the track is closer than 1 foot from the concrete pavement's edge

If concrete pavement damage including visible cracking occurs, stop operating paving equipment on the concrete pavement and repair the damage.

40-3.16 OBTAINING DRILLED CORES

Drill concrete pavement cores under ASTM C 42/ C 42M. Core drilling equipment must use diamond impregnated bits.

Clean, dry, and fill core holes with hydraulic cement grout (non-shrink) or pavement concrete. Coat the core hole walls with epoxy under the specifications for epoxy adhesive for bonding new concrete to old concrete in Section 95, "Epoxy." The backfill must match the adjacent concrete pavement surface elevation and texture.

Do not allow residue from core drilling to fall on traffic, flow across shoulders or lanes occupied by traffic, or flow into drainage facilities including gutters.

40-3.17 REPAIR, REMOVAL, AND REPLACEMENT

40-3.17A General

Working cracks are full-depth cracks essentially parallel to a planned contraction joint beneath which a contraction crack has not formed. If the Engineer orders, take 4-inch nominal diameter cores on designated cracks under Section 40-3.16, "Obtaining Drilled Cores."

40-3.17B Repair of Spalls, Raveling, and Tearing

Before concrete pavement is open to traffic, repair spalls, raveling, and tearing in sawed joints. Make repairs in compliance with the following:

- 1. Saw a rectangular area with a diamond-impregnated blade at least 2 inches deep.
- 2. Remove unsound and damaged concrete between the saw cut and the joint and to the saw cut's depth. Do not use a pneumatic hammer heavier than 15 pounds. Do not damage concrete pavement to remain in place.
- 3. Dispose of removed concrete pavement under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way."
- 4. Clean the repair area's exposed surfaces with high pressure abrasive water blasting. Further clean and dry the exposed surfaces with compressed air free of moisture and oil.
- 5. Apply epoxy as specified for epoxy resin adhesive for bonding new concrete to old concrete under Section 95, "Epoxy." Apply the epoxy with a stiff bristle brush.
- 6. Apply a portland cement concrete or mortar patch immediately following the epoxy application. Install an insert to prevent bonding of the sides of planned joints.

Repair spalls if they are:

- 1. Deeper than 0.05 foot
- 2. Wider than 0.04 foot
- 3. Longer than 0.3 foot

40-3.17C Route and Seal Working Cracks

Treat working cracks within 0.5 foot of either side of a planned contraction joint in compliance with the following:

- 1. Route and seal the crack with epoxy resin in compliance with the following:
 - 1.1. Use a powered rotary router mounted on wheels, with a vertical shaft and a routing spindle that casters as it moves along the crack
 - 1.2. Form a reservoir 3/4 inch deep by 3/8 inch wide in the crack
 - 1.3. Use equipment that does not cause raveling or spalling
 - 1.4. Place liquid sealant
- 2. Treat the contraction joint adjacent to the working crack in compliance with the following:
 - 2.1. Use epoxy resin under ASTM C 881/C 881M, Type IV, Grade 2 for Type B joints and secondary saw cuts for Type A1 and Type A2 joints
 - 2.2. Pressure inject epoxy resin under ASTM C 881/C881M, Type IV, Grade 1 for narrow saw cuts including initial saw cuts for Type A1 and Type A2 joints

If a working crack intersects a contraction joint, route and seal the working crack and seal the contraction joint as specified for installing liquid sealant under Section 40-3.09, "Joint Seal and Joint Sealant Installation."

40-3.17D Removal and Replacement of Slabs

As specified, remove and replace slabs or partial slabs for:

- 1. Insufficient thickness
- 2. Dowel bar misalignment
- 3. Working cracks more than 0.5 foot from a planned contraction joint

40-4 MEASUREMENT AND PAYMENT

40-4.01 MEASUREMENT

Concrete pavement is measured by the cubic yard. The Engineer calculates the pay quantity volume based on the dimensions shown on the plans and as ordered

The contract items for sealing joints as designated in the Verified Bid Item List are measured by the linear foot. Sealing joints are measured from field measurements for each type of sealed joint.

The contract item for shoulder rumble strips is measured by the station along each shoulder on which the rumble strips are constructed without deductions for gaps between indentations.

40-4.02 PAYMENT

The contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the concrete pavement, complete in place including bar reinforcement, tie bars, dowel bars, anchors, fasteners, tack coat, and providing the facility for and attending the prepaving conference, as shown on the plans and as specified in these specifications and the special provisions, and as directed by the Engineer.

The Engineer adjusts payment for each primary area deficient in average thickness in compliance with the following:

Pay Adjustments for Deficient Thickness

Average Thickness	Deficiency Adjustment
Deficiency (foot)	(\$/sq yd)
0.01	0.90
0.02	2.30
0.03	4.10
0.04	6.40
0.05	9.11

If the average thickness deficiency is less than 0.01 foot, the Engineer does not adjust payment for thickness deficiency. If the average thickness deficiency is more than 0.01 foot, the Engineer rounds to the nearest 0.01 foot and uses the adjustment table.

Full compensation for core drilling and backfilling the cores ordered by the Engineer for measuring concrete pavement thickness and determining full-depth cracks is included in the contract price paid per cubic yard for concrete pavement as designated in the Engineer's Estimate and no additional compensation will be allowed therefor. The Department does not pay for additional concrete pavement thickness measurements requested by the Contractor.

The Department does not pay for the portion of concrete that penetrates treated permeable base.

Full compensation for the quality control plan is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for furnishing and applying asphaltic emulsion on cement treated permeable base is included in the contract price paid per cubic yard for concrete pavement as designated in the Engineer's Estimate and no separate payment will be made therefor.

Full compensation for repairing joints is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for furnishing, calibrating, and operating profilograph equipment for Profile Index, for submitting profilograms, and for performing corrective work is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for grooving and grinding for final finishing is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for removing and replacing joint material for grooving and grinding is included in the contract price per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for removing and replacing slabs is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

Full compensation for drilling holes and bonding tie bars with chemical adhesive is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no additional compensation will be allowed therefor.

Full compensation for repairing damage caused by operating paving equipment on new concrete pavement is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no separate payment will be made therefor.

The material and work necessary for the construction of crossings for public convenience, and their subsequent removal and disposal, will be paid for at the contract prices for the items of work involved and if there are no contract items for the work involved, payment for concrete pavement crossings will be made by extra work as specified in Section 4-1.03D, "Extra Work."

The Department will reduce payments to the Contractor by \$56.12 per square yard for concrete payment slabs allowed to remain in place represented by cores indicating dowel bars placed with their centers from ± 2 inches to ± 3 inches from the saw cut of a transverse contraction joint

The Engineer will calculate the reduced payment using the slab dimensions adjacent to and inclusive of the joints with misplaced dowel bars. This reduced payment is in addition to other specified payment reductions.

The Department will reduce payments to the Contractor by \$59.56 per square yard for concrete pavement allowed to remain in place represented by cores indicating either of the following:

- 1. Tie bars placed outside their specified placement and position tolerances
- 2. Bar reinforcement placed outside their specified placement and position tolerances

The Engineer will calculate the reduced payment using the slab dimensions adjacent to and inclusive of the joints with misplaced tie bars. This reduced payment is in addition to other specified payment reductions.

Full compensation for core drilling for checking dowel or tie bar alignment and backfilling the cores is included in the contract price paid per cubic yard for concrete pavement as designated in the Engineer's Estimate and no additional compensation will be allowed therefor.

If the initial cores show that dowel bars or tie bars are out of tolerance for alignment and the Engineer orders additional dowel or tie bar coring, full compensation for drilling the additional cores is included in the contract price paid per cubic yard for concrete pavement as designated in the Verified Bid Item List and no additional compensation will be allowed therefor.

If the initial cores show that dowel bars or tie bars are within alignment tolerances and the Engineer orders more dowel or tie bar coring, the additional cores will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

The Department will not pay for additional coring to check dowel or tie bar alignment you request.

Full compensation for performing profilograph tests, furnishing the profilograms and electronic files to the Engineer, and for performing corrective work is included in the contract price paid per cubic yard for the type of concrete pavement as designated in the Verified Bid Item List and no additional compensation will be allowed therefor.

The contract prices paid per linear foot for seal pavement joint and seal isolation joint include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in sealing pavement joints and sealing isolation joints, complete in place, as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per station for shoulder rumble strip includes full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in constructing the rumble strip complete in place, as shown on the plans, as specified in these Standard Specifications and as directed by the Engineer.

^^^^^

SECTION 41 PAVEMENT SUBSEALING AND JACKING (Issued 01-05-07)

In Section 41-1.02 replace the 2nd and 3rd paragraphs with:

Cement for grout shall be Type II portland cement conforming to the provisions in Section 90-2.01A, "Cement."

Fly ash shall conform to the requirements in AASHTO Designation: M 295 for either Class C or for Class F. The brand of fly ash used in the work shall conform to the provisions for approval of admixture brands in Section 90-4.03, "Admixture Approval."

In Section 41-1.02 replace the 5th paragraph with:

Chemical admixtures and calcium chloride may be used. Chemical admixtures in the grout mix shall conform to the provisions in Section 90-4, "Admixtures." Calcium chloride shall conform to ASTM Designation: D 98.

^^^^^

SECTION 42 GROOVE AND GRIND PAVEMENT (Issued 05-15-09)

In Section 42-2.02 replace the 3rd paragraph with:

Existing portland cement concrete pavement not constructed as part of the project shall be ground as follows:

Grinding shall be performed so that the pavement surface on both sides of all transverse joints and cracks has essentially the same depth of texture and does not vary from a true plane enough to permit a 0.006-foot thick shim 0.25-foot wide to pass under a 3-foot straightedge adjacent to either side of the joint or crack when the straightedge is laid on the pavement parallel to centerline with its midpoint at the joint or crack. After grinding has been completed, the pavement shall conform to the straightedge and profile requirements specified in Section 40-1.03, "Quality Control and Assurance."

Abnormally depressed areas due to subsidence or other localized causes will be excluded from testing with the profilograph and 12-foot straightedge specified in Section 40-1.03. The accumulated total of the excluded areas shall not exceed 5 percent of the total area to be ground. Profilograph testing shall end 25 feet prior to excluded areas and shall resume 25 feet following the excluded areas.

In Section 42-2.03 replace the 2nd paragraph with:

Replacement concrete paving shall conform to the provisions in Section 40, "Concrete Pavement." Replacement pavement may be spread and shaped by any suitable powered finishing machines, supplemented by handwork as necessary. Consolidation of the concrete shall be by means of high-frequency internal vibrators within 15 minutes after the concrete is deposited on the subgrade. Vibrating shall be done with care and in such manner to assure adequate consolidation adjacent to forms and uniformly across the full paving width. Use of vibrators for extensive shifting of the mass of concrete will not be permitted. Methods of spreading, shaping and compacting that result in segregation, voids or rock pockets shall be discontinued, and the Contractor shall adopt methods which will produce dense homogeneous pavement conforming to the required cross section. Finishing may be performed by hand method, as specified in Section 40-3.11B, "Stationary Side Form Finishing."

SECTION 49 PILING (Issued 01-20-12)

In Section 49-1.03 replace the 4th paragraph with:

Modification to the specified installation methods and specified pile tip elevation will not be considered at locations where settlement, tension demands, or lateral load demands control design pile tip elevations or when the plans state that specified pile tip elevation shall not be revised.

In Section 49-1.03 in the 6th paragraph, replace the 1st sentence with:

Indicator compression pile load testing shall conform to the requirements in ASTM Designation: D 1143-81.

In Section 49-1.03 in the 7th paragraph, replace the 1st sentence with:

Indicator tension pile load testing shall conform to the requirements in ASTM Designation: D 3689-90.

In Section 49-1.03 replace the 9th paragraph with:

The Contractor shall furnish piling of sufficient length to obtain the specified tip elevation shown on the plans or specified in the special provisions.

In Section 49-1.04 replace the 6th paragraph with:

The Contractor may use additional cementitious material in the concrete for the load test and anchor piles.

In Section 49-4.01 replace the 2nd paragraph with:

The drilling of holes shall conform to the provisions in these specifications. Concrete filling for cast-in-place concrete piles shall be prequalified in conformance with the provisions in Section 90-9, "Compressive Strength," and shall have a minimum 28-day compressive strength of 3,600 psi. At the option of the Contractor, the combined aggregate grading for the concrete shall be either the one-inch maximum grading, the 1/2-inch maximum grading, or the 3/8-inch maximum grading. Concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," and Section 51, "Concrete Structures." Reinforcement shall conform to the provisions in Section 52, "Reinforcement."

In Section 49-6.01 replace the 1st paragraph with:

The length of timber, steel, and precast prestressed concrete piles, and of cast-in-place concrete piles consisting of driven shells filled with concrete, shall be measured along the longest side, from the tip elevation shown on the plans to the plane of pile cut-off.

In Section 49-6.02 add:

When pile tips are revised by the Engineer for timber, steel, and precast prestressed concrete piles, and for cast-in-place concrete piles consisting of driven shells filled with concrete, the additional length required, including all materials, equipment, and labor for furnishing, splicing, and installing the piling, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."

^^^^^^

SECTION 50 PRESTRESSING CONCRETE (Issued 04-20-12)

In Section 50-1.02 replace the 2nd paragraph with:

The working drawings of the prestressing system shall show complete details and substantiating calculations of the method and materials the Contractor proposes to use in the prestressing operations, including any additions or rearrangement of reinforcing steel from that shown on the plans. The details shall outline the method and sequence of stressing and shall include complete specifications and details of the prestressing steel and anchoring devices, jacking stresses, elongation calculations, type of ducts and all other data pertaining to the prestressing, including the proposed arrangement of the prestressing steel in the members. The drawings shall also show (1) the exact location of anchorage system components, ducts, and other related elements and (2) the duct location data, including elevations at least every 1/8th point of the span for each span.

In Section 50-1.05 replace the 1st paragraph with:

Prestressing steel shall be high-tensile wire conforming to the requirements in ASTM Designation: A 421, including Supplement I; high-tensile seven-wire strand conforming to the requirements in ASTM Designation: A 416; or uncoated deformed (Type II) high-strength steel bars conforming to the requirements in ASTM Designation: A 722, including all supplementary requirements. The maximum weight requirement of ASTM Designation: A 722 will not apply.

In Section 50-1.05 in the 3rd paragraph, delete item A.

In Section 50-1.05 in the 3rd paragraph, replace item E with:

E. In addition to the requirements in Section 50-1.10, "Samples for Testing," four 4-foot-long samples of coated strand and one 5-foot-long sample of uncoated strand of each size and reel shall be furnished to the Engineer for testing. These samples, as selected by the Engineer, shall be representative of the material to be used in the work.

In Section 50-1.05 between the 3rd and 4th paragraphs, add:

The Contractor shall furnish to the Transportation Laboratory a representative 8-ounce sample from each batch of epoxy patching material to be used. Each sample shall be packaged in an airtight container identified with the manufacturer's name and batch number.

In Section 50-1.07 replace the 2nd paragraph with:

Ducts shall be fabricated with either welded or interlocked seams. Galvanizing of the welded seam will not be required. Ducts shall have sufficient strength to maintain their correct alignment during placing of concrete. Joints between sections of duct shall be positive metallic connections which do not result in angle changes at the joints. Waterproof tape shall be used at the connections. Ducts shall be bent without crimping or flattening. Transition couplings connecting the ducts to anchoring devices shall be either ferrous metal or polyolefin. Ferrous metal transition couplings need not be galvanized.

Ducts shall have an inside cross-sectional area of at least:

- 1. 2.5 times the net area of the prestressing steel for multistrand tendons that will be placed by the pull-through method.
- 2. 2.0 times the net area of the prestressing steel for multistrand tendons that will not be placed by the pull-through method.

Ducts shall have an outside diameter not exceeding 50 percent of the girder web width.

In Section 50-1.07 replace the 7th paragraph with:

All ducts having a vertical duct profile change of 6 inches or more shall be vented. Vents shall be placed within 6 feet of every high point in the duct profile. Vents shall be 1/2 inch minimum diameter standard pipe or suitable plastic pipe. Connections to ducts shall be made with metallic or plastic structural fasteners. Plastic components, if selected, shall not react with the concrete or enhance corrosion of the prestressing steel and shall be free of water soluble chlorides. The vents shall be mortar tight, taped as necessary, and shall provide means for injection of grout through the vents and for sealing the vents. Ends of vents shall be removed one inch below the roadway surface after grouting has been completed.

In Section 50-1.08 replace the 2nd paragraph with:

The maximum temporary tensile stress (jacking stress) in prestressing steel of post-tensioned members shall not exceed 75 percent of the specified minimum ultimate tensile strength of the prestressing steel.

In Section 50-1.08 delete the 4th, 5th, and 6th paragraphs.

In Section 50-1.08 replace the 11th paragraph with:

Prestressing forces shall not be applied to cast-in-place concrete until at least 10 days after the last concrete has been placed in the member to be prestressed and until the concrete compressive strength has reached the strength shown on the plans or specified in the specifications.

In Section 50-1.08 replace the 15th paragraph with:

When prestressing steel in pretensioned members is tensioned at a temperature appreciably lower than the estimated temperature of the concrete and the prestressing steel at the time of initial set of the concrete, the calculated elongation of the prestressing steel shall be increased to compensate for the loss in stress.

The maximum temporary tensile stress in the prestressing steel of pretensioned members shall not exceed 80 percent of the specified minimum ultimate tensile strength of the prestressing steel.

Pretensioned prestressing steel shall be anchored at stresses that will result in the ultimate retention of working forces at not less than those shown on the plans.

In Section 50-1.09 replace the 2nd and 3rd paragraphs with:

Grout shall consist of cement and water and may contain an admixture if approved by the Engineer. Cement shall conform to the provisions in Section 90-2.01A, "Cement."

In Section 50-1.10 between the 3rd and 4th paragraphs, add:

Each sample shall be identified by location and Contract number with weatherproof markings. A completed Sample Identification Card shall also be attached to each sample. The card is available from the Transportation Laboratory.

In Section 50-1.10 in the 5th paragraph, replace item A with:

A. For wire or bars, one 7-foot-long sample and for strand, one 4-foot-long sample, of each size shall be furnished for each heat or reel.

In Section 50-1.11 replace the 1st paragraph with:

No separate payment will be made for pretensioning precast concrete members. Payment for pretensioning precast concrete members shall be considered as included in the contract price paid for furnish precast members as provided for in Section 51, "Concrete Structures."

^^^^^^

SECTION 51 CONCRETE STRUCTURES (Issued 08-05-11)

In Section 51-1.05 in the 11th paragraph, replace the 1st sentence with:

Form panels for exposed surfaces shall be furnished and placed in uniform widths of not less than 3 feet and in uniform lengths of not less than 6 feet, except at the end of continuously formed surfaces where the final panel length required is less than 6 feet.

In Section 51-1.06A(3) in the 1st paragraph, replace items E and F with:

- E. When timber members are used to brace falsework bents which are located adjacent to roadways or railroads, all connections for the timber bracing shall be of the bolted type using 5/8-inch diameter or larger bolts or coil rod with a root diameter equal to that of the shank of a 5/8-inch diameter bolt.
- F. Falsework member clearances must be at least those shown in the following table:

	Clearances		
Falsework	To railing members, barriers, and	To unanchored	
member	anchored temporary railings	temporary railings	
Footings	0'-3"	2'-0"	
Piles	1'-0"	2'-9"	
Other members	2'-0"	2'-9"	

In Section 51-1.06C in the 11th paragraph, replace the 1st sentence with:

Falsework for box culverts and other structures with decks lower than the roadway pavement and with span lengths of 14 feet or less shall not be released until the last placed concrete has attained a compressive strength of 1,600 psi, provided that curing of the concrete is not interrupted.

In Section 51-1.11 replace the 6th paragraph with:

Construction methods and equipment employed by the Contractor shall conform to the provisions in Section 7-1.02, "Load Limitations."

In Section 51-1.12D replace the 4th paragraph with:

Expanded polystyrene shall be a commercially available polystyrene board. Expanded polystyrene shall have a minimum flexural strength of 35 psi determined in conformance with the requirements in ASTM Designation: C 203 and a compressive yield strength of between 16 and 40 psi at 5 percent compression. Surfaces of expanded polystyrene against which concrete is placed shall be faced with hardboard. Hardboard shall be 1/8 inch minimum thickness, conforming to ANSI A135.4, any class. Other facing materials may be used provided they furnish equivalent protection. Boards shall be held in place by nails, waterproof adhesive, or other means approved by the Engineer.

In Section 51-1.12F replace the 3rd paragraph with:

Type A and AL joint seals shall consist of a groove in the concrete that is filled with field-mixed silicone sealant.

In Section 51-1.12F in the	e 6th paragraph.	replace the	table with:
----------------------------	------------------	-------------	-------------

Movement Rating (MR)	Seal Type
MR ≤ 1 inch	Type A or Type B
1 inch $<$ MR \le 2 inches	Type B
2 inches $<$ MR \le 4 inches	Joint Seal Assembly (Strip Seal)
MR > 4 inches	Joint Seal Assembly (Modular Unit)
	or Seismic Joint

In Section 51-1.12F(3)(a) replace the 1st and 2nd paragraphs with:

The sealant must consist of a 2-component silicone sealant that will withstand up to ± 50 percent movement. Silicone sealants must be tested under California Test 435 and must comply with the following:

Specification	Requirement
Modulus at 150 percent elongation	8-75 psi
Recovery	
-	21/32 inch max.
Notch Test	Notched or loss of bond 1/4 inch,
	max.
Water Resistance	Notched or loss of bond 1/4 inch,
	max.
Ultraviolet Exposure	No more than slight checking or
ASTM Designation: G 154, Table	cracking.
X2.1,Cycle 2.	
Cone Penetration	4.5-12.0 mm

In Section 51-1.12F(3)(a) delete the 3rd and 8th paragraphs.

In Section 51-1.12F(3)(a) replace the 10th paragraph with:

A Certificate of Compliance accompanied by a certified test report must be furnished for each batch of silicone sealant in conformance with the provisions in Section 6-1.07, "Certificates of Compliance."

In Section 51-1.12F(3)(b) replace the 2nd paragraph with:

The preformed elastomeric joint seal must conform to the requirements in ASTM D 2628 and the following:

- 1. The seal must consist of a multichannel, nonporous, homogeneous material furnished in a finished extruded form
- 2. The minimum depth of the seal measured at the contact surface must be at least 95 percent of the minimum uncompressed width of the seal as designated by the manufacturer.
- 3. When tested in conformance with the requirements in California Test 673 for Type B seals, joint seals must provide a movement rating (MR) of not less than that shown on the plans.
- 4. The top and bottom edges of the joint seal must maintain continuous contact with the sides of the groove over the entire range of joint movement.
- 5. The seal must be furnished full length for each joint with no more than 1 shop splice in any 60-foot length of seal.
- 6. The Contractor must demonstrate the adequacy of the procedures to be used in the work before installing seals in the joints.
- 7. One field splice per joint may be made at locations and by methods approved by the Engineer. The seals are to be manufactured full length for the intended joint, then cut at the approved splice section and rematched before splicing. The Contractor must submit splicing details prepared by the joint seal manufacturer for approval before beginning splicing work.
- 8. Shop splices and field splices must have no visible offset of exterior surfaces and must show no evidence of bond failure.
- 9. At all open ends of the seal that would admit water or debris, each cell must be filled to a depth of 3 inches with commercial quality open cell polyurethane foam or closed by other means subject to approval by the Engineer.

In Section 51-1.12F(3)(b) replace the 7th paragraph with:

The joint seal must be installed full length for each joint with equipment that does not twist or distort the seal, elongate the seal longitudinally, or otherwise cause damage to the seal or to the concrete forming the groove.

In Section 51-1.12F(3)(b) in the 11th paragraph, replace the 1st sentence with:

Samples of the prefabricated joint seals, not less than 3 feet in length, will be taken by the Engineer from each lot of material.

In Section 51-1.12H(1) in the 6th paragraph, replace the 4th and 5th sentences with:

Each ply of fabric shall have a breaking strength of not less than 800 pounds per inch of width in each thread direction when 3" x 36" samples are tested on split drum grips. The bond between double plies shall have a minimum peel strength of 20 pounds per inch.

In Section 51-1.12H(1) in the 8th paragraph in the table, replace the hardness (Type A) requirements with:

Hardness (Type A)	D 2240 with 2kg mass.	55 ±5
-------------------	-----------------------	-------

In Section 51-1.12H(2) in the 1st paragraph in item A, replace the 1st and 2nd sentences with:

The bearings shall consist of alternating steel laminates and internal elastomer laminates with top and bottom elastomer covers. Steel laminates shall have a nominal thickness of 0.075 inch (14 gage).

In Section 51-1.13 replace the 2nd, 3rd, and 4th paragraphs with:

Surfaces of fresh concrete at horizontal construction joints shall be thoroughly consolidated without completely removing surface irregularities. Additionally, surfaces of fresh concrete at horizontal construction joints between girder stems and decks shall be roughened to at least a 1/4-inch amplitude.

Construction joint surfaces shall be cleaned of surface laitance, curing compound, and other foreign materials using abrasive blast methods before fresh concrete is placed against the joint surface.

Construction joint surfaces shall be flushed with water and allowed to dry to a surface dry condition immediately before placing concrete.

In Section 51-1.135 replace the 1st paragraph with:

Mortar shall be composed of cementitious material, sand, and water proportioned and mixed as specified in this Section 51-1.135.

In Section 51-1.135 replace the 3rd paragraph with:

The proportion of cementitious material to sand, measured by volume, shall be 1 to 2 unless otherwise specified.

In Section 51-1.17 in 4th paragraph, replace the 3rd sentence with:

The surfaces shall have a profile trace showing no high points in excess of 0.25 inch, and the portions of the surfaces within the traveled way shall have a profile count of 5 or less in any 100 foot section.

Add:

51-1.17A Deck Crack Treatment

The Contractor shall use all means necessary to minimize the development of shrinkage cracks.

The Contractor shall remove all equipment and materials from the deck and clean the surface as necessary for the Engineer to measure the surface crack intensity. Surface crack intensity will be determined by the Engineer after completion of concrete cure, before prestressing, and before the release of falsework. In any 500 square foot portion of deck within the limits of the new concrete deck, should the intensity of cracking be such that there are more than 50 feet of cracks whose width at any location exceeds 0.02 inch, the deck shall be treated with a high molecular weight methacrylate (HMWM) resin system. The area of deck to be treated shall have a width that extends for the entire width of new deck inside the concrete barriers and a length that extends at least 5 feet beyond the furthest single continuous crack outside the 500 square foot portion, measured from where that crack exceeds 0.02 inch in width, as determined by the Engineer.

Deck crack treatment shall include furnishing, testing, and applying the HMWM resin system, with sand and absorbent material. If grinding is required, deck crack treatment shall take place before grinding.

51-1.17A(1) Submittals

Submit a HMWM resin system placement plan. When HMWM resin is to be applied within 100 feet of a residence, business, or public space including sidewalks under a structure, also submit a public safety plan. Submit plans under Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The review time is 15 days.

The HMWM resin system placement plan must include:

- 1. Schedule of work and testing for each bridge
- 2. Description of equipment for applying HMWM resin
- 3. Range of gel time and final cure time for HMWM resin
- 4. Absorbent material to be used
- 5. Description of equipment for applying and removing excess sand and absorbent material
- 6. Procedure for removing HMWM resin from the deck, including equipment
- 7. Storage and handling of HMWM resin components and absorbent material
- 8. Disposal of excess HMWM resin and containers

The public safety plan must include:

- 1. A public notification letter with a list of delivery and posting addresses. The letter must state HMWM resin work locations, dates, times, and what to expect. Deliver the letter to residences and businesses within 100 feet of HMWM resin work locations and to local fire and police officials at least 7 days before starting work. Post the letter at the job site.
- 2. An airborne emissions monitoring plan prepared and executed by a certified industrial hygienist (CIH) certified in comprehensive practice by the American Board of Industrial Hygiene. The plan must have at least 4 monitoring points including the mixing point, application point, and point of nearest public contact. Monitor airborne emissions during HMWM resin work and submit emissions monitoring results after completing the work.
- 3. An action plan for protection of the public when airborne emissions levels exceed permissible levels.

4. A copy of the CIH's certification.

If the measures proposed in the safety plan are inadequate to provide for public safety associated with the use of HMWM resin, the Engineer will reject the plan and direct the Contractor to revise the plan. Directions for revisions will be in writing and include detailed comments. The Engineer will notify the Contractor of the approval or rejection of a submitted or revised plan within 15 days of receipt of that plan.

51-1.17A(2) Quality Control and Assurance

Submit samples of HMWM resin components 15 days before use under Section 6-3, "Testing," of the Standard Specifications. Notify the Engineer 15 days before delivery of HMWM resin components in containers over 55 gallons to the job site.

Complete a test area before starting work. Results from airborne emissions monitoring of the test area must be submitted to the Engineer before starting production work.

The test area must:

- 1. Be approximately 500 square feet
- 2. Be placed within the project limits outside the traveled way at an approved location
- 3. Be constructed using the same equipment as the production work
- 4. Replicate field conditions for the production work
- 5. Demonstrate proposed means and methods meet the acceptance criteria
- 6. Demonstrate production work will be completed within the time allowed
- 7. Demonstrate suitability of the airborne emissions monitoring plan

The test area will be acceptable if:

- 1. The treated deck surface is tack free and non-oily
- 2. The sand cover adheres and resists brushing by hand
- 3. Excess sand and absorbent material has been removed
- 4. The coefficient of friction is at least 0.35 when tested under California Test 342

51-1.17A(3) Materials

HMWM resin system consists of a resin, promoter, and initiator. HMWM resin must be low odor and comply with the following:

HMWM Resin

HIVI VVIVI KESIII			
Property	Requirement	Test Method	
Volatile Content*	30 percent, maximum	ASTM D 2369	
Viscosity*	25 cP, maximum,	ASTM D 2196	
	(Brookfield RVT with		
	UL adaptor,		
	50 RPM at 77°F)		
Specific Gravity*	0.90 minimum, at 77°F	ASTM D 1475	
Flash Point *	180°F, minimum	ASTM D 3278	
Vapor Pressure *	1.0 mm Hg, maximum,	ASTM D 323	
	at 77°F		
Tack-free Time	400 minutes,	Specimens prepared	
	maximum, at 25°C	per California	
		Test 551	
PCC Saturated	3.5 MPa, minimum at	California Test 551	
Surface-Dry Bond	24 hours and 21 \pm 1°C		
Strength			

Test must be performed before adding initiator.

Sand for abrasive sand finish must:

1. Be commercial quality dry blast sand

2. Have at least 95 percent pass the No. 8 sieve and at least 95 percent retained on the No. 20 sieve when tested under California Test 205

Absorbent material must be diatomaceous earth, abrasive blast dust, or substitute recommended by the HMWM resin supplier and approved by the Engineer.

51-1.17A(4) Construction

HMWM resin system applied by machine must be:

- 1. Combined in volumetric streams of promoted resin to initiated resin by static in-line mixers
- 2. Applied without atomization

HMWM resin system may be applied manually. Limit the quantity of resin mixed for manual application to 5 gallons at a time.

Prepare the area to be treated by abrasive blasting. Curing compound, surface contaminants, and foreign material must be removed from the bridge deck surface. Sweep the deck surface clean after abrasive blasting and blow loose material from cracks using high-pressure air.

The deck surface must be dry when abrasive blast cleaning is performed. When abrasive blast cleaning within 10 feet of public traffic, remove dust and residue from abrasive blast cleaning using a vacuum attachment operating concurrently with blasting equipment . If the deck surface becomes contaminated before placing HMWM, abrasive blast clean the contaminated area and sweep the deck clean.

The deck must be dry before applying HMWM resin. The concrete surface must be at least 50 degrees F and at most 100 degrees F. Relative humidity must be expected to be at most 85 percent during the work shift.

Thoroughly mix all components of the HMWM resin system. Apply HMWM resin to the deck surface within 5 minutes of mixing at approximately 90 sq ft per gallon. The Engineer determines the exact application rate. The resin gel time must be between 40 and 90 minutes. HMWM resin that thickens during application is rejected.

Spread the HMWM resin system uniformly. Completely cover surfaces to be treated and fill all cracks. Redistribute excess resin using squeegees or brooms within 10 minutes of application. For textured or grooved deck surfaces, excess resin must be removed from the texture indentations.

Apply the abrasive sand finish of at least 2 pounds per square yard or until saturation as determined by the Engineer no sooner than 20 minutes after applying resin. Apply absorbent material before opening lane to traffic. Remove excess sand and absorbent material by vacuuming or power sweeping.

Traffic or equipment will be allowed on the overlay after the Engineer has determined:

- 1. The treated deck surface is tack free and non-oily
- 2. The sand cover adheres and resists brushing by hand
- 3. Excess sand and absorbent material has been removed
- 4. No material will be tracked beyond limits of treatment by traffic

In Section 51-1.18C replace the 2nd paragraph with:

When Class 2 surface finish (gun finish) is specified, ordinary surface finish shall first be completed. The concrete surfaces shall then be abrasive blasted to a rough texture and thoroughly washed down with water. While the washed surfaces are damp, but not wet, a finish coating of machine applied mortar, approximately 1/4 inch thick, shall be applied in not less than 2 passes. The coating shall be pneumatically applied and shall consist of either (1) sand, cementitious material, and water mechanically mixed prior to its introduction to the nozzle, or (2) premixed sand and cementitious material to which water is added prior to its expulsion from the nozzle. The use of admixtures shall be subject to the approval of the Engineer as provided in Section 90, "Portland Cement Concrete." Unless otherwise specified, supplementary cementitious materials will not be required. The proportion of cementitious material to sand shall be not less than one to 4, unless otherwise directed by the Engineer. Sand shall be of a grading suitable for the purpose intended. The machines shall be operated and the coating shall be applied in conformance with standard practice. The coating shall be firmly bonded to the concrete surfaces on which it is applied.

In Section 51-1.18C replace the 5th paragraph with:

When surfaces to be finished are in pedestrian undercrossings, the sand shall be silica sand and the cementitious material shall be standard white portland cement.

In Section 51-1.23 add:

Full compensation for deck crack treatment, including the public safety plan, shall be considered as included in the contract price paid per cubic yard for structural concrete, bridge, and no additional compensation will be allowed therefor.

^^^^^^

SECTION 52 REINFORCEMENT

(Issued 06-05-09)

In Section 52-1.02(B) between the 3rd and 4th paragraphs, add:

The epoxy powder coating shall be selected from the Department's Pre-Qualified Products List.

In Section 52-1.02(B) replace the 14th paragraph with:

Except for lap splices, splices for epoxy-coated reinforcement shall be coated with a corrosion protection covering that is selected from the Department's Pre-Qualified Products List. The covering shall be installed in accordance with the manufacturer's recommendations.

In Section 52-1.07 in the 11th paragraph, replace the table with:

Height Zone (H)	Wind Pressure Value
(Feet above ground)	(psf)
H ≤ 30	20
$30 < H \le 50$	25
$50 < H \le 100$	30
H > 100	35

In Section 52-1.08B(1) replace the 1st paragraph with:

Mechanical splices to be used in the work shall be selected from the Department's Pre-Qualified Products List.

In Section 52-1.08B(1) in the 2nd paragraph, replace the table with:

Reinforcing Bar Number	Total Slip
4	0.020-inch
5	0.020-inch
6	0.020-inch
7	0.028-inch
8	0.028-inch
9	0.028-inch
10	0.036-inch
11	0.036-inch
14	0.048-inch
18	0.060-inch

In Section 52-1.08B(1), in the 6th paragraph, delete item C.

In Section 52-1.08B(2) in the 6th paragraph, replace the subparagraph with:

The minimum preheat and interpass temperatures shall be 400° F for Grade 40 bars and 600° F for Grade 60 bars. Immediately after completing the welding, at least 6 inches of the bar on each side of the splice shall be

covered by an insulated wrapping to control the rate of cooling. The insulated wrapping shall remain in place until the bar has cooled below 200° F.

Replace Section 52-1.08B(3) with:

52-1.08B(3) Resistance Butt Welds

Shop produced resistance butt welds shall be produced by a fabricator who is selected from the Department's Pre-Oualified Products List.

A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall be furnished for each shipment of splice material. The Certificate of Compliance shall include heat number, lot number and mill certificates.

In Section 52-1.08C replace the 3rd paragraph with:

Testing on prequalification and production sample splices shall be performed at an approved independent testing laboratory. The laboratory shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors who will provide other services or materials for the project.

The independent testing laboratory shall be selected from the Department's Pre-Qualified Products List.

In Section 52-1.08C replace the 5th paragraph with:

Prequalification and production sample splices and testing shall conform to California Test 670 and these specifications.

In Section 52-1.08C delete the 6th paragraph.

In Section 52-1.08C replace the 8th paragraph with:

Each sample splice, as defined herein, shall be identified as representing either a prequalification or production test sample splice.

In Section 52-1.08C in the 10th paragraph, delete the last sentence.

Replace Section 52-1.08C(1) with:

52-1.08C(1) Splice Prequalification Report

Before using any service splices or ultimate butt splices in the work, the Contractor shall submit a Splice Prequalification Report. The report shall include the following:

- A. A copy of the manufacturer's product literature giving complete data on the splice material and installation procedures.
- B. Names of the operators who will be performing the splicing.
- C. Descriptions of the positions, locations, equipment, and procedures that will be used in the work.
- D. Certifications from the fabricator for prequalification of operators and procedures based on sample tests performed no more than 2 years before submitting the report. Each operator shall be certified by performing 2 sample splices for each bar size of each splice type that the operator will be performing in the work. For deformation-dependent types of splice devices, each operator shall be certified by performing 2 additional samples for each bar size and deformation pattern that will be used in the work.

Prequalification sample splices shall be tested by an approved independent testing laboratory and shall conform to the appropriate production test criteria and slip requirements specified herein. When epoxy-coated reinforcement is required, resistance butt welded sample splices shall have the weld flash removed by the same procedure as will be used in the work, before coating and testing. The Splice Prequalification Report shall include the certified test results for all prequalification sample splices.

The QCM shall review and approve the Splice Prequalification Report before submitting it to the Engineer for approval. The Contractor shall allow 2 weeks for the review and approval of a complete report before performing any service splicing or ultimate butt splicing in the work.

In Section 52-1.08C(2)(a) replace the 1st, 2nd, 3rd, 4th, and 5th paragraphs with:

Production tests shall be performed by an approved independent testing laboratory for all service splices used in the work. A production test shall consist of testing 4 sample splices prepared for each lot of completed splices. The samples shall be prepared by the Contractor using the same splice material, position, operators, location, and equipment, and following the same procedure as used in the work.

At least one week before testing, the Contractor shall notify the Engineer in writing of the date and location where the testing of the samples will be performed.

The 4 samples from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the approved independent testing laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 samples of splices shall not be tested.

Before performing any tensile tests on production test sample splices, one of the 4 samples shall be tested for, and shall conform to, the requirements for total slip in Section 52-1.08B(1), "Mechanical Splices." Should this sample not meet the total slip requirements, one retest, in which the 3 remaining samples are tested for total slip, will be allowed. Should any of the 3 remaining samples not conform to the total slip requirements, all splices in the lot represented by this production test will be rejected.

If 3 or more sample splices from a production test conform to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," all splices in the lot represented by this production test will be considered acceptable.

Replace Section 52-1.08C(2)(b) with:

52-1.08C(2)(b) Quality Assurance Test Requirements for Service Splices

In addition to the required production tests, the Contractor shall concurrently prepare 4 service quality assurance sample splices for:

- A. The first production test performed.
- B. One of every 5 subsequent production tests, or fraction thereof, randomly selected by the Engineer.

These service quality assurance sample splices shall be prepared in the same manner as specified herein for service production sample splices.

The service quality assurance sample splices shall be shipped to the Transportation Laboratory for quality assurance testing. Each set of 4 sample splices shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 samples of splices will not be tested. Sample splices not accompanied by the supporting documentation required in Section 52-1.08B(1), "Mechanical Splices," for mechanical splices, or in Section 52-1.08B(3), "Resistance Butt Welds," for resistance butt welds, will not be tested.

Quality assurance testing will be performed in conformance with the requirements for service production sample splices in Section 52-1.08C(2)(a), "Production Test Requirements for Service Splices."

Replace Section 52-1.08C(3) with:

52-1.08C(3) Ultimate Butt Splice Test Criteria

Ultimate production and quality assurance sample splices shall be tensile tested in conformance with the requirements described in ASTM Designation: A 370 and California Test 670.

Each sample splice shall be identified as representing a prequalification, production, or quality assurance sample splice.

The portion of hoop reinforcing bar, removed to obtain a sample splice, shall be replaced using a prequalified ultimate mechanical butt splice, or the hoop shall be replaced in kind.

Reinforcing bars, other than hoops, from which sample splices are removed, shall be repaired using ultimate mechanical butt splices conforming to the provisions in Section 52-1.08C(1), "Splice Prequalification Report," or the bars shall be replaced in kind. These bars shall be repaired or replaced such that no splices are located in any "No Splice Zone" shown on the plans.

Ultimate production and quality assurance sample splices shall rupture either: 1) in the reinforcing bar but outside of the affected zone, provided that the sample splice has visible necking or 2) anywhere, provided that the sample splice has achieved the strain requirement for necking.

When tested in conformance with the requirements in California Test 670, "Necking (Option I)," the visible necking shall be such that there is a visible decrease in the sample's cross-sectional area at the point of rupture.

When tested in conformance with the requirements in California Test 670, "Necking (Option II)," the strain requirement for necking shall be such that the largest measured strain is not less than 6 percent for No. 11 and larger bars, or not less than 9 percent for No. 10 and smaller bars.

The affected zone is the portion of the reinforcing bar where any properties of the bar, including the physical, metallurgical, or material characteristics, have been altered by fabrication or installation of the splice. The weld and one inch adjacent to the weld will be considered part of the affected zone.

In Section 52-1.08C(3)(a) replace the 1st paragraph with:

Production tests shall be performed for all ultimate butt splices used in the work. A production test shall consist of testing 4 sample splices removed from each lot of completed splices.

In Section 52-1.08C(3)(a) replace the 3rd paragraph with:

After notification has been received, the Engineer will randomly select the 4 sample splices to be removed from the lot and place tamper-proof markings or seals on them. These ultimate production sample splices shall be removed by the Contractor, and tested by an approved independent testing laboratory.

In Section 52-1.08(C)(3)(a) replace the 5th, 6th, and 7th paragraphs with:

A sample splice will be rejected if a tamper-proof marking or seal is disturbed before testing.

The 4 sample splices from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the approved independent testing laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 sample splices shall not be tested.

Before performing any tensile tests on production test sample splices, one of the 4 sample splices shall be tested for, and shall conform to, the requirements for total slip in Section 52-1.08B(1), "Mechanical Splices." Should this sample splice not meet these requirements, one retest, in which the 3 remaining sample splices are tested for total slip, will be allowed. Should any of the 3 remaining sample splices not conform to these requirements, all splices in the lot represented by this production test will be rejected.

Replace Section 52-1.08C(3)(b) with:

52-1.08C(3)(b) Quality Assurance Test Requirements for Ultimate Butt Splices

In addition to the required production tests, the Contractor shall concurrently prepare 4 ultimate quality assurance sample splices for:

- A. The first production test performed.
- B. One of every 5 subsequent production tests, or fraction thereof, randomly selected by the Engineer.

These ultimate quality assurance sample splices shall be prepared in the same manner as specified herein for ultimate production sample splices.

The ultimate quality assurance sample splices shall be shipped to the Transportation Laboratory for quality assurance testing. Each set of 4 sample splices shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 samples of splices will not be tested. Sample splices not accompanied by the supporting documentation required in Section 52-1.08B(1), "Mechanical Splices," for mechanical splices, or in Section 52-1.08B(3), "Resistance Butt Welds," for resistance butt welds, will not be tested.

Quality assurance testing will be performed in conformance with the requirements for ultimate production sample splices in Section 52-1.08C(3)(a), "Production Test Requirements for Ultimate Butt Splices."

Replace Section 52-1.08D with:

A Production Test Report for all testing performed on each lot shall be prepared by the approved independent testing laboratory performing the testing and submitted to the QCM for review and approval. The report shall be signed by an engineer who represents the laboratory and is registered as a Civil Engineer in the State of California. The report shall include, as a minimum, the following information for each test: contract number, bridge number, lot number and location, bar size, type of splice, length of mechanical splice, length of test specimen, physical condition of test sample splice, any notable defects, total measured slip, and ultimate tensile strength of each splice.

In addition, the report shall include location of visible necking area and largest measured strain for ultimate butt splices.

The QCM must review, approve, and forward each Production Test Report to the Engineer for review before the splices represented by the report are encased in concrete. The Engineer will have 3 working days to review each Production Test Report and respond in writing after a complete report has been received. Should the Contractor elect to encase any splices before receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection.

Quality assurance test results for each bundle of 4 samples of splices will be reported in writing to the Contractor within 3 working days after receipt of the bundle by the Transportation Laboratory. In the event that more than one bundle is received on the same day, 2 additional working days shall be allowed for providing test results for each additional bundle received. A test report will be made for each bundle received. Should the Contractor elect to encase splices before receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection.

^^^^^^

SECTION 53 SHOTCRETE (Issued 11-02-07)

In Section 53-1.01 replace the 3rd paragraph with:

The dry-mix process shall consist of delivering dry mixed aggregate and cementitious material pneumatically or mechanically to the nozzle body and adding water and mixing the materials in the nozzle body. The wet-mix process shall consist of delivering mixed aggregate, cement, and water pneumatically to the nozzle and adding any admixture at the nozzle.

In Section 53-1.02 replace the 1st through 4th paragraphs with:

Cementitious material, fine aggregate, and mixing water shall conform to the provisions in Section 90, "Portland Cement Concrete."

Shotcrete to be mixed and applied by the dry-mix process shall consist of one part cementitious material to not more than 4.5 parts fine aggregate, thoroughly mixed in a dry state before being charged into the machine. Measurement may be either by volume or by weight. The fine aggregate shall contain not more than 6 percent moisture by weight.

Shotcrete to be mixed and applied by the wet-mix process shall consist of cementitious material, fine aggregate, and water and shall contain not less than 632 pounds of cementitious material per cubic yard. A maximum of 30 percent pea gravel may be substituted for fine aggregate. The maximum size of pea gravel shall be such that 100 percent passes the 1/2 inch screen and at least 90 percent passes the 3/8 inch screen.

Admixtures may be added to shotcrete and shall conform to the provisions in Section 90-4, "Admixtures."

In Section 53-1.04 in the 3rd paragraph, replace item C with:

C. Aggregate and cementitious material that have been mixed for more than 45 minutes shall not be used unless otherwise permitted by the Engineer.

Replace Section 53-1.07 with:

53-1.07 MEASUREMENT

Quantities of shotcrete will be measured by the cubic yard computed from measurements, along the slope, of actual areas placed and the theoretical thickness shown on the plans. The Department does not pay for shotcrete placed outside the dimensions shown on the plans or to fill low foundation.

Replace Section 53-1.08 with:

53-1.08 PAYMENT

The contract price paid per cubic yard for shotcrete shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing shotcrete, including preparing the foundation, wire reinforcement, structure backfill, joint filling material, and if required by the plans, drains with sacked pervious backfill material, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

SECTION 54 WATERPROOFING (Issued 07-01-11)

In Section 54-1.02, replace the 1st paragraph with:

Waterproofing asphalt shall conform to the requirements in ASTM Designation: D 449, Type I for below ground and Type II for above ground.

^^^^^^

SECTION 55 STEEL STRUCTURES (Issued 08-05-11)

In Section 55-1.01 replace the 4th paragraph with:

Design details, fabrication, and workmanship for steel railway bridges shall conform to the provisions in Chapter 15, "Steel Structures," of the AREMA Manual for Railway Engineering.

In Section 55-1.05 replace the 3rd paragraph with:

Construction methods and equipment employed by the Contractor shall conform to the provisions in Section 7-1.02, "Load Limitations."

In Section 55-2.01 replace the table in the 5th paragraph with:

Material Conforming to	CVN Impact Value
ASTM Designation: A 709/A 709M	(Ft. Lbs at Temp.)
Grade 36	15 at 40° F
Grade 50* (2 inches and under in thickness)	15 at 40° F
Grade 50W* (2 inches and under in thickness)	15 at 40° F
Grade 50* (Over 2 inches to 4 inches in	20 at 40° F
thickness)	
Grade 50W* (Over 2 inches to 4 inches in	20 at 40° F
thickness)	
Grade HPS 50W* (4 inches and under in	20 at 10° F
thickness)	
Grade HPS 70W (4 inches and under in	25 at -10° F
thickness)	
Grade 100 (2 ¹ / ₂ inches and under in thickness)	25 at 0° F
Grade 100W (Over 2 ¹ / ₂ inches to 4 inches in	35 at 0° F
thickness)	

^{*} If the yield point of the material exceeds 65,000 psi, the temperature for the CVN impact value for acceptability shall be reduced 15° F for each increment of 10,000 psi above 65,000 psi

In Section 55-2.01 replace the Structural Steel Materials table with:

Structural Steel Materials

Material	Specification
Structural steel:	•
Carbon steel	ASTM: A 709/A 709M, Grade 36 or {A 36/A 36M} ^a
High strength low alloy	ASTM: A 709/A 709M, Grade 50 or {A 572/A 572M,
columbium vanadium steel	Grade 50} ^a
High strength low alloy	ASTM: A 709/A 709M, Grade 50W, Grade HPS 50W,
structural steel	
High strength low alloy	or {A 588/A 588M} ^a ASTM: A 709/A 709M, Grade HPS 70W
structural steel plate	ASTM: A 709/A 709M, Grade HPS 70W
High-yield strength, quenched	ASTM: A 709/A 709M, Grade 100 and Grade 100W,
and tempered alloy steel plate	
suitable for welding	or {A 514/A 514M} ^a
Steel fastener components	
for general applications:	
Bolts and studs	ASTM: A 307
Anchor bolts	ASTM: F 1554 or A 307, Grade C
High-strength bolts and studs	ASTM: A 449, Type 1
High-strength threaded rods	ASTM: A 449, Type 1
High-strength nonheaded	ASTM: F 1554, Grade 105, Class 2A
anchor bolts	715 1141. 1 1354, Grade 103, Class 271
Nuts	ASTM: A 563, including Appendix X1 ^b
Washers	ASTM: F 844
Components of high-strength	1101111. 1 011
steel fastener assemblies for use	
in structural steel joints:	
Bolts	ASTM: A 325, Type 1
Tension control bolts	ASTM: F1852, Type 1
Nuts	ASTM: A 563, including Appendix X1 ^b
Hardened washers	ASTM: F 436, Type 1, Circular, including S1 supplementary
Tital delica Washers	requirements
Direct tension indicators	ASTM: F 959, Type 325, zinc-coated
Carbon steel for forgings,	ASTM: A 668/A 668M, Class D
pins and rollers	
Alloy steel for forgings	ASTM: A 668/A 668M, Class G
Pin nuts	ASTM: A 36/A 36M
Carbon-steel castings	ASTM: A 27/A 27M, Grade 65-35, Class 1
Malleable iron castings	ASTM: A 47/A 47M, Grade 32510 (Grade 22010)
Gray iron castings	ASTM: A 48, Class 30B
Carbon steel structural tubing	ASTM: A 500, Grade B or A 501
Steel pipe (Hydrostatic	ASTM: A 53, Type E or S, Grade B; A 106, Grade B; or
testing will not apply)	A 139, Grade B
Stud connectors	AASHTO/AWS D1.5

a Grades that may be substituted for the equivalent ASTM Designation: A 709 steel, at the Contractor's option, subject to the modifications and additions specified and to the requirements of A 709

In Section 55-2.04 delete the 1st paragraph.

Delete Section 55-2.05.

In Section 55-3.05 replace the 1st paragraph with:

Surfaces of bearing and base plates and other metal surfaces that are to come in contact with each other or with ground concrete surfaces shall be flat to within 1/32-inch tolerance in 12 inches and to within 1/16-inch tolerance overall. Surfaces of bearing and base plates and other metal bearing surfaces that are to come in contact with preformed fabric pads, elastomeric bearing pads, or mortar shall be flat to within 1/8-inch tolerance in 12 inches and to within 3/16-inch tolerance overall.

b Zinc-coated nuts that will be tightened beyond snug or wrench tight shall be furnished with a dry lubricant conforming to Supplementary Requirement S2 in ASTM Designation: A 563.

In Section 55-3.07 in the 1st paragraph, replace item B with:

B. The radius of bend measured to the concave face shall conform to the requirements in ASTM Designation: A6/A6M

In Section 55-3.10 in the 1st paragraph, replace item B with:

B. Internal threads shall conform to the requirements in ASTM Designation: A 563.

In Section 55-3.19 replace the 3rd paragraph with:

Immediately before setting bearing assemblies or masonry plates directly on ground concrete surfaces, the Contractor shall thoroughly clean the surfaces of the concrete and the metal to be in contact and shall apply a coating of nonsag polysulfide or polyurethane caulking conforming to the requirements in ASTM Designation: C 920 to contact areas to provide full bedding.

In Section 55-4.01 in the 1st paragraph, replace item D with:

D. To determine the pay quantities of galvanized metal, the weight to be added to the calculated weight of the base metal for the galvanizing will be determined from the table of weights of zinc coatings specified in ASTM Designation: A 153/A 153M.

^^^^^^

SECTION 56 SIGNS (Issued 09-16-11)

In Section 56-1.02A replace the 1st paragraph with:

Bars and plates shall be structural steel complying with one or more of the following:

1. ASTM Designation: A36/A36M

2. ASTM Designation: A709/A709M, Grade 36 or 50

3. ASTM Designation: A572/A572M, Grade 50

Other open shapes shall be structural steel complying with one or more of the following:

1. ASTM Designation: A36/A36M

2. ASTM Designation: A709/A709M, Grade 36 or 50

3. ASTM Designation: A992/A992M

Light fixture mounting channel shall be a continuous slot channel made from one of the following:

- 1. Steel complying with ASTM Designation: A1011/A1011M, Designation SS, Grade 33
- 2. Extruded aluminum of alloy 6063-T6 complying with ASTM Designation: B221 or B221M

In Section 56-1.02E replace the 1st paragraph with:

Pipe posts shall be welded or seamless steel pipe conforming to the requirements in ASTM Designation: A 53/A 53M, Grade B; ASTM Designation: A 106/A 106M, Grade B; or API Specification 5L PSL2 Grade B or Grade X42R or Grade X42M. At the option of the Contractor, posts may be fabricated from structural steel conforming to the requirements in ASTM Designation: A 36/A 36M.

Pipe posts shall not be spiral seam welded.

In Section 56-1.02F replace item B of the 1st paragraph with:

B. Material for gratings shall be structural steel conforming to the requirements in ASTM Designation: A 1011/A 1011M, Designation CS, Type B or Designation SS, Grade 36, Type 1.

In Section 56-1.03 replace the 5th paragraph with:

Clips, eyes, or removable brackets shall be affixed to all signs and all posts and shall be used to secure the sign during shipping and for lifting and moving during erection as necessary to prevent damage to the finished galvanized or painted surfaces. Brackets on tubular sign structures shall be removed after erection. Details of the devices shall be shown on the working drawings.

In Section 56-1.05 replace the 3rd paragraph with:

Galvanizing shall conform to the provisions in Section 75-1.05, "Galvanizing," except that when permission is granted by the Engineer, surfaces may be coated with zinc by the metalizing process. Metalizing shall be performed in conformance with the AWS requirements. The thickness of the sprayed zinc coat shall be 10 ± 2 mils. The thickness of the sprayed zinc coat on faying surfaces shall not be more than 10 mils.

In Section 56-1.05, add:

Zinc solders or zinc alloys that contain tin shall not be used to repair a damaged galvanized surface.

In Section 56-1.07, add:

Bridge-mounted signs shall not be fastened to concrete elements of bridges or railings before the concrete attains a compressive strength of 2,500 psi.

In Section 56-1.10 replace the 4th paragraph with:

The contract price paid per pound for install sign structure of the type or types designated in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in installing sign structures, complete in place, including installing anchor bolt assemblies, removable sign panel frames, and sign panels and performing any welding, painting or galvanizing required during installation, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

In Section 56-2.03 replace the 4th paragraph with:

Backfill material for metal posts shall consist of minor concrete conforming to the provisions in Section 90-10, "Minor Concrete," and shall contain not less than 463 pounds of cementitious material per cubic yard.

SECTION 59 PAINTING (Issued 09-16-11)

In Section 59-1.01 add:

Coatings selected for use shall conform to the volatile organic compound limits specified for the air quality district where the project is located.

In Section 59-1.03 replace the 3rd paragraph with:

Painting shall be done in a neat and workmanlike manner. Unless otherwise specified, paint shall be applied by brush, or spray, or roller, or any combination of these methods. Gun extensions shall not be used.

Contract No. 12-0E3104 198 of 297

In Section 59-1.03 replace the 5th paragraph with:

Unless otherwise specified, should 7 days elapse between paint applications, the painted surface shall be pressure rinsed prior to the next paint application. Pressure rinsing is defined as a pressurized water rinse with a minimum nozzle pressure of 1,160 psi. During rinsing, the tip of the pressure nozzle shall be placed between 12 inches and 18 inches from the surface to be rinsed. The nozzle shall have a maximum fan tip angle of 30°.

In Section 59-2.01 replace the 2nd paragraph with:

Unless otherwise specified, no painting Contractors or subcontractors will be permitted to perform work without having the following current "SSPC: The Society for Protective Coatings" (formerly the Steel Structures Painting Council) certifications in good standing throughout the duration of the contract:

- A. For cleaning and painting structural steel in the field, certification in conformance with the requirements in Qualification Procedure No. 1, "Standard Procedure For Evaluating Painting Contractors (Field Application to Complex Industrial Structures)" (SSPC-QP 1).
- B. For removing paint from structural steel, certification in conformance with the requirements in Qualification Procedure No. 2, "Standard Procedure for the Qualification of Painting Contractors (Field Removal of Hazardous Coatings from Complex Structures)" (SSPC-QP 2, Category A).
- C. For cleaning and painting structural steel in a permanent painting facility, certification in conformance with the requirements in Qualification Procedure No. 3, "Standard Procedure For Evaluating Qualifications of Shop Painting Applicators" (SSPC-QP 3, Enclosed Shop Facility). The AISC's Sophisticated Paint Endorsement (SPE) quality program, Certification P-1 Enclosed, will be considered equivalent to SSPC-QP 3, Enclosed Shop Facility.

Replace Section 59-2.05 with:

59-2.05 CLEANING PAINTED SURFACES

All previously painted surfaces shall be cleaned by pressure washing or steam cleaning before other cleaning or painting activities are performed. Gloss on the existing paint shall be removed without removing sound paint. Areas of gloss remaining after cleaning shall be roughened using 100 to 200-grit sandpaper. Any paint that becomes loose, curled, lifted, or that loses its bond after cleaning shall be removed to sound paint or metal.

Pressure washing includes cleaning surfaces using a pressure wash system with a nozzle pressure from 2,500 to 5,000 psi and a maximum fan tip angle of 45 degrees.

Steam cleaning includes cleaning dirt, grease, loose chalky paint, and other foreign material from surfaces using steam. The steam temperature at the nozzle shall be from 265 to 375 degrees F. A biodegradable detergent shall be used during steam cleaning. After steam cleaning, cleaned surfaces shall be rinsed clean with fresh water. Steam cleaning shall not be performed more than 2 weeks before painting or other phases of cleaning. Steam-cleaned surfaces shall not be painted until they are thoroughly dry and 24 hours have elapsed after steam cleaning.

In Section 59-2.12 replace the 3rd and 4th paragraphs with:

Contact surfaces of stiffeners, railings, built up members or open seam exceeding 6 mils in width that would retain moisture, shall be caulked with polysulfide or polyurethane sealing compound conforming to the requirements in ASTM Designation: C 920, Type S, Grade NS, Class 25, Use O, or other approved material.

The dry film thickness of the paint will be measured in place with a calibrated Type 2 magnetic film thickness gage in conformance with the requirements in SSPC-PA 2, "Measurement of Dry Coating Thickness with Magnetic Gages," of the "SSPC: The Society for Protective Coatings," except that there shall be no limit to the number or location of spot measurements to verify compliance with specified thickness requirements.

^^^^^

SECTION 63: CAST-IN-PLACE CONCRETE PIPE (Issued 10-21-11)

Replace Section 63 with: SECTION 63: (BLANK)

SECTION 64 PLASTIC PIPE (Issued 06-05-09)

In Section 64-1.02 replace the 5th paragraph with:

HDPE compounds used in the manufacture of corrugated polyethylene pipe and fittings shall comply with AASHTO M 294 except that the mix shall contain not less than 2 nor greater than 4 percent well dispersed carbon black. HDPE compounds used in the manufacture of ribbed profile wall polyethylene pipe shall comply with ASTM F 894 except that Type E ultraviolet stabilizers shall not be allowed and carbon black shall be well dispersed in an amount not less than 2 percent nor greater than 4 percent.

Manufacturers of corrugated polyethylene pipe shall:

- 1. Participate in the National Transportation Product Evaluation Control Program (NTPEP) for each plant supplying corrugated polyethylene pipe and fittings for the project.
- 2. Conduct and maintain a quality control program under NTPEP.
- 3. Submit a copy to the Engineer of manufacturing plant audits and NTPEP test results from the current cycle of NTPEP testing for all pipe diameters supplied.

Type D corrugated polyethylene pipe is not allowed. Corrugated polyethylene pipe greater than 60 inches in nominal diameter is not allowed.

In Section 64-1.05 replace the 1st paragraph with:

Excavation, backfill, and shaped bedding shall comply with Section 19-3, "Structure Excavation and Backfill," except the following:

- 1. At locations where pipe is to be backfilled with concrete, the backfill shall comply with Section 64-1.06, "Concrete Backfill."
- 2. Corrugated polyethylene pipe that is greater than 48 inches in nominal diameter but not exceeding 60 inches in nominal diameter shall be backfilled with either controlled low strength material under the special provisions or slurry cement backfill under Section 19-3.062, "Slurry Cement Backfill."
- 3. Where cementitious or flowable backfill is used for structure backfill, the backfill shall be placed to a level not less than 12 inches above the crown of the pipe.

In Section 64-1.06 replace the 1st paragraph with:

At locations where pipe is to be backfilled with concrete as shown on the plans, the concrete backfill shall be constructed of minor concrete or Class 4 concrete conforming to the provisions in Section 90, "Portland Cement Concrete." Minor concrete shall contain not less than 380 pounds of cementitious material per cubic yard. The concrete to be used will be designated in the contract item or shown on the plans.

In Section 64-1.06 replace the 3rd paragraph with:

The surface of the concrete backfill shall be broomed with a heavy broom to produce a uniform rough surface if hot mix asphalt is to be placed directly thereon.

SECTION 65 REINFORCED CONCRETE PIPE (Issued 07-01-11)

In Section 65-1.02 replace the 1st paragraph with:

Cementitious material and aggregate shall conform to the provisions in Section 90-2, "Materials" except that grading requirements shall not apply to the aggregate. Use of supplemental cementitious material shall conform to AASHTO Designation: M 170.

In Section 65-1.02A(1) in the 11th paragraph, replace item c with:

c. Cementitious material and aggregate for non-reinforced concrete pipe shall conform to the provisions in Section 65-1.02, "Materials."

In Section 65-1.035 replace the 1st paragraph with:

At locations where pipe is to be backfilled with concrete as shown on the plans, the concrete backfill shall be constructed of minor concrete or Class 4 concrete in conformance with the provisions in Section 90, "Portland Cement Concrete." Minor concrete shall contain not less than 380 pounds of cementitious material per cubic yard. The concrete to be used will be designated in the contract item.

In Section 65-1.035 replace the 3rd paragraph with:

The surface of the concrete backfill shall be broomed with a heavy broom to produce a uniform rough surface if hot mix asphalt is to be placed directly thereon.

Replace Section 65-1.05 with:

65-1.05 (BLANK)

In Section 65-1.06 in the 2nd paragraph, replace the 1st subparagraph with:

Cement Mortar. - Mortar shall be composed of one part cementitious material and 2 parts sand by volume. Supplementary cementitious material will not be required.

^^^^^^

SECTION 66 CORRUGATED METAL PIPE (Issued 07-01-11)

In Section 66-1.045 replace the 1st paragraph with:

At locations where pipe is to be backfilled with concrete as shown on the plans, the concrete backfill shall be constructed of minor concrete or Class 4 concrete conforming to the provisions in Section 90, "Portland Cement Concrete." Minor concrete shall contain not less than 380 pounds of cementitious material per cubic yard. The concrete to be used will be designated in the contract item or shown on the plans.

In Section 66-1.045 replace the 3rd paragraph with:

The surface of the concrete backfill shall be broomed with a heavy broom to produce a uniform rough surface if hot mix asphalt is to be placed directly thereon.

Replace Section 66-3.10 with:

66-3.10 (BLANK)

SECTION 68 SUBSURFACE DRAINS (Issued 07-31-07)

In Section 68-3.02D replace the 1st and 2nd paragraphs with:

Concrete for splash pads shall be produced from minor concrete conforming to the provisions in Section 90-10, "Minor Concrete." Minor concrete shall contain not less than 470 pounds of cementitious material per cubic yard.

Mortar placed where edge drain outlets and vents connect to drainage pipe and existing drainage inlets shall conform to the provisions in Section 51-1.135, "Mortar."

In Section 68-3.03 replace the 13th paragraph with:

Cement treated permeable material, which is not covered with hot mix asphalt within 12 hours after compaction of the permeable material, shall be cured by either sprinkling the material with a fine spray of water every 4 hours during daylight hours or covering the material with a white polyethylene sheet, not less than 6 mils thick. The above curing requirements shall begin at 7:00 a.m. on the morning following compaction of the cement treated permeable material and continue for the next 72 hours or until the material is covered with hot mix asphalt, whichever is less. The cement treated permeable material shall not be sprayed with water during the first 12 hours after compacting, but may be covered with the polyethylene sheet during the first 12 hours or prior to the beginning of the cure period.

In Section 68-3.03 replace the 17th and 18th paragraphs with:

Hot mix asphalt for backfilling trenches in existing paved areas shall be produced from commercial quality aggregates and asphalt and mixed at a central mixing plant. The aggregate shall conform to the 3/4 inch grading, or the 1/2 inch grading for Type A and Type B hot mix asphalt specified in Section 39-1.02E, "Aggregate." The amount of asphalt binder to be mixed with the aggregate shall be between 4 percent and 7 percent by weight of the dry aggregate, as determined by the Engineer.

Hot mix asphalt backfill shall be spread and compacted in approximately 2 equal layers by methods that will produce a hot mix asphalt surfacing of uniform smoothness, texture and density. Each layer shall be compacted before the temperature of the mixture drops below 250 °F. Prior to placing the hot mix asphalt backfill, a tack coat of asphaltic emulsion conforming to the provisions in Section 94, "Asphaltic Emulsions," shall be applied to the vertical edges of existing pavement at an approximate rate of 0.05 gallon per square yard.

In Section 68-3.03 replace the 20th paragraph with:

Type A pavement markers conforming to the details shown on the plans and the provisions in Section 85, "Pavement Markers," shall be placed on paved shoulders or dikes at outlet, vent and cleanout locations as directed by the Engineer. The waiting period for placing pavement markers on new hot mix asphalt surfacing will not apply.

Replace Section 68-3.05 with:

68-3.05 PAYMENT

The contract price paid per linear foot for plastic pipe (edge drain) of the size or sizes shown in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in installing edge drains complete in place, including excavation (and removal of any concrete deposits that may occur along the lower edge of the concrete pavement in Type 1 installations) and hot mix asphalt backfill for Type 1 edge drain installation, tack coat, filter fabric, and treated permeable material, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

The contract price paid per linear foot for plastic pipe (edge drain outlet) of the size or sizes shown in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and

incidentals and for doing all the work involved in installing edge drain outlets, vents and cleanouts complete in place, including outlet and vent covers, expansion plugs, pavement markers, concrete splash pads, connecting outlets and vents to drainage facilities, and excavation and backfill [aggregate base, hot mix asphalt, tack coat, and native material] for outlets, vents, and cleanouts to be installed in embankments and existing shoulders, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

^^^^^

SECTION 69 OVERSIDE DRAINS

(Issued 07-31-07)

In Section 69-1.01 replace the 1st paragraph with:

This work shall consist of furnishing and installing entrance tapers, pipe downdrains, tapered inlets, flume downdrains, anchor assemblies, reducers, slip joints and hot mix asphalt overside drains to collect and carry surface drainage down the roadway slopes as shown on the plans or as directed by the Engineer and as specified in these specifications and the special provisions.

Replace Section 69-1.02D with:

69-1.02D Hot Mix Asphalt

Hot mix asphalt for overside drains shall conform to the provisions in Section 39-1.13, "Miscellaneous Areas."

Replace Section 69-1.04 with:

69-1.04 HOT MIX ASPHALT OVERSIDE DRAINS

Hot mix asphalt overside drains shall be constructed as shown on the plans or as directed by the Engineer. The hot mix asphalt shall be placed in conformance with the provisions in Section 39-1.13, "Miscellaneous Areas."

In Section 69-1.06 replace the 2nd paragraph with:

Quantities of hot mix asphalt placed for overside drains will be paid for as provided in Section 39-5, "Measurement and Payment," for hot mix asphalt placed in miscellaneous areas.

^^^^^

SECTION 70 MISCELLANEOUS FACILITIES (Issued 01-20-12)

In Section 70-1.02C replace the 2nd paragraph with:

Precast concrete flared end sections shall conform to the requirements for Class III Reinforced Concrete Pipe in AASHTO Designation: M 170M. Cementitious materials and aggregate shall conform to the provisions in Section 90-2, "Materials," except that grading requirements shall not apply to the aggregate. Use of supplementary cementitious material shall conform to the requirements in AASHTO Designation: M 170. The area of steel reinforcement per linear foot of flared end section shall be at least equal to the minimum steel requirements for circular reinforcement in circular pipe for the internal diameter of the circular portion of the flared end section. The basis of acceptance of the precast concrete flared end section shall conform to the requirements of Section 5.1.2 of AASHTO Designation: M 170.

In Section 70-1.02C replace the 3rd paragraph with:

Plastic flared end sections shall conform to the requirements in ASTM Designation: D 3350.

In Section 70-1.02H replace the 1st paragraph with:

Precast concrete pipe risers and pipe reducers, and precast concrete pipe sections, adjustment rings and tapered sections for pipe energy dissipators, pipe inlets and pipe manholes shall conform to the requirements in AASHTO Designation: M 199M/M 199, except that the cementitious material and aggregate shall conform to the provisions in Section 90-2, "Materials," except that grading requirements shall not apply to the aggregate. Use of supplementary cementitious material shall conform to the requirements in AASHTO Designation: M 170.

In Section 70-1.03 replace the 2nd paragraph with:

Cutoff walls for precast concrete flared end sections shall be constructed of minor concrete conforming to the provisions in Section 90-10, "Minor Concrete." Minor concrete shall contain not less than 470 pounds of cementitious material per cubic yard.

^^^^^

SECTION 72 SLOPE PROTECTION

(Issued 03-13-09)

In Section 72-4.04 replace the 6th paragraph with:

Pervious backfill material, if required by the plans, shall be placed as shown. A securely tied sack containing one cubic foot of pervious backfill material shall be placed at each weep hole and drain hole. The sack material shall conform to the requirements for filter fabric in Section 88-1.02, "Filtration."

^^^^^^

SECTION 73 CONCRETE CURBS AND SIDEWALKS (Issued 06-05-09)

In Section 73-1.01 in the 2nd paragraph, replace item 2 with:

2. Minor concrete shall contain not less than 463 pounds of cementitious material per cubic yard except that when extruded or slip-formed curbs are constructed using 3/8-inch maximum size aggregate, minor concrete shall contain not less than 505 pounds of cementitious material per cubic yard.

In Section 73-1.06 replace the 15th paragraph with:

Where hot mix asphalt or portland cement concrete pavements are to be placed around or adjacent to manholes, pipe inlets or other miscellaneous structures in sidewalk, gutter depression, island paving, curb ramps or driveway areas, the structures shall not be constructed to final grade until after the pavements have been constructed for a reasonable distance on each side of the structures.

^^^^^

SECTION 74 PUMPING PLANT EQUIPMENT (Issued 07-01-08)

In Section 74-1.02 delete the 2nd paragraph.

^^^^^

SECTION 75 MISCELLANEOUS METAL (Issued 07-01-11)

In Section 75-1.02 replace the 6th paragraph with: Manhole frames and covers shall conform to AASHTO M 306.

In Section 75-1.02 replace the 10th paragraph with:

Unless otherwise specified, materials shall conform to the following specifications:

Material	Specification
Steel bars, plates and	ASTM Designation: A 36/A 36M or A 575, A 576
shapes	(AISI or M Grades 1016 through 1030)
Steel fastener components	
Bolts and studs	ASTM Designation: A 307
Headed anchor bolts	ASTM Designation: A 307 ASTM Designation: A 307, Grade B, including S1
Treaded afferior boits	supplementary requirements
Nonheaded anchor	ASTM Designation: F 1554 or A 307, Grade C,
bolts	including S1 supplementary requirements and S1.6
boits	of AASHTO Designation: M 314 supplementary
	requirements, or AASHTO Designation: M 314,
	Grade 36 or 55, including S1 supplementary
	requirements
High-strength bolts	ASTM Designation: A 449, Type 1
and studs, threaded	71 177, Type 1
rods, and nonheaded	
anchor bolts	
Nuts	ASTM Designation: A 563, including Appendix
1 (313)	X1*
Washers	ASTM Designation: F 844
Components of high-streng	th steel fastener assemblies for use in structural
steel joints:	
Bolts	ASTM Designation: A 325, Type 1
Tension control bolts	ASTM Designation: F 1852, Type 1
Nuts	ASTM Designation: A 563, including Appendix
	X1*
Hardened washers	ASTM Designation: F 436, Type 1, Circular,
	including S1 supplementary requirements
Direct tension	ASTM Designation: F 959, Type 325, zinc-coated
indicators	
	lloys 304 & 316) for general applications:
Bolts, screws, studs,	ASTM Designation: F 593 or F 738M
threaded rods, and	
nonheaded anchor	
bolts	ACTEM D : .: E 504 E 026M
Nuts	ASTM Designation: F 594 or F 836M
Washers	ASTM Designation: A 240/A 240M and
Carbon steel costings	ANSI B 18.22M ASTM Designation: A 27/A 27M, Grade 65-35,
Carbon-steel castings	Class 1
Malleable iron castings	ASTM Designation: A 47, Grade 32510 or A
iviancable non casungs	47M, Grade 22010
Gray iron castings	7711, OTAGE 22010
Inside a roadbed	AASHTO M 306
Outside a roadbed	AASHTO M 300 AASHTO M306 except only AASHTO M105,
outside a roadbed	Class 35B is allowed
Ductile iron castings	ASTM Designation: A 536, Grade 65-45-12
Cast iron pipe	Commercial quality
Steel pipe	Commercial quality, welded or extruded
Other parts for general	Commercial quality
applications	Commortan quanty
applications	

*Zinc-coated nuts that will be tightened beyond snug or wrench tight shall be furnished with a dyed dry lubricant conforming to Supplementary Requirement S2 in ASTM Designation: A 563.

In Section 75-1.03 replace the 13th paragraph with:

Concrete anchorage devices shall be mechanical expansion or resin capsule types installed in drilled holes or cast-in-place insert types. The anchorage devices shall be selected from the Department's Pre-Qualified Products List. The qualification requirements for concrete anchorage devices may be obtained from the Pre-Qualified Products List Web site.

The anchorage devices shall be a complete system, including threaded studs, hex nuts, and cut washers. Thread dimensions for externally threaded concrete anchorage devices prior to zinc coating shall conform to the requirements in ASME Standard: B1.1 having Class 2A tolerances or ASME Standard: B1.13M having Grade 6g tolerances. Thread dimensions for internally threaded concrete anchorage devices shall conform to the requirements in ASTM A 563.

In Section 75-1.03 replace the 18th paragraph with:

Mechanical expansion anchors shall, when installed in accordance with the manufacturer's instructions and these specifications and tested in conformance with the requirements in California Test 681, withstand the application of a sustained tension test load of at least the following values for at least 48 hours with a movement not greater than 0.035 inch:

Stud Diameter	Sustained
	Tension Test
	Load
(inches)	(pounds)
*3/4	5,000
5/8	4,100
1/2	3,200
3/8	2,100
1/4	1,000

^{*} Maximum stud diameter permitted for mechanical expansion anchors.

Resin capsule anchors shall, when installed in accordance with the manufacturer's instructions and these specifications and tested in conformance with the requirements in California Test 681, withstand the application of a sustained tension test load of at least the following values for at least 48 hours with a movement not greater than 0.010 inch:

Stud Diameter	Sustained
	Tension Test
	Load
(inches)	(pounds)
1-1/4	31,000
1	17,900
7/8	14,400
3/4	5,000
5/8	4,100
1/2	3,200
3/8	2,100
1/4	1,000

At least 25 days before use, the Contractor shall submit one sample of each resin capsule anchor per lot to the Transportation Laboratory for testing. A lot of resin capsule anchors is 100 units, or fraction thereof, of the same brand and product name.

In Section 75-1.03 replace the 20th paragraph with:

A Certificate of Compliance for concrete anchorage devices shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance."

In Section 75-1.03 replace the 24th paragraph with:

Sealing compound, for caulking and adhesive sealing, shall be a polysulfide or polyurethane material conforming to the requirements in ASTM Designation: C 920, Type S, Grade NS, Class 25, Use O.

In Section 75-1.035 in the 3rd paragraph, replace the 1st sentence with:

Cables shall be 3/4 inch preformed, 6 x 19, wire strand core or independent wire rope core (IWRC), galvanized in conformance with the requirements in Federal Specification RR-W-410, right regular lay, manufactured of improved plow steel with a minimum breaking strength of 23 tons.

In Section 75-1.035 in the 4th paragraph, replace item C with:

C. Nuts shall conform to the requirements in ASTM Designation: A 563 including Appendix X1, except lubrication is not required.

In Section 75-1.035 replace the 12th paragraph with:

Concrete for filling cable drum units shall conform to the provisions in Section 90-10, "Minor Concrete," or at the option of the Contractor, may be a mix with 3/8-inch maximum size aggregate and not less than 675 pounds of cementitious material per cubic yard.

In Section 75-1.05 replace the 6th paragraph with:

Galvanizing of iron and steel hardware and nuts and bolts, when specified or shown on the plans, shall conform to the requirements in ASTM Designation: A 153/A 153M, except whenever threaded studs, bolts, nuts, and washers are specified to conform to the requirements in ASTM Designation: A 307, A 325, A 449, A 563, F 436, or F 1554 and zinc coating is required, they shall be hot-dip zinc coated or mechanically zinc coated in conformance with the requirements in the ASTM Designations. Unless otherwise specified, galvanizing shall be performed after fabrication.

In Section 75-1.05 replace the 8th paragraph with:

Tapping of nuts or other internally threaded parts to be used with zinc coated bolts, anchor bars or studs shall be done after galvanizing and shall conform to the requirements for thread dimensions and overtapping allowances in ASTM Designation: A 563.

^^^^^^

SECTION 80 FENCES (Issued 01-05-07)

In Section 80-3.01F replace the 4th paragraph with:

Portland cement concrete for metal post and brace footings and for deadmen shall be minor concrete conforming to the provisions in Section 90-10, "Minor Concrete." Minor concrete shall contain not less than 470 pounds of cementitious material per cubic yard.

In Section 80-4.01C replace the 4th paragraph with:

Portland cement concrete for metal post and for deadmen shall be produced from minor concrete conforming to the provisions in Section 90-10, "Minor Concrete." Minor concrete shall contain not less than 470 pounds of cementitious material per cubic yard.

^^^^^^

SECTION 83 RAILINGS AND BARRIERS (Issued 07-01-11)

In Section 83-1.02 replace the 7th paragraph with:

Mortar shall conform to the provisions in Section 51-1.135, "Mortar," and shall consist of one part by volume of cementitious material and 3 parts of clean sand.

In Section 83-1.02B in the 24th paragraph in the 8th subparagraph, replace the 1st sentence with:

Anchor cable shall be 3/4 inch preformed, 6 x 19, wire strand core or independent wire rope core (IWRC), galvanized in conformance with the requirements in Federal Specification RR-W-410, right regular lay, manufactured of improved plow steel with a minimum breaking strength of 23 tons.

In Section 83-1.02E in the 6th paragraph, replace the 2nd sentence with:

Cable shall be galvanized in conformance with the requirements in Federal Specification RR-W-410.

In Section 83-1.02I replace the 5th paragraph with:

Where shown on the plans, cables used in the frame shall be 5/16 inch in diameter, wire rope, with a minimum breaking strength of 5,000 pounds and shall be galvanized in conformance with the requirements in Federal Specification RR-W-410.

In Section 83-1.02I replace the 14th paragraph with:

Chain link fabric shall be 11-gage conforming to one of the following:

- 1. AASHTO Designation: M181, Type I, Class C
- 2. AASHTO Designation: M181, Type IV, Class A
- 3. ASTM F 1345, Class 2

In Section 83-2.02D(1) replace the 5th paragraph with:

When concrete barriers are to be constructed on existing structures, the dowels shall be bonded in holes drilled in the existing concrete. Drilling of holes and bonding of dowels shall conform to the following:

 The bonding materials shall be either magnesium phosphate concrete, modified high alumina based concrete or portland cement based concrete. Magnesium phosphate concrete shall be either single component (water activated) or dual component (with a prepackaged liquid activator). Modified high alumina based concrete and portland cement based concrete shall be water activated. Bonding materials shall conform to the following requirements:

> Contract No. 12-0E3104 209 of 297

Property	Test Method	Requirements
Compressive Strength		
at 3 hours, MPa	California Test 551	21 min.
at 24 hours, MPa	California Test 551	35 min.
Flexure Strength		
at 24 hours, MPa	California Test 551	3.5 min.
Bond Strength: at 24 hours		
SSD Concrete, MPa	California Test 551	2.1 min.
Dry Concrete, MPa	California Test 551	2.8 min.
Water Absorption, %	California Test 551	10 max.
Abrasion Resistance		
at 24 hours, grams	California Test 550	25 max.
Drying Shrinkage at 4 days, %	ASTM Designation:	0.13 max.
	C 596	
Soluble Chlorides by weight, %	California Test 422	0.05 max.
Water Soluble Sulfates by weight, %	California Test 417	0.25 max.

- 2. Magnesium phosphate concrete shall be formulated for minimum initial set time of 15 minutes and minimum final set time of 25 minutes at 70° F. The materials, prior to use, shall be stored in a cool, dry environment.
- 3. Mix water used with water activated material shall conform to the provisions in Section 90-2.03, "Water."
- 4. The quantity of water for single component type or liquid activator (for dual component type) to be blended with the dry component, shall be within the limits recommended by the manufacturer and shall be the least amount required to produce a pourable batter.
- 5. Addition of retarders, when required and approved by the Engineer, shall be in conformance with the manufacturer's recommendations.
- 6. Before using concrete material that has not been previously approved, a minimum of 45 pounds shall be submitted to the Engineer for testing. The Contractor shall allow 45 days for the testing. Each shipment of concrete material that has been previously approved shall be accompanied by a Certificate of Compliance as provided in Section 6-1.07, "Certificates of Compliance."
- 7. Magnesium phosphate concrete shall not be mixed in containers or worked with tools containing zinc, cadmium, aluminum or copper metals. Modified high alumina based concrete shall not be mixed in containers or worked with tools containing aluminum.
- 8. The surface of any dowel coated with zinc or cadmium shall be coated with a colored lacquer before installation of the dowel. The lacquer shall be allowed to dry thoroughly before embedment of the dowels.
- 9. The holes shall be drilled by methods that will not shatter or damage the concrete adjacent to the hole. The diameter of the drilled hole shall be 1/2 inch larger than the nominal diameter of the dowels.
- 10. The drilled holes shall be clean and dry at the time of placing the bonding material and the steel dowels. Bonding material and dowel shall completely fill the drilled hole. The surface temperature shall be 40° F or above when the bonding material is placed.
- 11. After bonding, dowels shall remain undisturbed for a minimum of 3 hours or until the bonding material has reached a strength sufficient to support the dowels. Dowels that are improperly bonded, as determined by the Engineer, shall be removed. The holes shall be cleaned or new holes shall be drilled and the dowels replaced and securely bonded to the concrete. Removing, redrilling and replacing improperly bonded dowels shall be performed at the Contractor's expense. Modified high alumina based concrete and portland cement based concrete shall be cured in conformance with the provisions in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications. Magnesium phosphate concrete shall not be cured.

In Section 83-2.02D(1) replace the 8th paragraph with:

Granular material for backfill between the 2 walls of concrete barrier (Types 50E, 60F, 60GE and 60SF), as shown on the plans, shall be placed without compaction.

In Section 83-2.02D(2) in the 1st paragraph, replace item b with:

b. If the 3/8-inch maximum size aggregate grading is used to construct extruded or slip-formed concrete barriers, the cementitious material content of the minor concrete shall be not less than 675 pounds per cubic yard.

In Section 83-2.02D(2) replace the 3rd paragraph with:

The concrete paving between the tops of the 2 walls of concrete barrier (Types 50E, 60F, 60GE, and 60SF) and the optional concrete slab at the base between the 2 walls of concrete barrier (Types 50E, 60F, 60GE, and 60SF) shall be constructed of minor concrete conforming to the provisions of Section 90-10, "Minor Concrete," except that the minor concrete shall contain not less than 505 pounds of cementitious material per cubic yard.

In Section 83-2.02D(2) replace the 8th paragraph with:

Granular material for backfill between the 2 walls of concrete barrier (Types 50E, 60F, 60GE and 60SF) shall be earthy material suitable for the purpose intended, having no rocks, lumps or clods exceeding1-1/2 inches in greatest dimension.

In Section 83-2.03 replace the 8th and 9th paragraphs with:

Concrete barriers, except Type 50E, Type 60F, Type 60GE, and Type 60SF will be measured along the top of the barrier.

Concrete barriers Type 50E, Type 60F, Type 60GE, and Type 60SF will be measured once along the centerline between the 2 walls of the barrier.

In Section 83-2.04 replace the 3rd paragraph with:

The contract prices paid per linear foot for concrete barrier of the type or types listed in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in constructing the concrete barriers, complete in place, including bar reinforcing steel, steel dowels and drilling and bonding dowels in structures, hardware for steel plate barrier, miscellaneous metal, excavation, backfill (including concrete paving for, and granular material or concrete slab used as backfill in Type 50E, Type 60F, Type 60GE, and Type 60SF concrete barrier), and disposing of surplus material and for furnishing, placing, removing and disposing of the temporary railing for closing the gap between existing barrier and the concrete barrier being constructed, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

^^^^^^

SECTION 85 PAVEMENT MARKERS (Issued 07-31-07)

In Section 85-1.06 replace the 6th paragraph with:

Pavement markers shall not be placed on new hot mix asphalt surfacing or seal coat until the surfacing or seal coat has been opened to public traffic for a period of not less than 7 days when hot melt bituminous adhesive is used, and not less than 14 days when epoxy adhesive is used.

In Section 85-1.06 in the 14th paragraph, replace the 2nd sentence with:

Cleaning shall be done by blast cleaning on all surfaces regardless of age or type, except that blast cleaning of clean, new hot mix asphalt and clean, new seal coat surfaces will not be required when hot melt bituminous adhesive is used.

^^^^^^

SECTION 86 SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS (Issued 01-20-12)

Contract No. 12-0E3104 211 of 297

Replace Section 86 with:

SECTION 86 ELECTRICAL SYSTEMS

86-1 GENERAL

86-1.01 DESCRIPTION

Section 86 includes specifications for installing, modifying, and removing:

- 1. Traffic signal
- 2. Interconnect system
- 3. Ramp metering system
- 4. Flashing beacon system
- 5. Lighting system
- 6. Sign illumination system
- 7. Traffic monitoring station
- 8. Communication system
- 9. Electrical equipment in structure
- 10. Falsework lighting

Comply with Part 4 of the California MUTCD. Nothing in this Section 86 is to be construed as to reduce the minimum standards in this manual.

The locations of electrical system elements are approximate; the Engineer will approve final location.

86-1.015 DEFINITIONS

Definitions pertain only to Section 86, "Electrical Systems."

actuation: As defined in the California MUTCD.

channel: Discrete information path.

controller assembly: Controller unit and auxiliary equipment housed in a rainproof cabinet to control a system's operations.

controller unit: Part of the controller assembly performing the basic timing and logic functions.

detector: As defined in the California MUTCD.

electrolier: Complete assembly of lighting standard and luminaire.

flasher: Device to open and close signal circuits at a repetitive rate.

flashing beacon control assembly: Switches, circuit breakers, terminal blocks, flasher, wiring, and necessary electrical components all housed in a single enclosure to properly operate a beacon.

inductive loop detector: Detector capable of being actuated by inductance change caused by vehicle passing or standing over the loop.

lighting standard: Pole and mast arm supporting the luminaire.

luminaire: Assembly that houses the light source and controls the light emitted from the light source.

magnetic detector: Detector capable of being actuated by induced voltage caused by vehicle passing through the earth's magnetic field.

powder coating: A coating applied electrostatically using UV-stable polymer exterior grade powder.

pre-timed controller assembly: Operates traffic signals under a predetermined cycle length.

signal face: As defined in the California MUTCD.

signal head: As defined in the California MUTCD.

signal indication: As defined in the California MUTCD.

signal section: As defined in the California MUTCD.

signal standard: Pole and mast arm supporting one or more signal faces with or without a luminaire mast arm.

traffic-actuated controller assembly: Operates traffic signals under the varying demands of traffic as registered by detector actuation.

traffic phase: Signal phase as defined in the California MUTCD.

vehicle: As defined in the California Vehicle Code.

86-1.02 REGULATIONS AND CODEElectrical equipment must comply with one or more of the following:

- 1. ANSI
- 2. ASTM
- 3. 8 CA Code of Regs § 2299 et seq.
- 4. EIA

- 5. NEMA
- 6. NETA
- 7. UL

Materials and workmanship must comply with:

- 1. FCC
- 2. ITE
- 3. NEC
- 4. NRTL
- 5. Public Utilities Commission, General Order No. 95, "Rules for Overhead Electrical Line Construction"
- 6. Public Utilities Commission, General Order No. 128, "Rules for Construction of Underground Electric Supply and Communication Systems"

86-1.03 COST BREAK-DOWN

Determine quantities required to complete work. Submit the quantities as part of the cost breakdown.

The sum of the amounts for the units of work listed in the cost breakdown must equal the contract lump sum price bid for the work. Include overhead and profit for each unit of work listed in the cost breakdown. If mobilization is a bid item, include bond premium, temporary construction facilities, and material plants into the mobilization bid item, otherwise, include in each unit of work listed in the cost breakdown. Do not include costs for traffic control system in the cost breakdown.

The cost breakdown may be used to determine partial payment and to calculate payment adjustments for additional costs incurred due to a change order. If a change order increases or decreases the quantities, payment adjustment may be determined under Section 4-1.03B, "Increased or Decreased Quantities."

The cost breakdown must include type, size, and installation method for:

- 1. Foundations
- 2. Standards and poles
- 3. Conduit
- 4. Pull boxes
- 5. Conductors and cables
- 6. Service equipment enclosures
- 7. Telephone demarcation cabinet
- 8. Signal heads and hardware
- 9. Pedestrian signal heads and hardware
- 10. Pedestrian push buttons
- 11. Loop detectors
- 12. Luminaires and lighting fixtures

86-1.04 EQUIPMENT LIST AND DRAWINGS

Within 15 days of contract approval, submit for review a list of equipment and materials that you propose to install. Comply with Section 5-1.02, "Plans and Working Drawings." The list must include:

- 1. Name of manufacturer
- 2. Dimension
- 3. Item identification number
- 4. List of components

The list must be supplemented by other data as required, including:

- 1. Schematic wiring diagrams
- 2. Scale drawings of cabinets showing location and spacing of shelves, terminal blocks, and equipment, including dimensioning
- 3. Operation manual

Submit 2 copies of the above data. The Engineer will review within 15 days.

Electrical equipment that is manufactured as detailed on the plans will not require detailed drawings and diagrams.

Furnish 3 sets of computer-generated cabinet schematic wiring diagrams.

The cabinet schematic wiring diagram must be placed in a heavy duty plastic envelope and attached to the inside of the door of each cabinet.

Prepare diagrams, plans, and drawings using graphic symbols in IEEE 315, "Graphic Symbols for Electrical and Electronic Diagrams."

86-1.05 CERTIFICATE OF COMPLIANCE

Submit a Certificate of Compliance for all electrical material and equipment to the Engineer under Section 6-1.07, "Certificates of Compliance."

86-1.06 MAINTAINING EXISTING AND TEMPORARY ELECTRICAL SYSTEMS

Keep existing electrical system or approved temporary replacement in working order during the progress of the work. Shutdown is allowed for alteration or removal of the system. Traffic signal shutdown must be limited to normal working hours. Lighting system shutdown must not interfere with the regular lighting schedule.

Notify the Engineer before performing work on the existing system.

Notify the local traffic enforcement agency before traffic signal shutdown.

If existing or temporary system must be modified, work not shown on the plans or specified in the special provisions, but required to keep the system in working order will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

The State or local agency will:

- 1. Continue the operation and maintenance of existing electrical facilities
- 2. Continue to provide electrical energy to operate existing electrical facilities
- 3. Repair or replace existing facilities damaged by public traffic
- 4. Pay for electrical energy to operate existing or new facilities undergoing the functional tests described in Section 86-2.14C, "Functional Testing"

Verify location and depth of existing detectors, conduits, pull boxes, and other electrical facilities before using tools or equipment that may damage those facilities or interfere with an electrical system.

Notify the Engineer immediately if existing facility is damaged by your activities. Repair or replace damaged facility promptly. If you fail to complete the repair or replacement, promptly, the State will repair or replace and deduct the costs.

Damaged detectors must be replaced within 24 hours at your expense. If you fail to complete the repair within 24 hours, the State will repair and deduct the repair costs.

If roadway remains open to traffic while an existing lighting system is modified:

- 1. Keep existing system in working order
- 2. Make final connection so the modified circuit is in operation by nightfall

Keep temporary electrical installations in working order until no longer required. Remove temporary installations as specified in Section 86-7, "Removing, Reinstalling or Salvaging Electrical Equipment."

These provisions do not void your responsibilities as specified in Section 7-1.12, "Indemnification and Insurance," and Section 7-1.16, "Contractor's Responsibility for the Work and Materials."

During traffic signal system shutdown, place W3-1a, "STOP AHEAD," and R1-1, "STOP," signs in each direction to direct traffic through the intersection. For 2-lane approaches, place 2 R1-1 signs.

W3-1a and R1-1 signs must comply with Section 12-3.06, "Construction Area Signs." Use a minimum size of 30 inches for the R1-1 sign.

Cover signal faces when the system is shut down overnight. Cover temporary W3-1a and R1-1 signs when the system is turned on.

86-1.07 SCHEDULING OF WORK

Except service installation and service equipment enclosure, do not work above ground until all materials are on hand to complete electrical work at each location. Schedule work to allow each system to be completed and ready for operation before opening the corresponding section of the roadway to traffic.

If street lighting exists or is installed in conjunction with traffic signals, do not turn on the signals until the street lighting is energized.

Traffic signals will not be placed in operation until the roadways to be controlled are open to public traffic.

Lighting and traffic signals, including flashing operation, will not be placed in operation before starting the functional test period specified in Section 86-2.14, "Testing."

Do not pull conductors into conduit until:

- 1. Pull boxes are set to grade
- 2. Metallic conduit is bonded

In vehicular undercrossings, soffit lights must be in operation as soon as practicable after falsework has been removed from the structure. Lighting for pedestrian structures must be in operation before opening the structure to pedestrian traffic.

If the Engineer orders soffit lights or lighting for pedestrian structures to be activated before permanent power service is available, the cost of installing and removing temporary power service will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

The initial traffic signal turn-on must be made between 9:00 a.m. and 2:00 p.m. Before the initial turn-on, all equipment, including pedestrian signals, pedestrian push buttons, vehicle detectors, lighting, signs, and pavement delineation must be installed and in working order. Direct louvers, visors, and signal faces to maximize visibility.

Start functional tests on any working day except Friday or the day before a legal holiday. You must notify the Engineer 48 hours before the start of functional test.

86-1.08 (BLANK)

86-2 MATERIALS AND INSTALLATION

86-2.01 EXCAVATING AND BACKFILLING

Dispose of surplus excavated material under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way."

Backfill as specified in Section 19-3, "Structure Excavation and Backfill." Compact backfill in conduit trenches outside the hinge point of slopes and not under pavement to a minimum relative compaction of 90 percent. Compact backfill within hinge points and in areas where pavement is to be constructed to a minimum relative compaction of 95 percent.

Backfill trenches and restore sidewalk, pavement, and landscaping at one intersection before starting excavation at another intersection.

If excavating on a street or highway, restrict closure to 1 lane at a time.

86-2.02 REMOVING AND REPLACING IMPROVEMENTS

Replace or reconstruct sidewalk, curb, gutter, concrete pavement, asphalt concrete pavement, underlying material, lawn, plant, and other facilities damaged by your activities. Replacement material must be of equal or better quality than the material replaced. Work must be in a serviceable condition.

If a part of a square or slab of concrete sidewalk, curb, gutter, or driveway is broken or damaged, the entire square or slab must be removed and reconstructed.

Cut outline of PCC sidewalk or driveway to be removed:

- 1. Using a power-driven saw
- 2. On a neat line
- 3. To a 0.17-foot minimum depth

86-2.03 FOUNDATIONS

Except for concrete for cast-in-drilled-hole concrete pile foundation, PCC must comply with Section 90-10, "Minor Concrete."

Construct concrete foundation on firm ground.

After each post, standard, and pedestal is properly positioned, place mortar under the base plate. Finish exposed portion to present a neat appearance. Mortar must comply with Section 51-1.135, "Mortar," except mortar must have:

- 1. 1 part by volume of cementitious material
- 2. 3 parts by volume of clean sand

Reinforced cast-in-drilled-hole concrete pile foundation must comply with Section 49, "Piling," except:

- 1. Material resulting from drilling holes must be disposed of as specified in Section 86-2.01, "Excavating and Backfilling"
- 2. Concrete for cast-in-drilled-hole concrete pile will not be considered as designated by compressive strength

Form exposed portion of the foundation to present a neat appearance and true to line and grade. The top of a foundation for post and standard must be finished to curb or sidewalk grade. Forms must be rigid and securely braced in place. Conduit ends and anchor bolts must be placed at proper height and position. Anchor bolts must be installed a maximum of 1:40 from vertical and held in place by rigid top and bottom templates. Use a steel bottom template at least 1/2 inch thick that provides proper spacing and alignment of anchor bolts near the embedded bottom end. Install bottom template before placing footing concrete.

Provide new foundation and anchor bolts of the proper type and size for relocated standards.

Steel parts must be galvanized as specified in Section 75-1.05, "Galvanizing."

Provide 2 nuts and washers for the upper threaded part of each anchor bolt. Provide 3 nuts and washers for each anchor bar or stud.

Do not weld high-strength steel used for anchor bolt, anchor bar, or stud.

Before placing concrete, moisten forms and ground. Keep forms in place until the concrete sets for at least 24 hours and is strong enough to prevent damage to surface.

Except if located on a structure, construct foundation for post, standard, and pedestal monolithically.

Apply ordinary surface finish as specified in Section 51-1.18A, "Ordinary Surface Finish."

If a foundation must be extended for additional depth, the extension work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

Do not erect post, pole, standard, pedestal, or cabinet until the foundation is set for a minimum of 7 days.

The Engineer will choose the plumbing or raking technique for posts, standards, and pedestals. Plumb or rake by adjusting the leveling nuts before tightening nuts. Do not use shims or similar devices. After final adjustments of both top nuts and leveling nuts on anchorage assemblies have been made, and each post, standard, and pedestal on structure is properly positioned, tighten nuts as follows:

- 1. Tighten leveling nuts and top nuts, following a crisscross pattern, until bearing surfaces of all nuts, washers, and base plates are in firm contact.
- 2. Use an indelible marker to mark the top nuts and base plate with lines showing relative alignment of the nut to the base plate.
- 3. Tighten top nuts, following a crisscross pattern, an additional 1/6th of a turn.

In unpaved areas, construct a raised PCC pad in front of each controller cabinet.

Completely remove foundations not to be reused or abandoned.

If abandoning a foundation, remove the top of foundation, anchor bolts, and conduits to a minimum depth of 0.5 foot below sidewalk surface or original ground. Backfill the resulting hole with material equivalent to the surrounding material.

86-2.04 STANDARDS, STEEL PEDESTALS AND POSTS

Bolts, including anchor bolts, nuts, and washers for signal and lighting support structures must comply with Section 55-2, "Materials." Except for bearing-type connection or slip-base, high-strength bolted connection must comply with Section 55-3.14, "Bolted Connections." Welding, nondestructive testing of welds, and acceptance and repair criteria for steel member nondestructive testing must comply with American Welding Society (AWS) D1.1.

Using stainless steel rivets, attach rectangular corrosion-resistant metal identification tag on all standards and poles, except Type 1:

- 1. Above the hand hole, near the base of standards and poles
- 2. On the underside of mast arms near the arm plate

The lettering on each identification tag must be depressed or raised, 1/4 inch tall, legible, and include the following information:

- 1. Name of the manufacturer
- 2. Date of manufacture
- 3. Identification number
- 4. Contract number

- 5. Unique identification code that is:
 - 5.1. Assigned by the manufacturer
 - 5.2. Traceable to a particular contract and the welds on that component
 - 5.3. Readable after the support structure is coated and installed

Type 1 standard and steel pedestal for controller cabinet must be manufactured of one of the following:

- 1. 0.12-inch or thicker galvanized steel
- 2. 4-inch standard weight galvanized steel pipe as specified in ASTM A 53
- 3. 4-inch Type 1 conduit with the top designed for post-top slip-fitter

Ferrous metal parts of a standard that has a shaft length of 15 feet or longer must comply with the provisions in Section 55-2, "Materials," and the following:

- 1. Standard must be manufactured from sheet steel of weldable grade having a minimum yield strength of 40,000 psi after manufacturing.
- 2. Certified test report verifying compliance with minimum yield strength requirements must be submitted. Test report may be the mill test report for the as-received steel or if the as-received steel has a lower yield strength than required you must provide test data assuring that your method of cold forming will consistently increase the tensile properties of the steel to meet the specified minimum yield strength. Test data must include tensile properties of the steel after cold forming for specific heats and thicknesses.
- 3. If a single-ply 5/16-inch thick pole is specified, a 2-ply pole with equivalent section modulus may be substituted.
- 4. Standard may be manufactured of full-length sheets or shorter sections. Each section must be manufactured from 1 or 2 pieces of sheet steel. If 2 pieces are used, the longitudinal welded seams must be directly opposite from one another. If the sections are butt-welded together, the longitudinal welded seams of adjacent sections must be placed to form continuous straight seams from base to top of standard.
- 5. Butt-welded circumferential joints of tubular sections requiring CJP groove welds must be made using a metal sleeve backing ring inside each joint. The sleeve must be 1/8 inch nominal thickness, or thicker, and manufactured from steel having the same chemical composition as the steel in the tubular sections to be joined. If the sections to be joined have different specified minimum yield strengths, the steel in the sleeve must have the same chemical composition as the tubular section having the higher minimum yield strength. The width of the metal sleeve must be consistent with the type of nondestructive testing selected and must be a minimum width of 1 inch. At fitting time, the sleeve must be centered at the joint and in contact with the tubular section at the point of the weld.
- 6. Welds must be continuous.
- 7. Weld metal at the transverse joint must extend to the sleeve, making the sleeve an integral part of the joint.
- 8. During manufacturing, longitudinal seams on vertical tubular members of cantilevered support structures must be centered on and along the side of the pole that the pole plate is located. Longitudinal seams on horizontal tubular members, including signal and luminaire arms, must be within ±45 degrees of the bottom of the arm.
- 9. Longitudinal seam weld in steel tubular section may be made by the electric resistance welding process.
- 10. Longitudinal seam weld must have 60 percent minimum penetration, except:
 - 10.1. Within 6 inches of circumferential weld, longitudinal seam weld must be CJP groove weld.
 - 10.2. Longitudinal seam weld on lighting support structure having telescopic pole segment splice must be CJP groove weld on the female end for a length on each end equal to the designated slip-fit splice length plus 6 inches.
- 11. Exposed circumferential weld, except fillet and fatigue-resistant weld, must be ground flush with the base metal before galvanizing or painting. Ground flush is specified as -0, +0.08-inch.
- 12. Circumferential weld and base plate-to-pole weld may be repaired only one time.
- 13. Exposed edges of the plates that make up the base assembly must be finished smooth and exposed corners of the plates must be broken. Provide shafts with slip-fitter shaft caps.
- 14. Surface flatness requirements of ASTM A 6 apply to plates:
 - 14.1. In contact with concrete, grout, or washers and leveling nuts

- 14.2. In high-strength bolted connections
- 14.3. In joints, where cap screws are used to secure luminaire and signal arms
- 14.4. Used for breakaway slip-base assemblies
- 15. Standard must be straight with a maximum variation of:
 - 15.1. 1 inch measured at the midpoint of a 30-foot to 35-foot standard
 - 15.2. 3/4 inch measured at the midpoint of a 17-foot to 20-foot standard
 - 15.3. 1 inch measured 15 feet above the base plate for Type 35 and Type 36 standards
- 16. Zinc-coated nuts used on fastener assemblies having a specified preload obtained by specifying a prescribed tension, torque value, or degree of turn must be provided with a colored lubricant, clean and dry to the touch. The lubricant color must contrast the zinc coating color on the nut so the presence of the lubricant is visually obvious. Lubricant must be insoluble in water or the fastener components must be shipped to the job site in a sealed container.
- 17. Do not make additional holes in structural members.
- 18. Standard with an outside diameter of 12 inches or less must be round. Standard with an outside diameter greater than 12 inches must be round or multisided. Multisided standard must be convex with a minimum of 12 sides and have a minimum bend radius of 4 inches.
- 19. Manufacture mast arm from material specified for standard.
- 20. Manufacture cast steel option for slip base from material of Grade 70-40, as specified in ASTM A 27/A 27M. Other comparable material may be used if approved by the Engineer. The casting tolerances must comply with the Steel Founders' Society of America's recommendations for green sand molding.
- 21. One casting from each lot of a maximum of 50 castings must be radiographed as specified in ASTM E 94. Casting must comply with the acceptance criteria for severity level 3 or better for the types and categories of discontinuities in ASTM E 186 and E 446. If the casting fails the inspection, 2 additional castings must be radiographed. If the 2 additional castings fail the inspection, the entire lot will be rejected.
- 22. Material certification, consisting of physical and chemical properties, and radiographic film of the casting must be filed at the manufacturer's office. Certification and film must be available for inspection.
- 23. High-strength bolts, nuts, and flat washers used to connect slip-base plate must comply with ASTM A 325 or A 325M and be galvanized as specified in Section 75-1.05, "Galvanizing."
- 24. Plate washers must be manufactured by saw cutting and drilling steel plate. Steel plate must comply with AISI 1018 and be galvanized as specified in Section 75-1.05, "Galvanizing." Before galvanizing, remove burrs and sharp edges and chamfer both sides of holes to allow the bolt head to make full contact with the washer without tension.
- 25. High-strength cap screws for attaching arms to standards must comply with ASTM A 325, A 325M, or A 449, and the mechanical requirements in ASTM A 325 or A 325M after galvanizing. Cap screws must be galvanized as specified in Section 75-1.05, "Galvanizing." Coat threads of cap screws with a colored lubricant, clean and dry to the touch. Lubricant color must contrast the zinc-coating color on the cap screw so the presence of the lubricant is visually obvious. Lubricant must be insoluble in water or the fastener components must be shipped to the job site in a sealed container.
- 26. Bolted connection attaching signal or luminaire arm to pole must be considered slip critical. Galvanized faying surfaces of plates on luminaire, signal arm, and pole must be roughened by hand using a wire brush before assembly and must comply with requirements for Class C surface conditions for slip-critical connections in "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts," a specification approved by the Research Council on Structural Connections (RCSC). Paint for faying surfaces must be as specified in the RCSC specification for Class B coating.
- 27. The Engineer will randomly take samples of fastener components from each production lot and submit to the Transportation Laboratory with test reports as specified in ASTM fastener specifications for QA testing and evaluation. The Engineer will determine sample sizes for each fastener component.

Change in mast arm configuration is allowed as long as the mounting height and stability are maintained.

Before manufacturing, details must be adjusted to ensure that cap screw heads can be turned using conventional installation tools. During manufacturing process, to avoid interference with the cap screw heads, the position of the luminaire arm on the arm plate must be properly located.

Configure mast arm as a smooth curving arm.

Push button post, pedestrian barricade, and guard post must comply with ASTM A 53.

Assemble and tighten slip base when pole is on the ground. Threads of heavy hex nuts for each slip-base bolt must be coated with additional lubricant that is clean and dry to the touch. Tighten high strength slip-base bolts to within ± 10 foot-pounds of the following:

Slip-Base Bolt-Tightening Requirements

	Torque
Standard Type	(foot-pounds)
15-SB	150
30	150
31	200
36-20A	165

Hole in shaft of existing standard, due to removal of equipment or mast arms, must be sealed by fastening a galvanized steel disk to cover the hole. Fasten using a single central galvanized steel fastener. Seal edges of disk and hole with polysulfide or polyurethane sealing compound of Type S, Grade NS, Class 25, and Use O, as specified in ASTM C 920.

If existing standard is ordered to be relocated or reused, remove large dents, straighten shafts, and replace parts that are in poor condition. You must furnish anchor bolts or bars and nuts required for relocating or reusing standard. Repair and replacement work will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

New nuts, bolts, cap screws, and washers must be provided if:

- 1. Standard or mast arm is relocated
- 2. Used standard or mast arm is State furnished

If the standard has a slip base, a new keeper plate must be provided.

86-2.05 CONDUIT

Run conductors in conduit except for overhead and where conductors are run inside poles.

You may use a larger size conduit than specified as long as you use it for the entire length between outlets. Do not use reducing coupling.

New conduit must not pass through existing foundations for standards.

86-2.05A Material

Conduit and conduit fitting must be UL or NRTL listed and comply with the following:

Contract No. 12-0E3104 219 of 297 **Conduit and Conduit Fitting Requirements**

	Conduit und Conduit 1 tring requirements
Type 1	Hot-dip galvanized rigid steel conduit and conduit couplings must comply with
	UL 6 and ANSI C80.1. Zinc coating testing must comply with copper sulfate test
	requirements in UL 6. Conduit couplings for rigid steel conduit must be
	electrogalvanized.
Type 2	Hot-dip galvanized rigid steel conduit must comply with requirements for Type
	1 conduit and be coated with polyvinyl chloride (PVC) or polyethylene. Exterior
	thermoplastic coating must have a minimum thickness of 35 mils. Internal
	coating must have a minimum thickness of 2 mils. Coated conduit must comply
	with UL 6; NEMA RN 1; or NRTL PVC-001.
Type 3	Rigid nonmetallic PVC conduit must comply with UL 651.
	Type A extruded rigid PVC conduit and extruded rigid HDPE conduit must
	comply with UL 651A.
	Coilable, smooth-wall, continuous length HDPE conduits must comply with UL
	651B.
	Install at underground locations only.
Type 4	Waterproof flexible metal conduit must consist of conduit with a waterproof non-
	metallic sunlight-resistant jacket over an inner flexible metal core. Type4 conduit
	must be UL listed for use as the grounding conductor.
Type 5	Intermediate steel conduit and conduit couplings must comply with UL 1242 and
	ANSI C80.6. Zinc coating testing must comply with copper sulfate test
	requirements in UL 1242. Conduit couplings for intermediate rigid steel conduit
	must be electrogalvanized. Type 5 conduit must only be used if specified.

Bonding bushings to be installed on metal conduit must be insulated and either galvanized or zinc alloy type. Fittings for steel conduit and for watertight flexible metal conduit must be UL listed at UL 514B.

86-2.05B Use

Install Type 1 conduit on all exposed surfaces and at the following locations:

- 1. In concrete structures
- 2. Between a structure and nearest pull box

Exposed conduit installed on painted structure must be painted the same color as the structure.

Change or extend existing conduit runs using the same material. Install pull box if an underground conduit changes from the metallic type to Type 3.

Minimum trade size of conduit must be:

- 1. 1-1/2 inches from electrolier to adjacent pull box
- 2. 1 inch from pedestrian push button post to adjacent pull box
- 3. 2 inches from signal standard to adjacent pull box
- 4. 3 inches from controller cabinet to adjacent pull box
- 5. 2 inches from overhead sign to adjacent pull box
- 6. 2 inches from service equipment enclosure to adjacent pull box
- 7. 1-1/2 inches if unspecified

Two conduits must be installed between controller cabinet and adjacent pull box.

86-2.05C Installation

Whether shop or field cut, ream ends of conduit to remove burrs and rough edges. Make cuts square and true. Slip joints and running threads are not allowed for coupling conduit. If a standard coupling cannot be used for coupling metal type conduit, use a threaded union coupling that is UL or NRTL listed. Tighten couplings for metal conduit to maintain a good electrical connection through conduit run.

Cut Type 3 conduit with tools that will not deform the conduit. Use solvent weld for connections.

Cut Type 2 conduit with pipe cutters; do not use hacksaws. Coated conduit must be threaded with standard conduit-threading dies. Tighten conduit into couplings or fittings using strap wrenches or approved groove-joint pliers.

Protect shop-cut threads from corrosion as follows:

Shop-Cut Thread Protection

Steel conduit and	ANSI C80.1
conduit couplings	
Electrical intermediate	ANSI C80.6
metal conduit and	
conduit couplings	

Paint conduits as specified in Section 91, "Paint." Apply 2 coats of approved unthinned zinc-rich primer of organic vehicle type. Do not use aerosol cans. Paint the following parts of conduits:

- 1. All exposed threads
- 2. Field-cut threads before installing conduit couplings to steel conduit
- 3. Damaged surfaces on metal conduit

Do not remove shop-installed conduit couplings.

Damaged Type 2 conduit or conduit coupling must be wrapped with at least 1 layer of 2 inch wide, 20 mil minimum thickness PVC tape, as specified in ASTM D 1000, with a minimum tape overlap of 1/2 inch. Before applying the tape, conduit or fitting must be cleaned and painted with 1 coat of rubber-resin based adhesive as recommended by the tape manufacturer. You may repair damaged spots in the thermoplastic coating by painting over with a brushing type compound supplied by the conduit manufacturer instead of the tape wrap.

The ends of Types 1, 2, or 5 conduit must be threaded and capped with standard pipe caps until wiring is started. The ends of Types 3 and 4 conduit must be capped until wiring is started. If caps are removed, replace with conduit bushings. Fit insulated bonding bushings on the end of metal conduit ending in pull box or foundation. Bell or end bushings for Type 3 conduit must be non-metallic type.

Conduit bends, except factory bends, must have a radius of not less than 6 times the inside diameter of the conduit. If factory bends are not used, bend the conduit without crimping or flattening using the longest radius practicable. Bend conduits as follows:

Conduit-Bending Requirements

	8 1
Type 1	By methods recommended by the conduit manufacturer and with equipment
	approved for the purpose.
Type 2	Use standard bending tool designed for use on thermoplastic coated conduit.
	Conduit must be free of burrs and pits.
Type 3	By methods recommended by the conduit manufacturer and with equipment
	approved for the purpose. Do not expose conduit to direct flame.
Type 4	
Type 5	By methods recommended by the conduit manufacturer and with equipment
	approved for the purpose.

Install pull tape in conduit that is to receive future conductors. The pull tape must be a flat woven lubricated soft-fiber polyester tape with a minimum tensile strength of 1,800 pounds and have printed sequential measurement markings every 3 feet. At least 2 feet of pull tape must be doubled back into the conduit at each end.

Existing underground conduit to be incorporated into a new system must be cleaned with a mandrel or cylindrical wire brush and blown out with compressed air.

Install conduit to a depth of not less than 30 inches below finished grade, except in sidewalk and curbed paved median areas, where it must be at least 18 inches below grade. You may lay conduit on existing pavement within new curbed median.

Conduit coupling must be a minimum of 6 inches from face of foundation.

Place a minimum of 2 inches of sand bedding in the trench before installing Type 2 or Type 3 conduit. Place a minimum of 4 inches of same material over conduit before placing additional backfill material.

Obtain approval from the Engineer before disturbing pavement. If obstruction is encountered, obtain approval from Engineer to cut small holes in the pavement to locate or remove obstruction. If jacking or drilling method is used, keep jacking or drilling pit 2 feet away from edge of pavement. Pavement must not be weakened or subgrade softened from excess water use.

Conduit used for drilling or jacking must be removed; install new conduit for completed work. If a hole larger than the conduit is pre-drilled and you install conduit by hand or by method recommended by the conduit manufacturer with equipment approved for purpose, you may install Type 2 or Type 3 conduit under pavement.

If trenching in pavement method is specified, conduit installation under pavement that is not a freeway lane or freeway to freeway connector ramp, must comply with the following:

- 1. Use Type 3 conduit. Place conduit under pavement in a trench approximately 2 inches wider than the outside diameter of conduit, but not exceeding 6 inches in width. Trench depth must not exceed the greater of 12 inches or conduit trade size plus 10 inches, except that at pull boxes the trench may be hand dug to required depth. The top of the installed conduit must be a minimum of 9 inches below finished grade.
- 2. Trenching installation must be completed before placing final pavement layer.
- 3. Cut pavement to be removed with a rock cutting excavator. Minimize shatter outside the removal area.
- 4. Place conduit in bottom of trench and backfill with minor concrete as specified in Section 90-10, "Minor Concrete.". Minor concrete must contain a minimum of 590 pounds of cementitious material per cubic yard. If the trench is in asphalt concrete pavement and pavement overlay is not placed, backfill the top 0.10 foot of trench with minor HMA.
- 5. Before spreading HMA, apply tack coat as specified in Section 39, "Hot Mix Asphalt."
- 6. Backfill trenches, except for the top 0.10 foot, by the end of each day. The top 0.10 foot must be filled within 3 days after trenching.

Conduit installed beneath railroad tracks must be:

- 1. Type 1 or 2
- 2. 1-1/2-inch minimum diameter
- 3. Placed a minimum depth of 42 inches below bottom of the rail

If jacking or drilling method is used, construct jacking pit to a minimum of 13 feet from the centerline of track at the near side of jacking pit. Cover jacking pit with substantial planking if left overnight.

Conduit ending in standard or pedestal must not extend more than 3 inches vertically above the foundation and must be sloped toward the handhole opening. Conduit entering through the side of non-metallic pull box must end inside the box within 2 inches of the wall and 2 inches above the bottom and be sloped toward the top of box to facilitate pulling of conductors. Conduit entering through the bottom of a pull box must end 2 inches above the bottom and be located near the end walls to leave the major portion of the box clear. At outlet, conduit must enter from the direction of the run.

Underground conduit runs, including under sidewalks, that are adjacent to gasoline service stations or other underground gasoline or diesel storage, piping, or pumps and that lead to a controller cabinet, circuit breaker panel, service, or enclosure where an arc may occur during normal operations must be sealed if the conduit is within the limits specified in the NEC for Class 1, Division 1. Use Type 1 or Type 2 conduit for these runs.

Conduit for future use in structures must be threaded and capped. Conduit leading to soffit, wall, or other lights or fixtures below pull box grade must be sealed and made watertight, except where conduit ends in a No. 9 or No. 9A pull box.

Support for conduit in or on wall or bridge superstructure must comply with the following:

- Steel hangers, steel brackets, and other fittings must comply with Section 75-1.03, "Miscellaneous Bridge Metal."
- 2. Construct precast concrete conduit cradles using minor concrete and commercial quality welded wire fabric. Minor concrete must comply with Section 90-10, "Minor Concrete," and contain a minimum of 590 pounds of cementitious material per cubic yard.. The cradles must be moist cured for a minimum of 3 days. Bond precast concrete cradles to structure with epoxy adhesives specified in one of the following:
 - 2.1. Section 95-2.03, "Epoxy Resin Adhesive for Bonding New Concrete to Old Concrete"
 - 2.2. Section 95-2.04, "Rapid Set Epoxy Adhesive for Pavement Markers"
 - 2.3. Section 95-2.05, "Standard Set Epoxy Adhesive for Pavement Markers"
- 3. Use pipe sleeve or form opening for conduit through bridge superstructure concrete. Sleeve or opening through either prestressed member or conventionally reinforced precast member must be:
 - 3.1. Transverse to the member

- 3.2. Through the web
- 3.3. Not more than 3 inches maximum gross opening in concrete
- 4. Where conduits pass through the abutment concrete, wrap conduit with 2 layers of asphalt-felt building paper securely taped or wired in place. Fill space around conduit that runs through bridge abutment wall with mortar as specified in Section 51-1.135, "Mortar," except the proportion of cementitious material to sand must be 1 to 3. Fill the space around conduits that run through abutments after prestressing is completed.
- 5. Run surface-mounted conduit straight and true, horizontal or vertical on the wall, and parallel to wall on ceiling or other similar surfaces. Support conduit at a maximum of 5-foot intervals or closer where necessary to prevent vibration or unsightly deflection. The supports must include galvanized malleable iron conduit clamps and clamp backs secured with expansion anchorage devices as specified for concrete anchorage devices in Section 75-1.03, "Miscellaneous Bridge Metal." Threaded studs must be galvanized and be of the largest diameter that will pass through the mounting hole in conduit clamp.
- 6. Where pull boxes are placed in conduit runs, conduit must be fitted with threaded bushings and bonded.
- 7. Mark location of conduit end in structure, curb, or wall with a "Y" that is a minimum of 3 inches tall, directly above conduit.

86-2.05D Expansion Fittings

Install expansion fitting where the conduit crosses an expansion joint in structure. Each expansion fitting for metal conduit must include a copper bonding jumper having the ampacity specified in NEC.

Each expansion-deflection fitting for expansion joints of 1-1/2-inch movement rating must be watertight and include a molded neoprene sleeve, a bonding jumper, and 2 silicon bronze or zinc-plated iron hubs. Each fitting must allow a minimum of 3/4-inch expansion, contraction, and lateral deflection.

86-2.06 PULL BOXES

86-2.06A (Blank)

86-2.06B Cover Marking

Marking must be clearly defined, uniform in depth, and parallel to either the long or short sides of cover. Marking letters must be 1 inch to 3 inches high.

Before galvanizing steel or cast iron cover, apply marking by one of the following methods:

- 1. Use cast iron strip at least 1/4 inch thick with letters raised a minimum of 1/16 inch. Fasten strip to cover with 1/4 inch flathead stainless steel machine bolts and nuts. Peen bolts after tightening.
- 2. Use sheet steel strip at least 0.027-inch thick with letters raised a minimum of 1/16 inch. Fasten strip to cover by spot welding, tack welding, or brazing, with 1/4 inch stainless steel rivets or 1/4 inch roundhead stainless steel machine bolts and nuts. Peen bolts after tightening.
- 3. Bead weld the letters on cover so that letters are raised a minimum of 3/32 inch.

86-2.06C Installation and Use

Space pull boxes no more than 200 feet apart. You may install additional pull boxes to facilitate the work. You may use a larger standard size pull box than that shown on the plans or specified.

A pull box in ground or sidewalk area must be installed as follows:

- 1. Embed bottom of pull box in crushed rock.
- 2. Place a layer of roofing paper on the crushed rock.
- 3. Place mortar over the layer of roofing paper. Mortar must be 0.50 inch to 1 inch thick and sloped toward the drain hole.
- 4. Make a 1-inch drain hole in center of pull box through mortar and roofing paper.
- 5. Place mortar between pull box and pull box extension, and around conduits.

The top of the pull box must be flush with the surrounding grade or the top of an adjacent curb, except in unpaved areas where the pull box is not immediately adjacent to and protected by a concrete foundation, pole, or other protective construction. Place the pull box 1-1/4 inches above the surrounding grade. Where practical, place a pull box shown in the vicinity of curbs or adjacent to a standard on the side of the foundation facing away from traffic, unless otherwise directed. If a pull box is installed in a sidewalk area, adjust the depth of the pull box so that the top of the pull box is flush with the sidewalk.

Reconstruct the sump of an existing pull box if it is disturbed by your operations. Remove old grout and replace with new if the sump was grouted.

86-2.07 TRAFFIC PULL BOXES

Comply with Sections 86-2.06B, "Cover Marking," and 86-2.06C, "Installation and Use."

Traffic pull box and cover must comply with ASTM C857, "Standard Practice for Minimum Structural Design Loading for Underground Precast Concrete Utility Structures," for HS20-44 loading. You must be able to place the load anywhere on box and cover for 1 minute without causing cracks or permanent deformations.

Frame must be anchored to the box with 1/4" x 2-1/4" concrete anchors. Four concrete anchors must be included for No. 3-1/2(T) pull box; one placed in each corner. Six concrete anchors for must be included for No. 5(T) and No. 6(T) pull boxes; one placed in each corner and one near the middle of each of the longer sides.

Nuts must be zinc plated carbon steel, vibration resistant, and have a wedge ramp at the root of the thread.

After installation of traffic pull box, install steel cover and keep bolted down when your activities are not in progress at the pull box. When steel cover is placed for final time, cover and Z bar frame must be cleaned of debris and tightened securely.

Steel cover must be countersunk approximately 1/4 inch to accommodate bolt head. When tightened, bolt head must not exceed more than 1/8 inch above the top of cover.

Concrete placed around and under traffic pull box must be minor concrete as specified in Section 90-10, "Minor Concrete."

86-2.08 CONDUCTORS AND CABLES

Conductor must be copper wire that complies with ASTM B 3 and B 8. Wire size must comply with the following:

Wire Size Requirements

Conductor usage	Requirement
In loop detector lead-in cable	ASTM B 286
Everywhere except in loop	American Wire Gage (AWG) ^a
detector lead-in cable	

^aExcept conductor diameter must not be less than 98 percent of specified AWG diameter.

Single conductor and cable, except detector lead-in cable, must have clear, distinctive, and permanent markings on the outer surface throughout its length. The markings must include the manufacturer's name or trademark, insulation type letter designation, conductor size, voltage, and temperature rating, and for cables, it must also include number of conductors.

86-2.08A Conductor Identification

Conductor insulation must be a solid color with a permanent stripe as specified below. The solid color must be homogeneous through the full depth of insulation. Identification stripe must be continuous throughout the length of conductor. For conductor sizes No. 2 and larger, the insulation may be black and the ends of the conductors must be taped for a minimum length of 20 inches with electrical insulating tape of the required color.

Conductor Identification

	Con	auctor Identificat		1	
		Identification			
		Insulation	Color ¹		
Circuit	Signal Phase or Function	Base	Stripe ^a	Band Symbols ^f	Size
	2,6	Red, Yel, Brn	Blk	2,6	14
	4,8	Red, Yel, Brn	Ora	4,8	14
Vehicle	1,5	Red, Yel, Brn	None	1,5	14
Signals ^{a,b,d}	3,7	Red, Yel, Brn	Pur	3,7	14
	Ramp Meter 1	Red, Yel, Brn	None	NBR	14
	Ramp Meter 2	Red, Yel, Brn	Blk	NBR	14
	2p,6p	Red, Brn	Blk	2p,6p	14
Pedestrian	4p,8p	Red, Brn	Ora	4p,8p	14
Signals ^d	1p,5p	Red, Brn	None	1p,5p	14
	3p,7p	Red, Brn	Pur	3p,7p	14
	2p,6p	Blu	Blk	P-2,P-6	14
Pedestrian Push	4p,8p	Blu	Ora	P-4,P-8	14
Buttons ^d	1p,5p	Blu	None	P-1,P-5	14
	3p,7p	Blu	Pur	P-3,P-7	14
Tff: - C:1	Ungrounded Circuit				
Traffic Signal Controller	Conductor	Blk	None	CON-1	6
Cabinet	Grounded Circuit				
Cabillet	Conductor	Wht	None	CON-2	6
Highway	Ungrounded-Line 1	Blk	None	NBR	14
Lighting Pull	Ungrounded-Line 2	Red	None	NBR	14
Box to					
Luminaire	Grounded	Wht	None	NBR	14
Multiple	Ungrounded-Line 1	Blk	None	ML1	10
Highway					
Lighting	Ungrounded-Line 2	Red	None	ML2	10
Lighting	Ungrounded to PEU	Blk	None	C1	14
Control	Switching leg from PEU				
00	unit or SM transformer	Red	None	C2	14

	Ungrounded-Line 1				
Service	(Signals)	Blk	None	NBR ^e	6
Service	Ungrounded-Line 2				
	(Lighting)	Red ^h	None	NBR^{e}	8
Sian Lighting	Ungrounded-Line 1	Blk	None	SL-1	10
Sign Lighting	Ungrounded-Line 2	Red	None	SL-2	10
Flashing	Ungrounded between				
Beacons ^g	Flasher and Beacons	Red or Yel	None	F-Loc. ^c	14
	Pedestrian Push Buttons	Wht	Blk	NBR	14
	Signals and Multiple				
Grounded and	Lighting	Wht	None	NBR	10
Common	Flashing Beacons and				
Collinion	Sign Lighting	Wht	None	NBR	12
	Lighting Control	Wht	None	C-3	14
	Multiple Service	Wht	None	NBR	14
Railroad					
Preemption		Blk	None	R	14
Spares		Blk	None	NBR	14

NBR = No Band Required PEU=Photoelectric unit

86-2.08B Multiple Circuit Conductors

Conductor for multiple circuit must be UL or NRTL listed and rated for 600 V(ac) operation. Insulation for No. 14 to No. 4 conductors must be one of the following:

- 1. Type TW PVC as specified in ASTM D 2219
- 2. Type THW PVC
- 3. Type USE, RHH, or RHW cross-linked polyethylene

Minimum insulation thickness must comply with the following:

Insulation Thickness

Insulation Type	Conductor Size	Insulation Thickness (mils)
USE, RHH, or RHW	No. 14 to No. 10	39
USE, KHH, OI KHW	No. 8 to No. 2	51
	No. 14 to No. 10	27
THW or TW	No. 8	40
	No. 6 to No. 2	54

Insulation for No. 2 and larger conductor must be one of the types listed above or Type THWN.

Conductor for wiring wall and soffit luminaire must be stranded copper with insulation rated for use at temperatures up to 125 °C.

86-2.08C Signal Cable

Signal cable, except for the 28-conductor type, must:

^aOn overlaps, insulation is striped for 1st phase in designation. e.g., phase (2+3) conductor is striped as for phase 2.

^bBand for overlap and special phases as required.

^cFlashing beacons having separate service do not require banding.

^dThese requirements do not apply to signal cable.

e"S" if circuit is switched on line side of service equipment by utility.

^fBand conductors in each pull box and near ends of termination points. On signal light circuits, a single band may be placed around 2 or 3 ungrounded conductors comprising a phase.

^gUngrounded conductors between service switch and flasher mechanism must be black and banded.

^hBlack acceptable for size No. 2 and larger. Tape ends for 20 inches with indicated color.

Color Code: Yel-Yellow, Brn-Brown, Blu-Blue, Blk-Black, Wht-White, Ora-Orange, Pur-Purple.

- 1. Not be spliced
- 2. Be marked in each pull box with the signal standard information it is connecting to

Signal cable must comply with the following:

- 1. Cable jacket must be:
 - 1.1. Black polyethylene with an inner polyester binder sheath
 - 1.2. Rated for 600 V(ac) and 75 °C
- 2. Filler material, if used, must be polyethylene material.
- 3. Conductor must be solid copper with Type THWN insulation as specified in Section 86-2.08, "Conductors and Cables," and ASTM B 286. The minimum thickness of Type THWN insulation must be 12 mils for conductor sizes No. 14 to No. 12 and 16 mils for conductor size No. 10. The minimum thickness of nylon jacket must be 4 mils.

Conductor Signal Cable Requirements

		Cable	Jacket	Maximum	•	
		Thic	kness	Nominal		
	Conductor	(m	nils)	Outside		
Cable	Quantity and	Average	Minimum	Diameter		
Type ^a	Type	C		(inch)	Conductor Color Code	Remarks
					blue/black, blue/orange,	Use for pedestrian push
3CSC	3 - No. 14	44	36	0.40	white/black stripe	buttons and spare
					red, yellow, brown,	
5CSC	5 - No. 14	44	36	0.50	black, white	
					No. 12 - white	
					No. 14 - red, yellow,	
					brown, black, and	
					red/black, yellow/black,	
	8 - No. 14				brown/black,	
9CSC	1 - No. 12	60	48	0.65	white/black stripe	
					No. 12 - white	
					No. 14 - see "12CSC	Use for vehicle signals,
					Color Code and	pedestrian signals,
	11 - No. 14				Functional Connection"	spares, and signal
12CSC	1 - No. 12	60	48	0.80	table	common
						Keep signal commons
						in each cable separate
						except at the signal
						controller. Label each
					No. 10 - white	cable as "C1" or "C2" in
					No. 14 - see "28CSC	pull box. Use "C1" for
					Color Code and	signal phases 1, 2, 3,
	27 - No. 14				Functional Connection"	and 4. Use "C2" for
28CSC	1 - No. 10	80	64	0.90	table	phases 5, 6, 7, and 8.

^aConductor signal cable description starts with the number of conductors, followed by "CSC". (e.g., a signal cable with 3 conductors is labeled "3CSC.")

12CSC Color Code and Functional Connection

Color Code	Termination	Phase
Red	Vehicle signal red	2, 4, 6, or 8
Yellow	Vehicle signal yellow	2, 4, 6, or 8
Brown	Vehicle signal green	2, 4, 6, or 8
Red/black stripe	Vehicle signal red	1, 3, 5, or 7
Yellow/black stripe	Vehicle signal yellow	1, 3, 5, or 7
Brown/black stripe	Vehicle signal green	1, 3, 5, or 7
Black/red stripe	Spare, or use as required for red or DONT WALK	
Black/white stripe	Spare, or use as required for yellow	
Black	Spare, or use as required for green or WALK	
Red/white stripe	Ped signal DONT WALK	
Brown/white stripe	Ped signal WALK	

28CSC Color Code and Functional Connection

Color Code	Termination	Phase
Red/black stripe	Vehicle signal red	2 or 6
Yellow/black stripe	Vehicle signal yellow	2 or 6
Brown/black stripe	Vehicle signal green	2 or 6
Red/orange stripe	Vehicle signal red	4 or 8
Yellow/orange stripe	Vehicle signal yellow	4 or 8
Brown/orange stripe	Vehicle signal green	4 or 8
Red/silver stripe	Vehicle signal red	1 or 5
Yellow/silver stripe	Vehicle signal yellow	1 or 5
Brown/silver stripe	Vehicle signal green	1 or 5
Red/purple stripe	Vehicle signal red	3 or 7
Yellow/purple stripe	Vehicle signal yellow	3 or 7
Brown/purple stripe	Vehicle signal green	3 or 7
Red/2 black stripes	Ped signal DONT WALK	2 or 6
Brown/2 black stripes	Ped signal WALK	2 or 6
Red/2 orange stripes	Ped signal DONT WALK	4 or 8
Brown/2 orange stripes	Ped signal WALK	4 or 8
Red/2 silver stripes	Overlap A, C red	OLA, OLC
Brown/2 silver stripes	Overlap A, C green	OLA, OLC
Red/2 purple stripes	Overlap B, D red	OLB, OLD
Brown/2 purple stripes	Overlap B, D green	OLB, OLD
Blue/black stripe	Ped push button	2 or 6
Blue/orange stripe	Ped push button	4 or 8
Blue/silver stripe	Overlap A, C yellow	OLA(y), OLC(y)
Blue/purple stripe	Overlap B, D yellow	OLB(y), OLD(y)
White/black stripe	Ped push button common	
Black/red stripe	Railroad preemption	
Black	Spare	

86-2.08D Signal Interconnect Cable (SIC)

Signal interconnect cable must be a 3-pair or 6-pair type with stranded tinned copper No. 20 conductors. Each conductor insulation must be 13 mils minimum nominal thickness, color-coded, polypropylene material. Conductors must be in twisted pairs. Color coding distinguishes each pair. Each pair must be wrapped with an aluminum polyester shield and must have a No. 22 or larger stranded tinned copper drain wire inside the shielded pair.

Cable jacket must be black, high density polyethylene, rated for a minimum of 300 V(ac) and 60 °C, and must have a minimum nominal wall thickness of 40 mils. Cable jacket or moisture-resistant tape directly under the outer jacket must be marked as specified in Section 86-2.08.

You must have a minimum of 6 feet of slack at each controller cabinet. Splicing is allowed only if shown on the plans.

Insulate conductor splice with heat-shrink tubing and overlap at least 0.6 inch. Cover overall cable splice with heat-shrink tubing and overlap the cable jacket at least 1-1/2 inch.

86-2.09 WIRING

Run conductors in conduit, except for overhead and temporary installations and where conductors are run inside poles.

Solder by hot iron, pouring, or dipping method, connectors and terminal lugs for conductor sizes No. 8 and smaller. Do not perform open-flame soldering.

86-2.09A Circuitry

Do not run traffic signal indication conductors to a terminal block on a standard unless connected to a mounted signal head.

Use only 1 conductor to connect to each terminal of a pedestrian push button.

The common for pedestrian push button circuit must be separate from traffic signal circuit grounded conductor.

86-2.09B Installation

Use a UL- or NRTL-listed inert lubricant for placing conductors in conduit.

Pull conductors into conduit by hand using pull tape specified in Section 86-2.05C, "Installation." Do not use winches or other power-actuated pulling equipment.

If adding new conductors or removing existing conductors, remove all conductors, clean conduit as specified in Section 86-2.05C, "Installation," and pull all conductors in conduit as 1 unit.

If traffic signal conductors are run in lighting standard containing street lighting conductors from a different service point, you must encase the traffic signal conductors or the lighting conductors with a flexible or rigid metal conduit for a length until the 2 types of conductors are no longer in the same raceway.

If less than 10 feet above grade, enclose temporary conductors in flexible or rigid metal conduit.

Leave slack for each conductor as follows:

Conductor Slack Requirements

	Slack
Location	(feet)
Signal standard	1
Lighting standard	1
Signal and lighting standard	1
Pull box	3
Splice	3
Standards with slip base	0

After conductors are installed, seal ends of conduits with an approved sealing compound.

To form a watertight seal, tape ends of spare conductors and conductors ending in pull boxes.

Conductors and cables inside fixture or cabinet must be neatly arranged and tied together by function with self-clinching nylon cable ties or enclosed in plastic tubing or raceway.

Identify conductors for signal overlap phase as specified for vehicle signals in the table titled "Conductor Identification."

Permanently identify conductors by function. Place identification on each conductor, or each group of conductors forming a signal phase, at each pull box and near the end of conductors.

Label, tag, or band conductors by mechanical methods. Identification must not move along the conductors.

86-2.09C Connectors and Terminals

Connectors and terminals must be UL- or NRTL-listed crimp type. Use manufacturer-recommended tool for connectors and terminals to join conductors. Comply with MIL-T-7928.

Terminate stranded conductors smaller than No. 14 in crimp style terminal lugs.

86-2.09D Splicing and Terminations

Splices are allowed for:

1. Grounded conductors in pull box.

- 2. Pedestrian push button conductors in pull box.
- 3. Conductors in pull box adjacent to each electrolier or luminaire.
- 4. Ungrounded traffic signal conductors in pull box, if traffic signals are modified.
- 5. Ungrounded traffic signal conductors to a terminal compartment or signal head on a standard with conductors of the same phase in the pull box adjacent to the standard.
- 6. Ungrounded lighting circuit conductors in pull box, if lighting circuits are modified.

86-2.09E Splice Insulation

Splice must function under continuous submersion in water.

Multi-conductor cable must be spliced and insulated to form a watertight joint and to prevent moisture absorption by the cable.

Low-voltage tape must be:

- 1. UL or NRTL listed
- 2. Self-fusing, oil and flame-resistant, synthetic rubber
- 3. PVC, pressure-sensitive adhesive of 6 mils minimum thickness

Insulating pad must be a combination of an 80-mils thick electrical grade PVC laminate and a 120-mils thick butyl splicing compound with removable liner.

Heat-shrink tubing must comply with the following:

- 1. Be medium or heavy wall thickness, irradiated polyolefin tubing with an adhesive mastic inner wall.
- 2. Before contraction, minimum wall thickness must be 40 mils.
- 3. Heating must be as recommended by the manufacturer. Do not perform open-flame heating.
- 4. When heated, the inner wall must melt and fill crevices and interstices of the covered object and the outer wall must shrink to form a waterproof insulation.
- 5. After contraction, each end of the heat-shrink tubing or the open end of end cap of heat-shrink tubing must overlap the conductor insulation at least 1-1/2 inches. Coat ends and seams with electrical insulation coating.
- 6. Comply with requirements for extruded insulated tubing at 600 V(ac) in UL Standard 468D and ANSI C119.1, and the following requirements:

Heat-Shrink Tubing Requirements

11000 Smill 100mg 100qui omonos			
Shrinkage Ratio	33 percent, maximum, of supplied diameter when		
	heated to 125 °C and allowed to cool to 25 °C		
Dielectric Strength	350 kV per inch, minimum		
Resistivity	$25^{13} \Omega$ per inch, minimum		
Tensile Strength	2,000 psi, minimum		
Operating Temperature	-40 °C to 90 °C (135 °C in emergency)		
Water Absorption	0.5 percent, maximum		

7. If 3 or more conductors are to be enclosed in 1 splice, place mastic around each conductor before placing inside tubing. Use mastic type recommended by heat-shrink tubing manufacturer.

You may use "Method B" as an alternative method for splice insulation. Use at least 2 thicknesses of electrical insulating pad. Apply pad to splice as recommended by manufacturer.

86-2.095 FUSED SPLICE CONNECTORS

Install a fused disconnect splice connector in each ungrounded conductor, between the line and the ballast, in the pull box adjacent to each luminaire. Connector must be accessible in the pull box.

For 240 and 480 V(ac) circuits, each connector must simultaneously disconnect both ungrounded conductors. Connector must not have exposed metal parts, except for the head of stainless steel assembly screw. Recess head of stainless steel assembly screw a minimum of 1/32 inch below top of plastic boss that surrounds the head.

Splice connector must protect fuse from water or weather damage. Contact between fuse and fuseholder must be spring loaded. Splice connector terminals must be:

- 1. Rigidly crimped, using a tool recommended by manufacturer of fused splice connector, onto ungrounded conductors
- 2. Insulated
- 3. Watertight

Fuses must be standard midget ferrule type, with "Non-Time-Delay" feature, and 13/32" x 1-1/2".

86-2.10 BONDING AND GROUNDING

Secure all metallic components, mechanically and electrically, to form a continuous system that is effectively grounded.

Bonding jumper must be copper wire or copper braid of the same cross sectional area as a No. 8 or larger to match the load. Equipment grounding conductors must be color coded as specified in NEC or be bare.

Attach bonding jumper to standard as follows:

Bonding Jumper Attachment

Standard type	Requirements	
Standard with handhole	Use UL-listed lug and 3/16-inch diameter or larger brass or	
and traffic pull box lid	bronze bolt. Run jumper to conduit or bonding wire in	
cover	adjacent pull box. Grounding jumper must be visible after the	
	standard is installed and mortar pad is placed on foundation.	
Standard without	Use UL-listed ground clamp on each anchor bolt.	
handhole		
Slip-base standard	Use UL-listed ground clamp on each anchor bolt or attach UL-	
	listed lug to bottom slip-base plate with 3/16-inch diameter or	
	larger brass or bronze bolt.	

Ground one side of secondary circuit of step-down transformer.

Ground metal conduit, service equipment, and grounded conductor at service point as specified by NEC and service utility, except grounding electrode conductor must be No. 6 or larger.

Equipment bonding and grounding conductors are required in conduit. Run a No. 8 minimum bare copper wire continuously in conduit system. The bonding wire must be sized as specified in the NEC.

Ground electrode must be:

- 1. 1 piece
- 2. 10-foot minimum length of one of the following:
 - 2.1. Galvanized steel rod or pipe not less than 3/4 inch in diameter
 - 2.2. Copper clad steel rod not less than 5/8 inch in diameter
- 3. Installed as specified in NEC
- 4. Bonded to service equipment using one of the following:
 - 4.1. Ground clamp
 - 4.2. Exothermic weld
 - 4.3. No. 6 or larger copper conductor

On wood pole, metallic equipment mounted less than 8 feet above ground surface must be grounded.

Bond metallic conduit in non-metallic pull box using bonding bushing or bonding jumper.

Bond metallic conduit in metal pull box using bonding bushings and bonding jumpers connected to bonding wire running in the conduit system.

86-2.11 **SERVICE**

Electrical service installation and materials must comply with service utility requirements.

If service equipment is to be installed on utility-owned pole, you must furnish and install conduit, conductors, and other necessary material to complete service installation. Service utility will decide riser and equipment position.

Install service equipment early on to allow service utility to schedule its work before project completion.

Furnish each service with a circuit breaker that simultaneously disconnects all ungrounded service entrance conductors.

Circuit breakers must:

- 1. Be quick-break on either automatic or manual operation.
- 2. Have operating mechanism that is enclosed and trip-free from operating handle on overload.
- 3. Be trip indicating.
- 4. Have frame size plainly marked.
- 5. Have trip rating clearly marked on operating handle.
- 6. Have overload tripping of breakers not influenced by ambient temperature range of -18 °C to 50 °C.
- 7. Be internal trip type.
- 8. Be UL or NRTL listed and comply with UL 489 or equal.
- 9. Have minimum interrupting capacity of 10,000 A, rms, if used as service disconnect.

Service equipment enclosure must be a NEMA 3R enclosure with dead-front panel and a hasp with a 7/16-inch hole for a padlock. Enclosure must be field marked as specified in the NEC to warn qualified persons of potential electric arc flash hazards.

Service equipment enclosure, except Types II and III, must be galvanized or have a factory-applied rust-resistant prime coat and finish coat.

Types II and III service equipment enclosures must be manufactured from one of the following:

- 1. Galvanized sheet steel
- 2. Sheet steel plated with zinc or cadmium after manufacturing
- 3. Aluminum

Manufacture service equipment enclosure as specified in Section 86-3.04A, "Cabinet Construction." Overlapping exterior seams and doors must comply with requirements for NEMA 3R enclosures in the NEMA Enclosure Standards.

If an alternative design is proposed for Type II or III service equipment enclosure, submit plans and shop drawings to the Engineer for approval before manufacturing.

Except for falsework lighting and power for your activities, when you submit a written request, the Engineer will arrange:

- 1. With the service utility to complete service connections for permanent installations and the Department will pay all costs and fees required by the service utility. Submit request at least 15 days before service connections are required.
- 2. For furnishing electrical energy. Energy used before contract completion will be charged to you, except cost of energy used for public benefit as ordered by the Engineer will be paid by the Department or local authorities.

Full compensation for furnishing and installing State-owned or permanent service poles, service equipment, conduit, conductors, and pull boxes, including equipment, conduit, and conductors placed on utility-owned poles, is included in the contract item of electrical work involved and no additional compensation will be allowed therefor.

If the service point is indeterminate and is shown on the plans as "approximate location" or "service point not yet established," the labor and materials required for making the connection between the service point, when established, and the nearest pull box shown on the plans will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

86-2.12 WOOD POLES

Wood poles must comply with the following:

- 1. Class 5 or larger as specified in ANSI O 5.1
- 2. Less than 180-degree twist in grain over the full length
- 3. 4-inch or less sweep
- 4. Beveled top
- 5. Placed in ground at least 6 feet
- 6. Length must be:

- 6.1. 25 feet for service pole
- 6.2. 35 feet for other

After each pole is set in ground, backfill space around pole with selected earth or sand, free of rocks and other deleterious material, placed in 4-inch thick layers. Moisten each layer and thoroughly compact.

Manufacture mast arm from standard pipe, free from burrs. Each mast arm must have an insulated wire inlet and wood pole mounting brackets for mast arm and tie-rod cross arm. Manufacture tie rod from structural steel and pipe.

Mount mast arm for luminaire to provide a 34-foot mounting height for a 200 W high pressure sodium luminaire and 40-foot mounting height for 310 W high pressure sodium luminaire. Traffic signals and flashing beacons on mast arm must provide a minimum vertical clearance of 17 feet from bottom of equipment to pavement.

After manufacturing, pressure-treat pole as specified in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and AWPA Use Category System: UC4B, Commodity Specification D.

If specified, treat pole with waterborne wood preservative.

86-2.13 LIGHTING AND SIGN ILLUMINATION CONTROL

Enclosure for the circuit breaker for lighting and sign illumination control must:

- 1. Be NEMA 3R
- 2. Be galvanized, cadmium plated, or powder-coated
- 3. Include dead front panel and a hasp with a 7/16 inch diameter hole for padlock

86-2.14 TESTING

86-2.14A Materials Testing

Deliver material and equipment to be tested to either the Transportation Laboratory or a testing location ordered by the Engineer.

Allow 30 days for acceptance testing from the time material or equipment is delivered to test site. You must pay for all shipping, handling, and related transportation costs associated with testing. If equipment is rejected, you must allow 30 days for retesting. Retesting period starts when corrected equipment is delivered to test site. You must pay for all retesting costs. Delays resulting from submittal of non-compliant materials do not relieve you from executing the contract within the allotted time.

If equipment submitted for testing does not comply with specifications, remove the equipment within 5 business days after notification that the equipment is rejected. If equipment is not removed within that period, it may be shipped to you at your expense.

When testing is complete, you will be notified. You must pick up the equipment at the test site and deliver it to the job site.

Testing and quality control procedures for all other traffic signal controller assemblies must comply with NEMA TS Standards for Traffic Control Systems.

86-2.14B Field Testing

Before starting functional testing, perform the following tests in the presence of the Engineer:

86-2.14B(1) Continuity

Test each circuit for continuity.

86-2.14B(2) Ground

Test each circuit for grounds.

86-2.14B(3) Insulation Resistance

Perform insulation resistance test at 500 V(dc) on each circuit between the circuit and a ground. Insulation resistance must be 10 M Ω minimum on all circuits, except for inductive loop detector circuits that must have an insulation resistance value at least 100 M Ω .

86-2.14C Functional Testing

Test periods must comply with Section 86-1.07, "Scheduling of Work."

Acceptance of new or modified traffic signal will be made only after all traffic signal circuits have been thoroughly tested.

Perform functional test to show that each part of the system functions as specified.

Functional test for each new or modified system must include at least 5 business days of continuous, satisfactory operation. If unsatisfactory performance of the system occurs, the condition must be corrected and the system retested until the 5 business days of continuous, satisfactory operation is obtained.

Except for new or modified parts of existing lighting circuit and sign illumination system, the State or local agency will maintain the system during test period and pay the electrical energy cost. Except for electrical energy, you must pay the cost of necessary maintenance performed by the State or local agency on new circuits or on the portions of existing circuits modified under the contract.

Shutdown of electrical system caused by traffic from a power interruption or from unsatisfactory performance of State-furnished materials does not constitute discontinuity of the functional test.

86-2.15 GALVANIZING

Galvanize as specified in Section 75-1.05, "Galvanizing." Cabinet material may be galvanized before manufacturing as specified in ASTM A 653/653M, Coating Designation G 90.

Steel pipe standard and pipe mast arm must be hot-dip galvanized after manufacturing and must comply with Section 75-1.05, "Galvanizing." . Remove spikes from galvanized surfaces.

A minimum of 10 inches of upper end of anchor bolts, anchor bars or studs, and nuts and washers must be galvanized as specified in Section 75-1.05, "Galvanizing."

After galvanizing, bolt threads must accept galvanized standard nuts without requiring tools or causing removal of protective coatings.

Galvanizing existing materials in an electrical installation will not be required.

86-2.16 PAINTING

Paint electrical equipment and material as specified in Section 59, "Painting," and the following:

- 1. Use paint material specified in Section 91, "Paint."
- 2. Factory or shop cleaning methods for metals are acceptable if equal to the methods specified.
- 3. Instead of temperature and seasonal restrictions for painting as specified in Section 59, "Painting," paint may be applied to equipment and materials for electrical installations if ordered by the Engineer.
- 4. Ungalvanized ferrous surface to be painted must be cleaned before applying prime coat. Blast cleaning is not required.
- 5. If an approved prime coat is applied by manufacturer, and in good condition, the 1st primer application is not required.
- 6. Existing equipment to be painted in the field, including State-furnished equipment, must be washed with a stiff bristle brush using a solution of water containing 2 tablespoons of heavy duty detergent powder per gallon. After rinsing, surface must be wire-brushed with a coarse, cup-shaped, power-driven brush to remove badly bonded paint, rust, scale, corrosion, grease, or dirt. Dust or residue remaining after wire brushing must be removed before priming.
- 7. Do not paint galvanized metal guard post, galvanized equipment, State-furnished controller cabinet, and wood poles for traffic signal or flashing beacon.
- 8. New galvanized metal surface to be painted in the field must be cleaned as specified for existing equipment before applying the prime coat. Do not wire brush new galvanized surface.
- 9. After erection, examine exterior surface for damaged primer, clean, and spot coat with primer.
- 10. Paint Types II and III steel service equipment enclosures with a polymeric or an enamel coating system matching Color No. 14672, light green, of Federal Standard 595B. Coating must be commercially smooth and free of flow lines, paint washout, streaks, blisters, and other defects that would impair serviceability or detract from general appearance. Coating must comply with the following:
 - 10.1. Coating hardness Finish must have pencil lead hardness of HB, minimum, using an Eagle Turquoise pencil.
 - 10.2. Salt spray resistance Undercutting coating system's film must not exceed 1/8-inch average, from lines scored diagonally and deep enough to expose the base metal, after 336 hours of exposure in a salt spray cabinet complying with ASTM B 117.
 - 10.3. Adherence Must not have coating loss when tested as specified in California Test 645. Perform testing by applying coating to 4" x 8" x 0.024" test specimens of the same material as the cabinet, using the same application method.

- 11. Finish interior of metal signal visor, louver, and front face of back plates with 2 applications of lusterless black exterior grade latex paint formulated for application to properly prepared metal surface. Good condition factory finish will be acceptable.
- 12. Finish metal signal section, signal head mounting, brackets and fittings, outside of visor, pedestrian push button housing, pedestrian signal section and visor, and back face of back plate with 2 applications of lusterless black or dark olive green exterior grade latex paint formulated for application to properly prepared metal surface. Match dark olive green color to Color Chip No. 68 filed at the Transportation Laboratory.
- 13. Prepare and finish conduit and conduit fitting above ground the same as adjacent standard or post.
- 14. Relocated, reset or modified equipment previously finished as specified in this section, except for previously-finished galvanized standard with traffic signal yellow enamel, must be given a spot finishing application on newly primed areas and 1 finishing application over the entire surface. If signal face or mounting brackets are required to be painted under this section, all signal faces and mounting brackets on the same mounting must be repainted.
- 15. Small rusted or repaired areas of relocated or reset galvanized equipment must be cleaned and painted as specified in Section 75-1.05, "Galvanizing," for repairing damaged galvanized surfaces.
- 16. Stencil equipment number neatly on the standard or adjacent structure. Obtain number from the Engineer.
- 17. Perform painting neatly. The Engineer reserves the right to require use of brushes if the work performed by paint spraying machine is unsatisfactory.

86-3 CONTROLLER ASSEMBLIES

86-3.01 CONTROLLER ASSEMBLIES

A controller assembly houses a complete mechanism for controlling the operation of traffic signals or other systems.

Model 170 and Model 2070, specified as a Model 170/2070 controller assembly, includes a Model 170, 170E or 2070 controller unit, a wired cabinet, and all auxiliary equipment required to control the system.

86-3.02 (BLANK)

86-3.03 (BLANK)

86-3.04 CONTROLLER CABINETS

Controller cabinets for controller assemblies other than Model 170/2070 must comply with the following:

86-3.04A Cabinet Construction

Cabinet must be rainproof and the top crowned 1/2 inch or slanted toward the back to prevent standing water. Cabinet and door must be manufactured from one of the following:

- 1. 0.073-inch minimum thickness cold-rolled steel with continuously-welded exterior seams
- 2. 0.073-inch minimum thickness stainless steel with overlapping exterior seams complying with Type 4 enclosures of the NEMA Enclosure Standards
- 3. 0.125-inch minimum thickness aluminum with continuously-welded exterior seams

Exterior welds must be ground smooth and edges filed to a radius of at least 0.03 inch. Cabinet manufactured from cold-rolled steel must comply with Section 86-2.16, "Painting," and the following:

- 1. Cabinet manufactured from cold-rolled steel must be finished with a polymeric or an enamel coating system conforming to Color No. 14672 of Federal Standard 595B.
- 2. Cabinet must not have coating loss when 2 test specimens, 4" x 8", of the same material and coating as the cabinet are tested. Two 9-inch-diagonal scratches exposing bare metal will be made on a specimen. Soak specimen in demineralized water for 192 hours. Tightly affix a 1-inch wide strip of masking tape to the surface and remove with one quick motion. Specimen showing evidence of blistering, softening, or peeling of paint or coating from the base metal will be rejected. Testing must comply with California Test 645, except passing 180 Degree Bend Test is not required.
- 3. Metal must be prepared by the 3-step, iron phosphate conversion coating bonderizing technique.
- 4. Inside walls, doors, and ceiling of the housing must be the same as the outside finish.

Cabinet manufactured from stainless steel must comply with the following:

- 1. Use annealed or quarter-hard stainless steel that complies with ASTM A 666 for Type 304, Grades A or B.
- 2. Use gas tungsten arc welding (GTAW) process with bare stainless steel welding electrodes. Electrodes must comply with AWS A5.9 for ER308 chromium-nickel bare arc welding electrodes.
- Procedures, welder, and welding operator must comply with requirements and practices recommended in AWS C5.5.
- 4. Ground or brush exposed, exterior surfaces of stainless steel cabinet to a 25 to 50-microinch finish using iron-free abrasives or stainless steel brushes.
- 5. After grinding or brushing, cabinet must not show rust discoloration when:
 - 5.1. Exposed for 48 hours in a salt spray cabinet as specified in ASTM B 117
 - 5.2. Exposed 24 hours in a tap water spray cabinet with the water temperature between 38 °C and 45 °C
- 6. After the test, cabinet showing rust discoloration anywhere on its surface will be rejected. Rejected cabinets may be cleaned, passivated, and resubmitted for testing.

Cabinet manufactured from aluminum sheet must comply with ASTM B 209 or B 209M for 5052-H32 aluminum sheet, and the following:

- 1. Use gas metal arc welding (GMAW) process with bare aluminum welding electrodes. Electrodes must comply with AWS A5.10 for ER5356 aluminum alloy bare welding electrodes.
- 2. Procedures, welder, and welding operator for welding must comply with requirements in AWS B3.0, "Welding Procedure and Performance Qualification," and to practices recommended in AWS C5.6.
- 3. Surface finish of each aluminum cabinet must comply with MIL-A-8625 for a Type II, Class I coating, except anodic coating must have a minimum thickness of 0.0007 inch and a minimum coating weight of 0.001 ounce per square inch. The anodic coating must be sealed in a 5 percent aqueous solution of nickel acetate, pH 5.0 to 6.5, for 15 minutes at 97 °C. Before applying anodic coating, clean and etch cabinets using the steps below:
 - 3.1. Clean by immersing into inhibited alkaline cleaner, Oakite 61A, Diversey 909, or equal, 6 to 8 ounces per gallon at 71 °C for 5 minutes.
 - 3.2. Rinse in cold water.
 - 3.3. Etch in solution of 1-1/2 ounce of sodium fluoride and 4 to 6 ounces of sodium hydroxide per gallon of distilled water at 60 °C to 65 °C for 5 minutes.
 - 3.4. Rinse in cold water.
 - 3.5. Immerse in 50 percent by volume nitric acid solution at room temperature for 2 minutes.
 - 3.6. Rinse in cold water.

Cabinet must have:

- 1. Single front door with:
 - 1.1. 44-inch maximum door width.
 - 1.2. Lock, when closed and latched, that is locked.
 - 1.3. Police panel mounted on door, equipped with a keyed lock and 2 police keys. Each police key must have a shaft at least 1-3/4 inch in length.
- 2. Dust-tight gasketing on all door openings, permanently bonded to the metal. Mating surface of the gasketing must be covered with silicone lubricant to prevent sticking.
- 3. Handle that:
 - 3.1. Allows padlocking in closed position
 - 3.2. Has a minimum length of 7 inches
 - 3.3. Has a 5/8-inch, minimum, steel shank
 - 3.4. Is manufactured of cast aluminum, or zinc-plated or cadmium-plated steel

4. Cabinet door frame with:

4.1. Latching mechanism that:

- 4.1.1. Holds tension on and forms a firm seal between door gasketing and frame.
- 4.1.2. Is a 3-point cabinet latch with nylon rollers that have a minimum diameter of 3/4 inch and equipped with ball bearings.
- 4.1.3. Has a center catch and a pushrod made of zinc-plated or cadmium-plated steel. Pushrod must be at least 1/4" x 3/4" and turned edgewise at outer supports. Cadmium plating must comply with MIL-QQ-416. Zinc plating must comply with MIL-QQ-325.

4.2. Hinging that:

- 4.2.1. Has 3-bolt butt hinges, each having a stainless steel fixed pin. Hinges must be stainless steel or may be aluminum for aluminum cabinet.
- 4.2.2. Is bolted or welded to the cabinet. Hinge pins and bolts must not be accessible when door is closed.
- 4.2.3. Has a catch to hold the door open at 90 degrees and 180 degrees, ± 10 degrees, if a door is larger than 22 inches in width or 6 square feet in area. Catch must be at least 3/8-inch diameter, stainless steel plated rod capable of holding door open at 90 degrees in a 60 mph wind at an angle perpendicular to the plane of the door.

5. Lock that:

- 5.1. Is solid brass, 6-pin tumbler, rim type
- 5.2. Has rectangular, spring-loaded bolts
- 5.3. Is left hand and rigidly mounted with stainless steel machine screws approximately 2 inches apart
- 5.4. Extends 1/8 to 3/8 inch beyond the outside surface of door
- 6. 2 keys that are removable in the locked and unlocked positions.

Submit alternative design details for review and approval before manufacturing cabinet. Use metal shelves or brackets that will support controller unit and auxiliary equipment. Machine screws and bolts must not protrude outside the cabinet wall.

86-3.04B Cabinet Ventilation

Each controller cabinet must have:

- 1. 8 screened, 1/2-inch diameter or larger, raintight vent holes, in lower side or bottom of cabinet. You may use louvered vents with a permanent metal mesh or 4-ply woven polypropylene air filter held firmly in place, instead.
- 2. Electric fan with ball or roller bearings and capacity of at least 100 cubic feet per minute. Fan must be thermostatically controlled and manually adjustable to turn on between 32 °C and 65 °C with a differential of not more than 6 °C between automatic turn on and turn off. Fan circuit must be fused at 125 percent of ampacity of installed fan motor.

Fan and cabinet vent holes must be positioned to direct bulk of airflow over controller unit or through ventilating holes of controller unit.

86-3.04C Cabinet Wiring

Conductors used in controller cabinet wiring must:

- 1. Be neatly arranged and laced, or enclosed in plastic tubing or raceway.
- End with properly sized captive or spring-spade terminal or be soldered to a through-panel solder lug on the back side of the terminal block. Apply crimp-style connector with proper tool to prevent opening of handle until crimp is completed.

Controller cabinet must have an equipment grounding conductor bus that is grounded to the cabinet and connected to metal conduit system or other approved ground with a No. 8, or larger, grounding conductor.

With all cabinet equipment in place and connected, resistance between grounded conductor terminal bus and equipment grounding conductor bus must be 50 M Ω , minimum, when measured with an applied voltage of 150 V(dc).

If direct current is to be grounded, connect to equipment ground only.

Use two or more terminal blocks for field connection. Install field terminal within 22 inches from front of cabinet and orient for screwdriver operation. Terminal must be a minimum of 5 inches above foundation.

No more than 3 conductors per terminal are allowed. Two flat metal jumpers, straight or U shaped, may be placed under terminal screw. At least 2 full threads of terminal screws must be fully engaged when screw is tightened. Live parts must not extend beyond the barrier.

86-3.05 CABINET ACCESSORIES

86-3.05A Labels

Include permanently printed, engraved, or silk-screened label for equipment and removable items of equipment. Labeling must match cabinet wiring diagram. Label for shelf-mounted equipment must be on shelf face below item. Label for wall-mounted equipment must be below item.

86-3.05B Convenience Receptacle

Mount convenience receptacle in a readily accessible location inside the cabinet.

Convenience receptacle must be a duplex, 3-prong, NEMA 5-15R grounding type outlet that complies with UL Standard 943.

86-3.05C Surge Arrestor

Surge arrestor must reduce effects of power line voltage transients and have ratings as follows:

Surge Arrestor Requirements

Recurrent peak voltage	184 V(ac)
Energy rating, maximum	20 J
Power dissipation, average	0.85 W
Peak current for pulses less than 7 μs	1,250 A

Standby current must be 1 mA or less for 120 V(ac), 60 Hz sinusoidal input.

86-3.05D Terminal Blocks

Terminal block must be rated 600 V(ac), minimum, and have nickel-, silver-, or cadmium-plated brass binder head screw terminal.

Heavy duty terminal block must be rated at 20 A and have 12 position with No. 10 x 5/16-inch nickel-plated brass binder head screws and nickel-plated brass inserts. Each position must have 2 screw-type terminals. Terminal block must be barrier type with shorting bars in each of the 12 positions, and must have integral type marking strips.

Light duty terminal block must be rated at 5 A and have 12 positions with No. 6 x 1/8 inch binder head screws. Each position must have 1 screw-type terminal.

86-3.06 COMPONENTS

86-3.06A Toggle Switches

Toggle switch must:

- 1. Have poles as required
- 2. Be rated at 200 percent of circuit current for circuits of 10 A or less and 125 percent of circuit current for circuits over 10 A

86-3.06B Cartridge Fuses

Install cartridge fuse in panel-mounted fuseholder. Fuse type and rating must be as recommended by the fuse manufacturer for protecting the load.

86-3.06C Circuit Breakers

Circuit breaker must comply with Section 86-2.11, "Service," except breaker must have a minimum interrupting capacity of 5,000 A, rms.

86-3.06D Connectors

Use connector designed to interconnect various parts of circuit together and constructed for the application involved. Design connector for positive connection of circuit and easy insertion and removal of mating contacts. Connector must be permanently keyed to prevent improper connection of circuit.

Connector, or device plugging into connector, must have positive connection to prevent a circuit from breaking due to vibration, a pull on connecting cable, or similar disruptive force.

86-4 TRAFFIC SIGNAL FACES AND FITTINGS

86-4.01 VEHICLE SIGNAL FACES

Each vehicle signal face must:

- 1. Be adjustable and allow for 360-degree rotation about vertical axis
- 2. Comply with ITE publication ST-017B, "Vehicle Traffic Control Signal Heads"
- 3. Comply with California Test 604, except for arrow and "X" faces
- 4. Have 3 sections arranged vertically: red at top, yellow at center, and green at bottom
- 5. Be of the same manufacturer and material, if more than 1 is installed at an intersection, except for programmed visibility type
- 6. Be sealed with neoprene gasket at top opening
- 7. Be LED modules

86-4.01A Signal Sections

Each signal section must comply with the following:

- 1. Maximum height must be 10-1/4 inches for an 8-inch section and 14-3/4 inches for a 12-inch section.
- 2. Housing must:
 - 2.1. Be either die-cast or permanent mold-cast aluminum, or if specified, be structural plastic.
 - 2.2. Comply with ITE publication ST-017B if die-cast or permanent mold-cast aluminum is used.
 - 2.3. Have a 1-piece, hinged, square-shaped door designed to allow access for relamping without the use of tools. Door must be secured to hold the door closed during loading tests. Module or lens must be watertight and mounted in the door.
- 3. Hinge pins, door latching devices, and other exposed hardware must be Type 304 or 305 stainless steel. Interior screws and fittings must be stainless steel, or steel with a corrosion resistant plating or coating.
- 4. Opening must be placed on top and bottom to receive 1-1/2-inch pipe. The 8-inch and 12-inch sections of an individual manufacturer must be capable of joining to form a signal face in any combination. This interchangeability is not required between metal and plastic sections.
- 5. Gaskets must be made of a material that is not affected if installed in a section with metal or plastic housing that is continuously operated for 336 hours.

Structural failure is described as follows:

Signal Section Structural Failure

Signal	Requirements	Description of Structural Failure
Section Type		
Metal	California Test 666	Fracture within housing assembly or deflection of more than half
		the lens diameter of signal section during wind load test
Plastic	California Test 605	Fracture within housing assembly or deflection of more than 10
		degrees in either the vertical or horizontal plane after wind load has
		been removed from front of signal face, or deflection of more than
		6 degrees in either the vertical or horizontal plane after wind load
		has been removed from back of signal face

Contract No. 12-0E3104 239 of 297

86-4.01A(1) Metal Signal Sections

Each metal signal section must have a metal visor. Metal signal faces requiring backplates must have metal backplates.

86-4.01A(2) Plastic Signal Sections

Housing must be molded in 1 piece, or fabricated from 2 or more pieces and joined into a single piece. Plastic must have ultraviolet stability, be unaffected by lamp heat, and be self-extinguishing. Housing and door must be colored throughout and be black, matching Color No. 17038, 27038, or 37038 of Federal Standard 595B.

Each face section must be joined to adjacent section by one of the following:

- 1. Minimum of 3 machine screws for 8-inch sections and 4 machine screws for 12-inch sections, installed through holes near front and back of housing. Each screw must be a No. 10 and have a nut, flat washer, and lock washer.
- 2. Two machine screws, each with a nut, flat washer, and lock washer, installed through holes near the front of the housing, and a fastening through the 1-1/2-inch pipe opening. Fastening must have 2 large flat washers to distribute the load around the pipe opening and 3 carriage bolts, each with a nut and lock washer. Minimum screw size must be No. 10. Minimum carriage bolt size must be 1/4 inch.

Supporting section of each signal face supported only at top or bottom must have reinforcement.

Reinforcement plate must be either sheet aluminum, galvanized steel, or cast aluminum. Each plate must be a minimum of 0.11-inch thick and have a hole concentric with 1-1/2-inch pipe-mounting hole in the housing. Place reinforcement plate as follows:

Reinforcement Plate Placement

Type of Reinforcement Plate	Placement
Sheet aluminum	Inside and outside of housing
Galvanized steel	Inside of housing
Cast aluminum	Outside of housing

Reinforcement plates placed outside of the housing must be finished to match signal housing color and be designed to allow proper serrated coupling between signal face and mounting hardware. Minimum of 3 No. 10 machine screws must be installed through holes in each plate and matching holes in the housing. Each screw must have a round or binder head, a nut, and lock washer.

If signal face is supported by a Type MAS side attachment slip-fitter inserted between 2 sections, place spacers between the 2 sections. Vertical dimension of spacers must allow proper seating of serrations between the slip-fitter and the 2 sections. In addition to the fastening through the large openings in housing, the 2 sections must join with at least 2 machine screws through holes near the front of housing and the spacers, and through matching holes in a reinforcing plate installed in housing. Machine screws must be No. 10 minimum size. Spacers must be made of same material as signal housing.

If reinforcing webs are used to connect back of housing to top, bottom, and sides, reinforcing plates are not required.

Holes for machine screws must be either cast or drilled during signal section manufacturing. Surround each hole with a 1/8-inch minimum width boss to allow contact between signal sections about axis of hole.

Each plastic signal section must have a plastic or metal visor. Plastic signal faces requiring backplates must have plastic backplates.

Serrated nylon washer must be inserted between each plastic signal section and metal mounting assembly. Each washer must be between 3/16- and 1/4-inch thick. Serrations must match those on signal section and mounting assembly.

86-4.01B Electrical Components

Conductors must be connected to a terminal block mounted inside, at the back of housing. Terminal block must have enough screw type terminals or NEMA type tab connectors to end all field and module or lamp conductors independently. Permanently identify terminal with field conductors attached or color code conductors to facilitate field wiring.

86-4.01C Visors

Include removable visor with each signal section. Comply with ITE publication ST-017B. Visors are classified by lens enclosure as full circle, tunnel or cap. Bottom opens for tunnel type and both, bottom and lower sides open for cap type. Visors must be tunnel type.

Visor must have a downward tilt between 3 and 7 degrees with a length of:

- 1. 9-1/2-inch minimum for nominal 12-inch round lenses
- 2. 7 inch for nominal 8-inch round lenses

Metal visor must be formed from 0.050-inch, minimum thickness, aluminum alloy sheet.

Plastic visor must be either formed from sheet plastic or assembled from one or more injection, rotational, or blow-molded plastic sections. Material must be of a black homogeneous color with lusterless finish. Sections must be joined using thermal, chemical, or ultrasonic bonding, or with aluminum rivets and washers permanently colored to match visor.

Secure each visor to its door and prevent removal or permanent deformation when wind load specified in California Test 605 for plastic visors or 666 for metal visors is applied to its side for 24 hours.

If directional louvers are used, fit louvers snuggly into full-circular signal visors. Outside cylinder must be constructed of 0.030-inch nominal thickness, or thicker, sheet steel and vanes must be constructed of 0.016-inch nominal thickness, or thicker, sheet steel, or the cylinder and vanes must be constructed of 5052-H32 aluminum alloy of equal thickness.

86-4.02 (BLANK)

86-4.03 (BLANK)

86-4.04 BACKPLATES

Background light must not be visible between backplate and signal face or between sections.

Plastic backplates must be either formed from sheet plastic or assembled from extruded, molded, or cast sections. Sections must be factory joined using one of the following:

- 1. Appropriate solvent cement
- 2. Aluminum rivets and washers painted or permanently colored to match backplate
- 3. No. 10 machine screws with washers, lock washers, and nuts, painted to match backplate

Backplate material must be of black homogeneous color with a lusterless finish. Secure each plastic backplate to the plastic signal face in a manner that prevents its removal or permanent deformation when the wind-load test is applied to either the front or back of signal face. Permanent deformation of any portion of backplate must not exceed 5 degrees forward or backward after wind loading is applied for 24 hours.

If plastic backplate requires field assembly, join with at least 4 No. 10 machine screws at each field-assembled joint. Each machine screw must have an integral or captive flat washer, a hexagonal head slotted for a standard screwdriver, and either a locking nut or a nut and lockwasher. Machine screws, nuts, and washers must be stainless steel or steel with a zinc or black-oxide finish.

If a metal backplate has 2 or more sections, fasten sections with rivets or aluminum bolts peened after assembly to avoid loosening.

Instead of the screws shown on the plans, you may use self-threading No. 10 steel screws to fasten plastic backplates to plastic signal face. Each screw must have an integral or captive flat washer, a hexagonal head slotted for a standard screwdriver, and is stainless steel or steel with a zinc or black-oxide finish.

86-4.05 PROGRAMMED VISIBILITY VEHICLE SIGNAL FACES

Programmed visibility signal face and its installation must comply with Section 86-4.01, "Vehicle Signal Faces," Section 86-4.04, "Backplates," and Section 86-4.08, "Signal Mounting Assemblies."

Each programmed visibility signal section must:

- 1. Have a nominal 12-inch diameter circular or arrow indication
- 2. Comply with ITE publication ST-017B for color and arrow configuration
- 3. Have a cap visor

4. Have an adjustable connection that provides incremental tilting from 0 to 10 degrees above or below horizontal while maintaining a common vertical axis through couplers and mountings

Terminal connection must allow external adjustment about the mounting axis in 5-degree increments.

Signal must be mountable with ordinary tools and capable of servicing without tools. Preset adjustment at 4 degrees below horizontal.

Visibility of each programmed visibility signal face must be capable of adjustment or programming, within the face. When programmed, each signal face's indication must be visible only in those areas or lanes to be controlled, except that during dusk and darkness a faint glow to each side is allowed.

You must program the head as recommended by the manufacturer.

86-4.06 PEDESTRIAN SIGNAL FACES

Message symbols for pedestrian signal faces must be white "WALKING PERSON" and Portland orange "UPRAISED HAND." Comply with ITE Standards: "Pedestrian Traffic Control Signal Indications" and California MUTCD. Each symbol's height must be at least 10 inches and width must be at least 6-1/2 inches.

Luminance of "UPRAISED HAND" symbol must be 1,100 foot-lamberts, minimum, and luminance of "WALKING PERSON" symbol must be 1,550 foot-lamberts, minimum, when tested as specified in California Test 606.

Uniformity ratio of an illuminated symbol must not exceed 4 to 1 between the highest luminance area and the lowest luminance area.

Luminance difference between a nonilluminated symbol and the background around the symbol must be less than 30 percent when viewed with the visor and front screen in place and at a low sun angle.

Each housing, including front screen, must have maximum overall dimensions of 18-1/2-inch width, 19-inch height, and 11-1/2-inch depth.

All new pedestrian signal faces installed at an intersection must be the same make and type.

86-4.06A Type A

Each Type A pedestrian signal face must include a housing, 1 LED pedestrian signal combo module and a front screen.

86-4.06B Front Screen

Front screen installation for each Type A signal must comply with one of the following:

- 1. Install, tilting downward, at an angle of 15±2 degrees out from the top, an aluminum honeycomb screen with 0.2-inch cells, 3/8-inch thick, or a plastic screen of 3/8-inch squares, 1/2-inch thick with wall thickness of 1/16-inch. Completely cover message plate. Include a clear front cover of 1/8-inch minimum thickness acrylic plastic sheet or 1/16-inch minimum thickness polycarbonate plastic. Hold screen and cover firmly in place with stainless steel or aluminum clips or stainless steel metal screws.
- 2. Install a 1-1/2-inch deep eggcrate or Z crate type screen of 1/32-inch nominal thickness polycarbonate. Mount screening in a frame constructed of 0.040-inch minimum thickness aluminum alloy or polycarbonate. Install screen parallel to face of message plate and hold in place with stainless steel screws.

The Department will test screens in a horizontal position with its edges supported. When a 3-inch diameter, 4-pound steel ball is dropped on the screen from a height of 4 feet above, the front screen must not fracture, separate at the welds, or compress more than 1/8-inch. When pedestrian housing is used to support front screen during test, remove message plate from pedestrian signal housing, so there is no back support for the screen.

Screen and frame must be one of the following:

- 1. Manufactured from aluminum anodized flat black
- 2. Finished with lusterless black exterior grade latex paint formulated for application to properly prepared metal surfaces
- 3. Manufactured from flat black plastic

86-4.06C Housing

Pedestrian signal housing must comply with Section 86-4.01A, "Signal Sections."

86-4.06D Finish

Paint exterior of each housing as specified in Section 86-2.16, "Painting."

86-4.06E Control

Pedestrian signals must be controllable by solid-state switching devices specified for traffic signal controller assemblies.

86-4.06F Terminal Blocks

Include light duty terminal block, as specified in Section 86-4.01B, "Electrical Components," with each pedestrian signal face.

86-4.07 (BLANK)

86-4.08 SIGNAL MOUNTING ASSEMBLIES

Signal mounting assembly must include:

- 1. 1-1/2-inch standard steel pipe or galvanized conduit
- 2. Pipe fitting made of ductile iron, galvanized steel, aluminum alloy Type AC-84B No. 380, or bronze
- 3. Mast arm and post top slip-fitters, and terminal compartments made of cast bronze or hot-dip galvanized ductile iron

After installation, clean and paint exposed threads of galvanized conduit brackets and bracket areas damaged by wrench or vise jaws. Use wire brush to clean and apply 2 coats of approved unthinned zinc-rich primer, organic vehicle type, as specified in Section 91, "Paint." Do not use aerosol can.

Fit each terminal compartment with a terminal block having a minimum of 12 positions, each with 2 screw-type terminals. Each terminal must accommodate at least five No. 14 conductors. Include a cover on compartment for ready access to terminal block. Terminal compartment used to bracket mount signals must be bolted securely to pole or standard.

Horizontal dimension of mounting assembly members between vertical centerline of terminal compartment or slip-fitter, and the vertical centerline of each signal face must not exceed 11 inches, except where required for proper signal face alignment or to allow programming of programmed visibility signal faces.

Mounting assembly members must be plumb or level, symmetrically arranged, and securely assembled.

Mounting assembly must be watertight, and free of sharp edges or protrusions that might damage conductor insulation. Include positive locking serrated fittings that, if mated with similar fittings on signal faces, will prevent faces from rotating.

Orient each mounting assembly to allow maximum horizontal clearance to adjacent roadway.

Use slip-fitter for post-top mounting of signals. Fit slip-fitter over a 4-1/2-inch outside diameter pipe or tapered standard end. Include cadmium-plated steel set screws. Include an integral terminal compartment for each slip-fitter used to post-top mount signals with brackets.

Do not install signal faces at an intersection until all other signal equipment, including complete controller assembly, is in place and ready for operation. You may mount signal faces if covered or not directed toward traffic.

86-4.09 FLASHING BEACONS

Flashing beacon must include:

- 1. Single section traffic signal face with yellow or red LED module indications
- 2. Backplate
- 3. Tunnel visor
- 4. Flashing beacon control assembly

Beacon flasher unit must be independent of intersection flasher unit.

86-4.09A Flashing Beacon Control Assembly 86-4.09A(1) Enclosure

Enclosure must be:

- 1. NEMA 3R with a dead front panel and a hasp with a 7/16-inch hole for a padlock
- 2. Powder coated, hot-dip galvanized, or factory-applied rust resistant prime coat and finish coat

86-4.09A(2) Circuit Breakers and Switches

Circuit breakers must comply with Section 86-2.11, "Service."

Switch for manually operating sign lighting circuit must be a single-hole-mounting toggle type with a single pole and throw and rated at 12 A, 120 V(ac). Furnish switch with an indicating nameplate reading "Auto-Test."

86-4.09A(3) Flasher

Comply with Section 8, "Solid-State Flashers," of NEMA Standards publication No. TS 1.

Flasher must be a solid-state device with no contact points or moving parts.

Include 2 output circuits to allow alternate flashing of signal faces. Flasher must be able to carry a minimum of 10 A per circuit at 120 V(ac).

86-4.09A(4) Wiring

Conductors and wiring in the enclosure must comply with Section 86-2.09B(1), "Cabinet and Enclosure Installation."

86-4.09A(5) Terminal Blocks

Terminal blocks must be:

- 1. Rated 25 A, 600 V(ac)
- 2. Molded phenolic or nylon material
- 3. Barrier type with plated brass screw terminals and integral marking strips

86-5 DETECTORS

86-5.01 VEHICLE DETECTORS

Sensor unit and isolator must comply with TEES.

86-5.01A Inductive Loop Detectors

86-5.01A(1) General

Inductive loop detector includes a completely installed loop or group of loops, in the roadway, lead-in cable, and a sensor unit, with power supply installed in a controller cabinet.

86-5.01A(2) (Blank)

86-5.01A(3) Construction Materials

Conductor for each inductive loop detector must be continuous, unspliced, and one of the following:

Conductor Options for Inductive Loop Detector

Option	Specifications	
Type 1 loop wire	Type RHW-USE neoprene-jacketed or Type USE cross-linked polyethylene insulated, No.	
	12, stranded copper wire with a 40 mils minimum thickness at any point.	
Type 2 loop wire	Type THWN or Type XHHW, No. 14, stranded copper wire in a plastic tubing. Plastic	
	tubing must be polyethylene or vinyl, rated for use at 105 °C, and resistant to oil and	
	gasoline. Outside diameter of tubing must be 0.27 inch maximum with a wall thickness of	
	0.028 inch minimum.	

Conductor for loop detector lead-in cable must be two No. 16, 19 x 29, stranded, tinned copper wires, comply with the calculated cross sectional area of ASTM B 286, Table 1, and be one of the following:

Conductor Options for Loop Detector Lead-In Cable

Option	Specifications	
Type B lead-in cable	Insulated with 20 mils of high-density polyethylene. Conductors must be twisted	
	together with at least 2 turns per foot and the twisted pair must be protected with a	
	copper or aluminum polyester shield. A No. 20, minimum, copper drain wire must	
	be connected to equipment ground within cabinet. Cable must have a high-density	
	polyethylene or high-density polypropylene outer jacket with a nominal thickness	
	of 32 mils. Include an amorphous interior moisture penetration barrier of	
	nonhydroscopic polyethylene or polypropylene fillers.	
Type C lead-in cable	Comply with International Municipal Signal Association (IMSA) Specification No.	
	50-2. A No. 20, minimum, copper drain wire must be connected to equipment	
	ground within cabinet.	

86-5.01A(4) Installation Details

Install loop conductors without splices and end in nearest pull box. Seal open end of cable jacket or tubing similar to splicing requirements to prevent water from entering. Do not make final splices between loops and leadin cable until loop operations under actual traffic conditions is approved.

Splice all loop conductors for each direction of travel for same phase of a traffic signal system, in same pull box, to a detector lead-in cable that runs from pull box adjacent to loop detector to a sensor unit mounted in controller cabinet.

End all loop conductors in a pull box or terminal strip in the cabinet.

Identify and band conductors for inductive loop installations. Band, in pairs, by lane, in the pull box adjacent to the loops and near the end of conductors in the cabinet. Bands must comply with Section 86-2.09, "Wiring."

If HMA surfacing is to be placed, install loop conductors before placing uppermost layer of HMA. Install conductors in compacted layer of HMA immediately below the uppermost layer. Install conductors as shown on the plans, except fill slot with sealant flush to the surface.

When cutting loops:

- Residue from slot cutting activities must not be allowed to flow across shoulders or lanes occupied by public traffic and must be removed from the pavement surface before residue flows off. Dispose of residue from slot cutting activities under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way."
- 2. Surplus sealant must be removed from adjacent road surface without using solvents before setting.

Sealant for filling slots must comply with one of the following:

Elastomeric Sealant

Polyurethane material that will, within stated shelf life, cure only in the presence of moisture. Sealant must be suitable for use in both HMA and PCC.

The cured sealant must have the following performance characteristics:

Contract No. 12-0E3104 245 of 297

Performance Characteristics of Cured Sealant

Specification	ASTM	Requirement
Hardness (indentation) at 25 °C and 50% relative	D 2240	65-85
humidity. (Type A, Model 1700 only)	Rex.	03-83
Tensile Strength:	D 412	3.45 MPa, min.
Pulled at 508 mm per minute	Die C	3.43 MFa, IIIII.
Elongation:	D 412	400%, min.
Pulled at 508 mm per minute	Die C	400 %, IIIII.
Flex at -40 °C:		No cracks
0.6-mm free film bend (180°) over 13-mm mandrel		NO CIACKS
Weathering Resistance:		
Weatherometer 350 h, cured 7 days at 25 °C @ 50%	D 822	Slight chalking
relative humidity		
Salt Spray Resistance:		3.45 MPa, min. tensile 400%,
28 days at 38 °C with 5% NaCl, Die C & pulled at 508	B 117	min. elongation
mm per minute		iiiii. eioilgatioii
Dielectric Constant over a temperature range of -30 °C	D 150	Less than 25% change
to 50 °C	D 130	Less than 23% change

Asphaltic Emulsion Sealant

Comply with State Specification 8040-41A-15. Use for filling slots in HMA pavement that are a maximum of 5/8 inch in width. Do not use where the slope causes the material to run from the slot. Material must not be thinned beyond manufacturer's recommendations. Place material when air temperature is at least 7 °C.

Hot-Melt Rubberized Asphalt Sealant

Hot-melt rubberized asphalt must be:

- In solid form at room temperature and fluid at application temperature of 190 °C to 205 °C. Fumes must be non-toxic.
- 2. Suitable for use in both HMA and PCC.
- 3. Melted in a jacketed, double-boiler type melting unit. Temperature of heat transfer medium must not exceed 245 $^{\circ}$ C.
- 4. Applied with a pressure feed applicator or pour pot, when the pavement surface temperature is greater than $4 \, ^{\circ}\text{C}$.
- Packaged in containers clearly marked "Detector Loop Sealant" and specifying manufacturer's batch and lot number.

The cured sealant must have the following performance characteristics:

Performance Characteristics of Cured Sealant

1 01101111MITTO CHAILMOUTING OF CALCA STANDING			
Specification	ASTM	Requirement	
Cone Penetration, 25 °C, 150 g, 5 s	D 5329, Sec. 6	3.5 mm, max	
Flow, 60 °C	D 5329, Sec. 8	5 mm, max	
Resilience, 25 °C	D 5329, Sec. 12	25%, min	
Softening Point	D 36	82 °C, min	
Ductility, 25 °C, 50 mm/min	D 113	300 mm, min	
Flash Point, COC, °C	D 92	288 °C, min	
Viscosity, Brookfield Thermosel,	D 150	Less than 25%	
No. 27 Spindle, 20 rpm, 190 °C	D 130	change	

86-5.01B Magnetic Detectors

Cable from pull box, adjacent to magnetic detector sensing element, to the field terminals in the controller cabinet must be the type specified for inductive loop detectors.

86-5.02 PEDESTRIAN PUSH BUTTON ASSEMBLIES

Housing must be either die-cast or permanent mold-cast aluminum, or ultraviolet stabilized, self-extinguishing structural plastic, if specified. Plastic housing must be black matching Color No. 17038, 27038 or 37038 of Federal Standard 595B, and colored throughout. Assembly must be rainproof and shockproof in any weather condition.

Switch must be a single-pole, double-throw, switching unit, with screw type terminals, rated 15 A at 125 V(ac), and must have:

- 1. Plunger actuator and a U frame to allow recessed mounting in push button housing
- 2. Operating force of 3.5 pounds
- 3. 1/64-inch maximum pretravel
- 4. 7/32-inch minimum overtravel
- 5. 0.0004- to 0.002-inch differential travel
- 6. 2-inch minimum diameter actuator

Where pedestrian push button is attached to a pole, shape housing to fit the pole curvature and secure. Include saddles to make a neat fit if needed.

Where a pedestrian push button is mounted on top of a 2-1/2-inch diameter post, fit housing with a slip-fitter and use screws for securing rigidly to post.

Pedestrian push button signs must be porcelain enameled metal or structural plastic.

Install push button and sign on crosswalk side of pole.

Point arrows on push button signs in the same direction as the corresponding crosswalk.

Attach sign on Type B push button assembly.

For Type C pedestrian push button assembly, mount instruction sign on the same standard as the push button assembly, using 2 straps and saddle brackets. Straps and saddle brackets must be corrosion-resisting chromium nickel steel and comply with ASTM A 167, Type 302B. Theft-proof bolts must be stainless steel with a chromium content of at least 17 percent and a nickel content of at least 8 percent.

86-6 LIGHTING

86-6.01 HIGH PRESSURE SODIUM LUMINAIRES

High pressure sodium luminaires must be the enclosed cutoff type.

Housing must be manufactured from aluminum. Painted or powder-coated housing must withstand a 1,000-hour salt spray test as specified in ASTM B 117.

Other metal parts must be corrosion resistant.

Each housing must include a slip-fitter that can be mounted on a 2-inch pipe tenon and can be adjusted 5 degrees from the axis of the tenon. Clamping brackets of slip-fitter must not bottom out on housing bosses when adjusted within the ±5 degree range.

The slip-fitter mounting bracket must not permanently set in excess of 0.020-inch when the 3/8-inch diameter cap screw used for mounting is tightened to 10 foot-pounds.

Luminaire to be mounted horizontally on mast arm, when tested as specified in California Test 611, must be capable of withstanding cyclic loading for a minimum of 2 million cycles without failure of any luminaire parts as follows:

Cyclic Loading

Plane	Internal Ballast	Minimum Peak Acceleration Level ^a
Vertical	Removed	3.0 G peak-to-peak sinusoidal loading (same as 1.5 G peak)
Horizontal ^b	Installed	1.5 G peak-to-peak sinusoidal loading (same as 0.75 G peak)
Vertical	Installed	1.0 G peak-to-peak sinusoidal loading (same as 0.5 G peak)

^aG = Acceleration of gravity

If a photoelectric unit receptacle is included, a raintight shorting cap must be installed. If luminaire housing has a hole for the receptacle, hole must be permanently closed, covered, and sealed with weatherproof material.

Optical system must be in a sealed chamber and include:

1. Reflector shaped so that a minimum of light is reflected through the arc tube of the lamp. Reflector surface must be specular and protected by either an anodized finish or a silicate film on its specular surface.

^bPerpendicular to direction of mast arm

- Refractor or lens mounted in a door frame that is hinged to the housing and secured with a spring-loaded latch. Refractor must be made of glass or polycarbonate plastic. Lens must be made of heat- and impactresistant glass.
- 3. Lamp socket that is a porcelain enclosed mogul-multiple type. Shell must include integral lamp grips to assure electrical contact under conditions of normal vibration. Socket must be mounted in the luminaire to allow presetting a variety of specified light distribution patterns. Socket must be rated for 1,500 W and 600 V(ac), and a 4 kV pulse.
- 4. Lamp.

Sealing must be provided by a gasket between the reflector and:

- 1. Refractor or lens
- 2. Lamp socket

Chamber must allow for filtered flow of air in and out of the chamber from lamp heat. Filtering must be accomplished by either a separate filter or a filtering gasket.

If components are mounted on a down-opening door, door must be hinged and secured to luminaire housing separately from refractor or flat lens frame. Door must be easily removable and replaceable, and secured to housing to prevent accidental opening when refractor or flat lens frame is opened.

Field wires connected to luminaire must terminate on a barrier-type terminal block secured to the housing. Terminal screws must be captive and equipped with wire grips for conductors up to No. 6. Each terminal positions must be clearly identified.

Minimum light distribution for each luminaire must meet the isolux diagrams.

Maximum brightness of each cutoff luminaire, with the lamp indicated, must be as follows:

Cutoff Type

Lamp	Lamp	Maximum Brightness
ANSI Code No.	Wattage	foot-lamberts
S55	150	40
S66	200	40
S50	250	50
S67	310	60
S51	400	75

Brightness readings will be taken using a brightness meter with an acceptance angle of 1.5 degrees. When measured on the 90-degree and 270-degree lateral angle line, maximum brightness must not exceed above specified brightness when meter is located at a horizontal distance of 120 feet and a vertical distance of 7.5 feet between luminaire and meter, or at an angle of 3 degrees 35 minutes from the horizontal to the line between luminaire and meter. Measurements must be made from 90-degree line and 270-degree line, and averaged. Lamp used for each test must operate at wattage necessary to produce the following light output:

Light Output

Lamp Wattage	Lumens
150	16,000
200	22,000
250	27,000
310	37,000
400	50,000

86-6.01A High Pressure Sodium Lamp Ballasts

Each ballast must:

- 1. Operate the lamp for its rated characteristics and wattage
- 2. Continuously operate at ambient air temperatures from -20 °C to 25 °C without reduction in ballast life
- 3. Operate for at least 180 cycles of 12 hours on and 12 hours off, with the lamp circuit in an open or short-circuited condition and without measurable reduction in operating requirements
- 4. Have a design life of not less than 60,000 hours

- 5. Provide proper starting and operating waveforms, voltage, and current
- 6. Provide reliable lamp starting and operation at ambient temperature down to -20 °C for the rated life of lamp

Ballast must be tested as specified in ANSI C82.6-1980, "Methods of Measurement of High-Intensity-Discharge Lamp Ballasts."

Starting aids for ballast of a given lamp wattage must be interchangeable between ballasts of same wattage and manufacturer, without adjustment.

Each integral ballast must consist of separate components that can be easily replaced. An encapsulated starting aid will be counted as a single component. Each component must include screw terminals, NEMA tab connectors, or a single multi-circuit connector. Conductors and terminals must be identified.

Mount heat-generating component so as to use the portion of the luminaire it is mounted to as a heat sink. Place capacitor a maximum practicable distance from heat-generating components or thermally shield to limit the case temperature to $75\,^{\circ}$ C.

Transformer and inductor must be resin-impregnated for protection against moisture. Capacitors, except those in starting aids, must be metal cased and hermetically sealed.

The Department will test high-pressure sodium lamp ballast. High-pressure sodium lamp ballast must have a characteristic curve that will intersect both of the lamp-voltage limit lines between the wattage limit lines and remain between the wattage limit lines throughout the full range of lamp voltage. This requirement must be met at the rated input voltage of the ballast and at the lowest and highest rated input voltage of the ballast.

Throughout the lifetime of the lamp, ballast curve must fall within the specified limits of the lamp voltage and wattage.

Ballast for luminaires must be located in the luminaire housing.

86-6.01A(1) Regulator Type Ballasts

Regulator type ballast must comply with the following:

- 1. For nominal input voltage and lamp voltage, ballast design center must not vary more than 7.5 percent from rated lamp wattage.
- 2. Ballast must be designed for a capacitance variance of ± 6 percent that will not cause more than ± 8 percent variation in lamp wattage regulation during rated lamp life.
- 3. Lamp current crest factor must not exceed 1.8 for input voltage variation of ±10 percent at any lamp voltage during lamp life.

Regulator-type ballast must be one of the following:

Regulator-Type Ballast

Ballast Type	Power Factor	Lamp Regulation
Lag-type ^a	Not less than 90 percent	Lamp wattage regulation spread does not vary by
	throughout the life of lamp when	more than 18 percent for ±10 percent input
	ballast is operated at nominal	voltage variation from nominal through life
	line voltage with a nominally-	
	rated reference lamp	
Lead-type ^b	Not less than 90 percent	Lamp wattage regulation spread does not vary by
	throughout the life of lamp when	more than 30 percent for ±10 percent input
	ballast is operated at nominal	voltage variation from nominal through life
	line voltage with a nominally-	
	rated reference lamp	

^aPrimary and secondary windings must be electrically isolated

86-6.01A(2) Nonregulator Type Ballasts

Each nonregulator type ballast must comply with the following:

1. For nominal input voltage and lamp voltage, ballast design center must not vary more than 7.5 percent from rated lamp wattage.

Contract No. 12-0E3104 249 of 297

^bConstant wattage autoregulator (CWA)

2. Lamp current crest factor must not exceed 1.8 for input voltage variation of ±5 percent at any lamp voltage during lamp life.

Nonregulator-Type Ballast

Ballast Type	Power Factor	Lamp Regulation
Autotransformer	Not less than 90 percent	Lamp wattage regulation spread does not vary by
or High-	throughout the life of lamp when	more than 25 percent for ±5 percent input voltage
Reactance	ballast is operated at nominal	variation from nominal through life
	line voltage with a nominally-	
	rated reference lamp	

86-6.01B High Pressure Sodium Lamps

High pressure sodium lamps must comply with ANSI C 78.42, "High Pressure Sodium Lamps," when tested as specified in ANSI C 78.389, "American National Standard for Electric Lamps - High Intensity Discharge-Methods of Measuring Characteristics." High pressure sodium lamps must have a minimum average rated life of 24,000 hours.

86-6.02 LOW PRESSURE SODIUM LUMINAIRES

Each low pressure sodium luminaire must be completely assembled with a lamp and ballast, and must:

- 1. Be the enclosed type, either semi-cutoff or cutoff type.
- 2. Include housing, reflector, refractor or lens, lamp socket, integral ballast, removable ballast tray, lamp support, terminal strip, capacitor, and slip fitter. Reflector may be an integral part of the housing.

Luminaire housing must be minimum 1/16-inch thick, corrosion resistant die cast aluminum sheet and plate with concealed continuous welds, or minimum nominal wall thickness of 3/32-thick acrylonitrile-butadiene-styrene sheet material, on a cast aluminum frame that provides mounting for all electrical components and slip fitter. Housing must be divided into optical and power compartments that are individually accessible for service and maintenance. Position and clamp luminaire to pipe tenon by tightening mounting bolts.

Painted exterior surface of luminaire must be finished with a fused coating of electrostatically applied polyester powder paint or other ultraviolet inhibiting film. Color must be aluminum gray.

High temperature neoprene, or equal, sealing ring must be installed in pipe tenon opening to prevent entry of water and insects into power and optical compartments.

Access to power unit assembly must be through a weathertight hinged cover, secured with spring type latches or captive screws, to luminaire housing.

Hardware must be stainless steel or cadmium plated. Use machine screws or bolts to secure removable components. Do not use sheet metal screws.

Semi-cutoff luminaires and molded refractor style cutoff luminaires must include a refractor. Other cutoff luminaires must include a flat lens.

Refractor must be 1-piece injection molded polycarbonate of 3/32 inch minimum thickness, or 1-piece injection molded acrylic of 1/8 inch minimum thickness. Flat lens must be 1-piece polycarbonate of 3/32 inch minimum thickness, mounted to metal frame. Refractor assembly and flat lens assembly must be constructed to rigidly maintain its shape, and hinged and secured with spring type latches to luminaire housing. Alternate methods of manufacturing refractor may be approved provided minimum specified thicknesses are maintained.

Lamp socket must be high temperature, flame retardant thermoset material with self-wiping contacts or equivalent. Socket must be rated for 660 W and 1,000 V(ac). Position of socket and support must maintain the lamp in correct relationship with reflector and refractor for designed distribution pattern.

Isofootcandle distribution must be ANSI Type III, short or Type IV, medium distribution, for cutoff or semi-cutoff luminaires.

With a 40-foot mounting height, each type of luminaire must maintain a minimum of 0.2 footcandle at least 60 feet each side, along the longitudinal roadway line below the luminaire, and a minimum of 0.35 footcandle at a transverse roadway distance from luminaire location equal to 1.5 times the luminaire mounting height.

Certified luminaire performance data must be provided. This data must include complete photometric test data in isofootcandle charts at a scale of 1 inch equals 20 feet, for the luminaire and lamp sizes shown on the plans.

Alternate data may be in horizontal footcandle values recorded on a 15' x 15' area extending 90 feet longitudinally each side of the light source, and 15 feet behind and 90 feet in front of the light source, for luminaire

and lamp sizes, and mounting height shown on the plans. Horizontal footcandle levels in data submitted must equal or exceed levels specified. Failure to meet referenced values will be justification for rejection of the luminaires.

Photometric testing must be performed and certified by an independent and recognized testing laboratory. Low pressure sodium lamps must:

- 1. Be 180 W, single-ended, bayonet base, tubular gas discharge lamp
- 2. Maintain a minimum of 93 percent of initial lumens during rated life and must comply with the following minimum performance requirements:

Performance Requirements

Lamp Designation	ANSI L74-RF-180
Initial Lumens	33,000 lumens
Rated Ave. Life (@ 10 hrs/Start)	18,000 hours
Operating Position	Horizontal ±20 degrees

- 3. Reach 80 percent of light output within 10 minutes and must restrike within 1 minute after an outage due to power interruption or voltage drop at the lamp socket
- 4. Identify the month and year of installation.
- 5. Have an autotransformer or high-reactance type ballast. The ballast must comply with the following:
 - 5.1. Lamp current crest factor must not exceed 1.8 at nominal line voltage
 - 5.2. Ballast loss must not exceed 24 percent for 180 W ballast at nominal line voltage

Autotransformer or High-Reactance Type Ballast

Ballast Type	Power Factor	Lamp Operation
Autotransformer	Not less than 90 percent when	Lamp wattage regulation spread does not vary by
or High-	ballast is operated at nominal	more than ±6 percent for ±10 percent input
Reactance	line voltage with a nominally-	voltage variation from nominal through life
	rated reference lamp	_

A multi-circuit connector must be included for quick disconnection of ballast tray.

86-6.03 SOFFIT AND WALL LUMINAIRES

Soffit and wall luminaire must be weatherproof and corrosion resistant.

Each flush-mounted soffit luminaire must consist of:

- 1. Metal body with two 1-inch minimum conduit hubs and provisions for anchoring into concrete
- 2. Prismatic refractor made of heat-resistant polycarbonate mounted in a door frame and clearly identified as to street side
- 3. Specular anodized aluminum reflector
- 4. Ballast located either within housing or in a ceiling pull box as shown on the plans
- 5. Lamp socket

The door frame assembly must be hinged, gasketed, and secured to body by at least 3 machine screws. Each pendant soffit luminaire must be enclosed and gasketed, have an aluminum finish, and include:

- 1. Reflector with a specular anodized aluminum finish
- 2. Refractor made of heat-resistant polycarbonate
- 3. Optical assembly hinged and latched for lamp access and a device to prevent dropping
- 4. Ballast designed for operation in a raintight enclosure
- 5. Galvanized metal box with a gasketed cover, 2 captive screws, and 2 chains to prevent dropping and for luminaire mounting

Each wall-mounted luminaire must consist of:

- 1. Cast metal body
- 2. Prismatic refractor, made of glass, mounted in a door frame

- 3. Aluminum reflector with a specular anodized finish
- 4. Integral ballast
- 5. Lamp socket
- 6. Gasket between refractor and body
- 7. At least two 5/16-inch minimum diameter mounting bolts

Cast-aluminum bodies to be cast into or mounted against concrete must have a thick application of alkaliresistant bituminous paint on all surfaces to be in contact with concrete.

Each soffit luminaire and wall luminaire must include a 70 W high-pressure sodium lamp with a minimum average rated life of 24,000 hours. Each lamp socket must be positioned to locate the light center of the lamp within 1/2 inch of light center location of the luminaire design.

Ballast must comply with Section 86-6.01A, "High Pressure Sodium Lamp Ballasts." Wall luminaire ballast must be located in luminaire housing or, if shown on the plans, in a pull box adjacent to luminaire.

86-6.04 PEDESTRIAN CROSSING FIXTURES

Before starting fixture manufacturing, submit fixture design for approval. If requested, submit 1 complete prototype fixture for approval at least 30 days before manufacturing the fixtures. The prototype fixture will be returned to you, and if permitted, the fixture may be installed in the work.

Lens unit in door section must be formed of 1-1/2-inch methyl methacrylate rod cut and fire-glazed for a clear finish or a cast unit with equivalent tolerances and finish.

Lens must be secured to door section with an extruded lens retainer of 6063-T5 aluminum alloy that fits the lens shape. Lens retainer must fit the full length of lens on both sides. Continuous lens retainer for the full length of 3 lenses is allowed. Z bars of 5052-H32 or 5005-H14 aluminum alloy, 1/16 inch minimum thickness may be substituted for extruded lens retainer.

A captive positive-keyed screw-type latching device requiring a special socket wrench must be installed at upper edge to secure door in the closed position as shown on the plans. Furnish 2 special wrenches to the Engineer.

Each fixture must include a F48T12/CW rapid start fluorescent lamp with recessed, double contact base installed on back side of door directly behind lens.

Each lampholder must be UL listed for outdoor use without an enclosure and with 1,500 mA rapid start fluorescent lamp. Lampholder must be spring-loaded type.

For each lamp, the distance from face of lampholder to the lamp must be designed to provide a compression of at least 0.10-inch on the spring-type lampholder when lamp is in place. Lamp must have positive mechanical and electrical contact when lamp is in place. Socket on spring-type lampholder must have enough travel to allow lamp installation. Spring must not be a part of current-carrying circuit.

Ballast must be high-power-factor type with weatherproof leads for operation of one 48-inch rapid-start lamp. Ballast must be UL listed for outdoor operation on 110 to 125 V(ac) 60 Hz circuit and rated at 1,500 mA.

Conductors from ballast leads to lampholder must be minimum size of No. 16, stranded, and UL-listed copper AWM. Splicing of lampholder conductors to ballast leads must be performed by using mechanically secure connectors.

Conductors in fixture except ballast leads and entrance line conductors, must be UL-listed AWM.

Provide sufficient slack in the conductors to allow the fixture door to fully open.

Circuit conductors entering the fixture must be terminated on molded phenolic barrier-type terminal blocks rated at 15 A and 600 V(ac) and must have integral-type white waterproof-marking strips. Current-carrying parts of terminal blocks must be insulated from fixture with integral plugs or strips to provide protection from line-to-ground flashover voltage. Terminal blocks must be attached to wireway cover in top section. If you use sectionalized terminal blocks, each section must include an integral barrier on each side and be capable of rigid mounting and alignment.

Exposed surfaces of fixture must be uniform in appearance and free from significant defects, including improper fit, dents, deep scratches and abrasions, burrs, roughness, off-square ends, holes off-center or jagged, and surface irregularities. Screws for attaching components to fixture door, including Z bars, ballasts, and terminal block, must be tapped into door from the inside only. Screwheads, nuts, or other fasteners must not be removable from the outside.

86-6.04A Pedestrian Undercrossing Fixtures

Fixture shell must be cast aluminum alloy, industrial type or Federal Class 18 aluminum of 1/4 inch minimum thickness.

Door must be 1 piece of 6061-T6 aluminum alloy of 1/8 inch minimum thickness.

Continuous piano hinge must be Type 1100 aluminum alloy. The piano hinge must be welded or riveted to door section with 1/8 inch aluminum rivets. Matching holes must be drilled in the hinge and lower edge of fixture. After shell is in place, door assembly must be attached by minimum 3/8-inch No. 8 stainless steel self-tapping screws.

A neoprene gasket must be attached to frame to provide a cushion between the shell and the door.

Chain or other device must be included to prevent the door, when fully opened, from coming in contact with the undercrossing wall.

Fixture must be held in place by three 3/8" x 8" anchor bolts with 2 nuts each.

Fixture surfaces in contact with concrete, and with anchor bolts and nuts must be painted with a thick application of alkali-resistant bituminous paint. Paint must comply with MIL-P-6883.

Circuit conductor entering the fixture must be terminated on 2-position terminal blocks.

Both ends of fixture must have holes for 1-inch conduit. Unused holes must be plugged with pressed metal closures.

86-6.04B Pedestrian Overcrossing Fixtures

Fixture shell must consist of:

- Top section and a door section of extruded 6063-T5 aluminum alloy, each with a nominal 1/8 inch wall thickness
- 2. 2 cast-end sections of 319 aluminum alloy
- 3. Internal wireway cover of 505-H32 aluminum alloy

Top section and door section must be joined together on one side by a continuous hinge formed as part of the 2 extrusions and must overlay to allow locking on the other side. Hinge must be treated with a silicone grease that will prevent the entrance of water by capillary action.

Wireway cover with 3/16 inch hemmed ends up and terminal blocks and circuit conductors must be inserted before welding end sections and must provide clearance at both ends for conductors. Cover must be fastened by at least two 1/4 inch No. 4 self-threading sheet metal screws with binding head and blunt point. You may substitute blind rivets of equivalent strength.

One or more bronze sash chains or other device must be included to prevent door from opening to an extent that will damage the hinge.

Lampholder must include heat-resistant circular cross section neoprene sealing gasket, silver-coated contacts, and waterproofed lead entrance for use with a 1,500 mA rapid start fluorescent lamp.

Ballast must be at most 13-1/4 inches long.

Circuit conductors entering the fixture must be terminated on 3-position terminal blocks.

Electrical system of pedestrian overcrossing must be grounded by a No. 8 copper wire installed in conduit from fixture to fixture, from end fixture to conduit fitting on end post and from conduit fitting on end post to grounding bushing in nearest pull box.

Ground wire must be secured to inside of telescoping sleeve end casting where conductors are carried and to the inside of Type LB conduit fitting on end post by a connecting lug and a No. 8 self-threading pan screw.

Lamp, lampholder, ballast, and fixture wire, must be attached to door section. Terminal blocks must be attached to top section or wireway cover.

Three No. 10, solid copper circuit conductors must be installed between terminal blocks as part of each completed fixture.

Before shipment to job site, fixture must be completely manufactured and assembled in the shop.

86-6.05 INDUCTION SIGN LIGHTING FIXTURES

Each induction sign lighting fixture must include housing with door, reflector, refractor or lens, lamp, power coupler, high frequency generator, socket assembly, fuse block, and fuses.

Each induction sign lighting fixture must:

- 1. Be designed for mounting near the bottom of sign panel on an overhead sign structure.
- 2. Be an enclosed design and be raintight and corrosion resistant.
- 3. Have a minimum average rating of 60,000 hours.
- 4. Be for a wattage of 87 W, 120/240 V(ac).
- 5. Have a power factor greater than 90 percent and total harmonic distortion less than 10 percent.
- 6. Be UL approved for wet locations and be FCC Class A-listed.
- 7. Not exceed 44 pounds in weight.

- 8. Include the manufacturer's brand name, trademark, model number, serial number, and date of manufacture on packaged assembly. Same information must be permanently marked on the outside and inside of housing.
- 9. Comply with minimum horizontal footcandle requirement shown on the plans.
- 10. Be a maximum height of 12 inches above the top of the mounting rails.

If fixture is located so that the light center of the lamp is 55 inches in front of, 1 foot below, and centered on a 10-foot high by 20-foot wide sign panel, the ratio of maximum to minimum illuminance level on the panel must not exceed 12 to 1 in 95 percent of the points measured. Illuminance gradient must not exceed 2 to 1 and is defined as the ratio of minimum illuminance on a 1-foot square of panel to that on an adjacent 1-foot square of panel.

Each fixture must have a mounting assembly that will allow fixture to be mounted on continuous slot channels. Mounting assembly must be either cast aluminum, hot-dip galvanized steel plate, or steel plate that has been galvanized and finished with a polymeric coating system or same finish that is used for housing.

Housing must have a door designed to hold a refractor or lens, and to open without the use of special tools. Housing and door must be manufactured of sheet or cast aluminum, and have a powder coat or polyester paint finish of a gray color resembling unfinished manufacturing. Sheet aluminum must comply with ASTM B 209 or B 209M for 5052-H32 aluminum sheet. External bolts, screws, hinges, hinge pins, and door closure devices must be corrosion resistant.

Housing must include weep holes.

Door must be hinged to housing on side of fixture away from the sign panel and include 2 captive latch bolts or other latching device. Door must be designed to lock in the open position, 50 degrees minimum from the plane of the door opening, with an 85-mph 3-second-wind-gust load striking the door from either side.

Door and housing must be gasketed to be raintight and dusttight. Thickness of gasket must be 1/4 inch, minimum.

Fixture height must be less than 12 inches above the top of mounting rails.

Reflector must be 1 piece, made from specularly finished aluminum protected with an electrochemically applied anodized finish or a chemically applied silicate film, and designed so deposited water due to condensation will drain away. Reflector must be secured to housing with a minimum of 2 screws and removable without removing any fixture parts. Do not attach reflectors to outside of housing.

Refractor or lens must have a smooth exterior and must be manufactured from the material as follows:

Refractor and Lens Material Requirements

Component	Manufactured From
Flat lens	Heat-resistant glass
Convex lens	Heat resistant, high-impact resistant tempered glass
Refractor	Borosilicate heat resistant glass

Refractor and convex lens must be designed or shielded so no fixture luminance is visible if fixture is approached directly from the rear and viewing level is the bottom of the fixture. If a shield is used, it must be an integral part of the door casting.

Each fixture must include an 85 W induction lamp with an interior wall that is fluorescent phosphor-coated. Light output must be at least 70 percent at 60,000 hours. Lamp must have a minimum color-rendering index of 80, be rated at a color temperature of 4,000K and be removable without the use of tools.

Lamp socket must be a porcelain enclosed mogul type with a shell that contains integral lamp grips to assure electrical contact under normal vibration conditions. Center contact must be spring-loaded. Shell and center contact must be nickel-plated brass. Socket must be rated for 1,500 W and 600 V(ac).

Power coupler must include a construction base with antenna, heat sink, and electrical connection cable, and be designed so it can be removed with common hand tools.

High frequency generator must:

- 1. Start and operate lamps at an ambient temperature of -25 °C or greater for the rated life of the lamp
- 2. Operate continuously at ambient air temperatures from -25 °C to 25 °C without reduction in generator life
- 3. Have a design life of at least 100,000 hours at 55 °C
- 4. Have an output frequency of 2.65 MHz \pm 10 percent
- 5. Have radio frequency interference that complies with FCC Title 47, Part 18, regulations regarding harmful interference

- 6. Be replaceable with common hand tools
- 7. Mounted so the fixture can be used as a heat sink

Conductor terminal must be identified by the component terminal the conductor connects to.

Submit a copy of the high frequency generator test methods and results from the manufacturer with each lot of fixtures.

Each fixture must include a barrier-type fuse block for terminating field connections. Fuse block must:

- 1. Be secured to housing and be accessible without removal of any fixture parts
- 2. Be mounted to leave a minimum of 1/2 inch air space from sidewalls of housing
- 3. Be designed for easy removal of fuses with a fuse puller, be rated at 600 V(ac), and have box terminals.

Fuses must be 13/32-inch diameter, 1-1/2 inch long ferrule type and UL or NRTL listed. For 120 V(ac) input fixture, only the ungrounded conductor must be fused and there must be a solid link between the neutral and the high frequency generator.

If shown on the plans, include a wire guard to prevent damage to the refractor or lens. Guard must be constructed of 1/4-inch minimum diameter galvanized steel wire, and either hot-dip galvanized or electroplated-zinc coated as specified in ASTM B 633, Service Condition SC4 with a clear chromate dip treatment. Guard elements must be spaced to prevent rocks larger than 1-1/2-inch diameter from passing through.

86-6.06 SIGN LIGHTING FIXTURES FOR FLASHING BEACON

Sign lighting fixture must:

- 1. Be UL or NRTL listed for outdoor installation
- 2. Include a hood with side outlet tapped for conduit, a symmetrical 10-inch steel reflector with a white porcelain-enamel finish, and a medium base socket
- 3. Be rated at 150 W minimum

86-6.07 INTERNALLY ILLUMINATED STREET NAME SIGNS

Sign fixture must be:

- 1. Designed and constructed to prevent deformation or failure when subjected to an 85 mph 3-second-wind-gust load as specified in AASHTO publication, "Standard Specifications for Structural Supports of Highway Signs, Luminaires and Traffic Signals," and its interim revisions
- 2. Manufactured from all new material and all ferrous parts must be galvanized or cadmium-plated
- 3. Type A or B signs

Top and bottom must be formed or extruded aluminum and must be attached to formed or cast aluminum end fittings. Housing must be designed for continuous sealing between top and bottom assemblies, and end fittings, and be constructed to resist torsional twist and warp. Opening or removing 1 panel must allow access to the interior of the sign for lamp, ballast, and fuse replacement.

Photoelectric unit sockets are not allowed.

For Type A sign, both sides must be hinged at the top to allow installation or removal of sign panel, and to allow access to interior of sign.

For Type B sign, sign panel must be slide-mounted into housing.

Reflectors may be used to obtain required sign brightness. Reflectors must be formed aluminum with acrylic baked white enamel surface having a minimum reflectance of 0.85.

Sign panel must be slide-mounted or rigid-mounted in a frame, with white legend, symbols, arrows, and border on each face. Background must be green.

Sign panels surface must be evenly illuminated. Average of brightness readings for letters must be 150 foot-lamberts, minimum. Light transmission factor of sign panel must provide a letter to background brightness ratio between 10 to 1 and 20 to 1. Background luminance must not vary by more than 40 percent from the average background brightness reading. Luminance of letters, symbols, and arrows must not vary by more than 20 percent from their average brightness readings.

Sign panels must be translucent, high impact, resistant plastic panels of one of the following:

- 1. Glass fiber reinforced acrylated resin
- 2. Polycarbonate resin

3. Cellulose acetate butyrate plastic

Paint on the outside of plastic must be protected by a plastic film that seals the front surface of panel and filters out ultraviolet radiation. Paint must be acrylic plastic type.

Surface must be free of blemishes in the plastic or coating that may impair the serviceability or detract from the general appearance and color matching of sign.

White or green color must not fade or darken when sign is exposed to an accelerated test of ultraviolet light equivalent to 2 years of outdoor exposure. Green color of sign, when not illuminated, must match Color No. 14109 of Federal Standard 595B.

Sign panel must not crack or shatter when a 1-inch diameter, steel ball with a weight of 2.4 ounces is dropped from a height of 8.5 feet above the sign panel to any point of sign panel. For this test, sign panel must be lying in a horizontal position and supported within its frame.

For Type A sign, gasket must be installed between sign panel frame and fixture housing to prevent water entry between frame and fixture housing. Gasket must be uniform and even-textured, and be the closed-cell, spongeneoprene type, designed for use at temperatures between -20 °C and +74 °C.

Gasket must be neatly applied to thoroughly degreased, clean surface with a suitable heat-resistant adhesive that will not allow the gasket to slip at temperatures between -20 °C and +74 °C.

Ballast must be high power factor type and capable of starting the lamp at -20 °C and above.

Ballast for Type A sign must be rated at 200 mA. Ballasts for Type B sign must be rated at 430 mA. Ballast must be UL or NRTL listed for operation on 110 to 125 V(ac), 60 Hz circuits, and comply with ANSI C 82.1 and ANSI C 82.2.

Lampholder must be UL or NRTL listed for outdoor use and of the spring-loaded type. Lampholder must have silver-coated contacts and waterproofed entrance leads for use with a rapid-start fluorescent lamp. Removal of lamp from socket must de-energize the primary of ballast. Each lampholder must include heat-resistant, circular cross section, partially-recessed neoprene ring to seal against lamp ends and protect electrical contacts from moisture, dirt or other injurious elements.

Distance between face of lampholders must be designed to provide compression of at least 0.10 inch on the spring-type lampholder when lamp is in place. Lamp must have positive mechanical and electrical contact when lamp is in place. Socket on spring-type lampholder must have sufficient travel to allow lamp installation. Spring must not be a part of current carrying circuit. Lampholder must match lamp requirements and must not increase cathode filament circuit resistance by more than $0.10~\Omega$.

Lamp must comply with ANSI C 78.

Wiring connections in fixture must be terminated on molded, phenolic, barrier-type, terminal blocks rated at 15 A, 1,000 V(ac), and must have integral-type white waterproof-marking strips. Current carrying parts of terminal blocks must be insulated from fixture with integral plugs or strips to provide protection from line-to-ground flashover voltage. If you choose to use sectionalized terminal blocks, each section must include an integral barrier on each side and be capable of rigid mounting and alignment. Terminal screws must be No. 10, minimum.

Fuses must be Type 3AG, miniature, slow-blowing type with appropriate current and voltage ratings.

Fuseholder must be a panel-mounting type with threaded or bayonet-type knob that grips the fuse tightly for extraction. Use a separate fuse for each ballast.

Screened weep holes must be constructed at strategic locations in members subject to moisture collection.

Fasteners, screws, and hardware must be passive stainless steel, Type 302 or 304, or aluminum Type 6060-T6.

Top of fixture housing must have 2 free-swinging mounting brackets. Each bracket must be adjustable vertically for leveling the sign to either a straight or curved mast arm. Bracket assembly must allow fixture to swing perpendicular to the sign panel.

Hinge pins for the free-swinging brackets must have a minimum diameter of 1/4 inch.

Message, as shown on the plans, must be displayed on both sign panels.

If not shown on the plans, the message and the size of symbols or arrows will be given by the Engineer at your request. Letters must be 8-inch upper case and 6-inch lower case, Series E.

Fixture conductors must be UL- or NRTL-listed AWM stranded copper wire with 28 mils, minimum, thermoplastic insulation, rated at 1,000 V(ac) and rated for use at 90 °C. Conductors must be No. 16 minimum and must match color coding of ballast leads.

Conductors within the fixture must be secured with easily removable spring cross straps, not clamped, in the chassis or fixture. Straps must be installed 12 inches apart or less.

Stranded copper conductors connected to screw-type terminals must terminate in approved crimp-type ring connectors.

Splices are not allowed within fixture.

Submit shop drawings showing the message for each sign, including size of letters, symbols or arrows, as shown on the plans. If requested, you must supply, without cost to the State, sufficient samples of materials to be used in the manufacturing of the sign or a complete sign assembly, to allow adequate testing and evaluation of compliance to specified requirements.

86-6.08 PHOTOELECTRIC CONTROLS

Photoelectric controls must be capable of directly switching multiple lighting systems.

86-6.08A Types

Photoelectric control type must comply with the following:

Photoelectric Control Types

Type I	Includes a remote photoelectric unit and a test switch housed in an enclosure.
Type II	Includes a remote photoelectric unit, a separate contactor located in a service
	equipment enclosure, and a test switch located in service equipment enclosure.
Type III	Includes a remote photoelectric unit, a separate contactor, and a test switch
	housed in an enclosure.
Type IV	Includes a photoelectric unit that plugs into an EEI-NEMA twist-lock
	receptacle integral with the luminaire.
Type V	Includes a photoelectric unit, contactor, and test switch located in service
	equipment enclosure.

A switch to allow manual operation of lighting circuit must be included for each Type I, Type II, Type III, and Type V photoelectric control. Switches must be single-hole mounting toggle type, single-pole, single-throw, rated at 12 A with a voltage rating that matches the circuit. Switches must have an indicating nameplate reading "Auto-Test" and be connected in parallel with the load contacts of the photoelectric unit. Test switches must not have an "OFF" position.

Photoelectric unit for Types I, II, and III photoelectric controls, must be pole-top mounted.

86-6.08B Equipment Details

86-6.08B(1) Photoelectric Unit

Photoelectric unit must:

- Have an output in response to changing light levels. Response level must remain stable throughout life of control unit.
- 2. Have a "turn-on" between 1 and 5 footcandles, and a "turn-off" between 1.5 and 5 times "turn-on." Measurements must be made by procedures in EEI-NEMA standards for physical and electrical interchangeability of light-sensitive control devices used in the control of roadway lighting.
- 3. Have a EEI-NEMA type receptacle. Mounting brackets must be used where pole-top mounting is not possible. Photoelectric controls must be installed at locations show on the plans and oriented.
- 4. Be screened to prevent artificial light from causing cycling.
- 5. Have a supply voltage rating of 60 Hz, 105-130 V(ac), 210-240 V(ac), or 105-240 V(ac), as specified.
- 6. Have a load rating of 800 W minimum, incandescent, high intensity discharge, or fluorescent.
- 7. Operate at a temperature range of -20 °C to 55 °C.
- 8. Have a power consumption less than 10 W.
- 9. Be housed in a weatherproof enclosure.
- 10. Have a base with a 3-prong, EEI-NEMA standard, twist-lock plug mounting.
- 11. Have a "fail-on" feature.

Unit components must not require periodic replacement.

Photoelectric controls, except Type IV and Type V, must include a 4-inch minimum inside diameter, pole-top mounting adaptor containing a terminal block, and cable supports or clamps to support pole wires.

For switching 480 V(ac), 60 Hz circuits, a 100 VA, minimum, 480/120 V(ac) transformer must be installed in the contactor enclosure to allow 120 V(ac) for the photoelectric control unit. If more than 1 photoelectric unit is to be installed at a location, a single transformer with a volt-ampere rating capable of handling the total controlled load, may be used.

86-6.08B(2) Contactor

Contactor must:

- 1. Have contacts rated to switch the specified lighting load
- 2. Be normally open
- 3. Be the mechanical armature type with contacts of fine silver, silver alloy, or superior alternative material

86-6.08B(3) Enclosure

Enclosure for Type I and Type III photoelectric controls must be NEMA 3R. Enclosure must be supplied with a factory-applied rust-resistant prime coat and finish coat. Two applications of paint to match the color of the standard must be applied as specified in Section 86-2.16, "Painting." Enclosure may be hot-dip galvanized instead of painting. A minimum of 2-1/2 inches must be provided between contactor terminals and end of enclosure for wiring connections. Enclosure must be mounted on the same standard as the photoelectric unit at a height of about 6 feet above finished grade.

86-6.08B(4) Terminal Blocks

Terminal blocks must be rated at 25 A, 600 V(ac), molded from phenolic or nylon material, and of the barrier type with plated-brass screw terminals and integral-type marking strips.

86-6.09 TRANSFORMERS

Multiple-to-multiple transformers must be single-phase dry type designed for operation on a 60 Hz supply.

86-6.09A Electrical Requirements

Transformers must have a decal showing a connection diagram. Diagram must show either color-coding or wire-tagging with primary (H1, H2) or secondary (X1, X2) markers, and the primary and secondary voltage and volt-ampere rating. Transformers must comply with the following:

Transformer Electrical Requirements

Transformer Characteristic	Multiple-to-Multiple Unit
Rating	120/480 V(ac), 240/480 V(ac), or 480/120 V(ac)
Efficiency	Exceed 95 percent
Secondary Voltage Regulation	±3 percent from half load to
and Tolerance	full load

Secondary 480 V(ac) windings must be center-tapped.

86-6.09B Physical Requirements

External leads for multiple-to-multiple secondary connections must be Type USE, No. 10, rated 600 V(ac).

Transformer leads must extend a minimum of 12 inches from the case.

Transformer insulation must be NEMA 185 C or better.

Multiple-to-multiple transformers must withstand the application of 2,200 V(ac) from core to coils and from coil to coil for a 1-minute period.

The above tests must be made immediately after operation of transformer at full load for 24 hours.

Non-submersible transformers must include metal half-shell coil protection, have moisture resistant synthetic varnish impregnated windings, and be suitable for outdoor operation in a raintight enclosure.

Each transformer to be installed in a pull box must be the submersible type and include a handle and a hanger.

86-6.09C Submersible Type Transformers

Submersible type transformers must be securely encased in a rugged corrosion resistant, watertight case and must withstand a 5-day test submerged in 2 feet of salt water, 2 percent salt by weight, with 12-hour on and off periods. The operating periods must be at full load.

Leads of submersible transformers must be brought out through one or more sealed hubs and secured to withstand a 100 pound static pull without loosening or leaking.

86-6.11 FALSEWORK LIGHTING

86-6.11A General

Falsework lighting must include lighting to illuminate the pavement, portals, and pedestrian walkways at or under openings in the falsework required for traffic.

Lighting for pedestrian walkway illumination must be installed at all pedestrian openings through or under falsework.

Before starting falsework opening construction, you must submit a plan of proposed lighting installations for review and obtain approval. Approval will be made as specified in Section 5-1.02, "Plans and Working Drawings."

You must design falsework lighting so that required maintenance can be performed with a minimum of inconvenience to public traffic. Closing of traffic lanes for routine maintenance will not be permitted on roadways with posted speed limits greater than 25 mph.

Pavement under falsework with portals less than 150 feet apart and falsework portals must be illuminated only during the hours of darkness as defined in Division 1, Section 280, of the California Vehicle Code. Photoelectric switches must be used to control falsework lighting systems. Pavement under falsework with portals 150 feet or more apart and all pedestrian openings through falsework must be illuminated 24 hours per day.

Lighting fixtures must be aimed to avoid glare to oncoming motorists.

Type NMC cable with No. 12 minimum conductors, with ground wire, must be used. Fasten cable to supporting structure at sufficient intervals to adequately support cable and within 12 inches from every box or fitting. Conductors within 8 feet of ground must be enclosed in a 1/2 inch or larger metal conduit.

Each illumination system must be on a minimum of 1 separate branch circuit at each bridge location. Each branch circuit must be fused, not to exceed 20 A.

For falsework lighting, you must arrange with the serving utility to complete service connections. You must pay for energy, line extension, service, and service hookup costs.

At completion of project or when ordered by the Engineer, falsework lighting equipment will become your property and you must remove it from the job site.

You may propose a lighting plan that fulfills light intensity requirements to the systems specified herein. You must supply sufficient data to allow evaluation of alternative methods.

86-6.11B Pavement Illumination

Illumination of pavement at vehicular openings through falsework must comply with the following:

- 1. Fixture must include R/FL commercial type floodlamp holder with protective covers.
- 2. Fixture must be fully adjustable with brackets and locking screws, and allow mounting directly to a standard metal junction box.
- 3. Lamp must be medium-base 120 V(ac), 120 W, minimum, PAR-38 quartz-halogen floodlamp.
- 4. A continuous row of fixture types required must be installed at locations and spacing specified. Fixtures must be installed beneath falsework structure, with the end fixtures not further than 10 feet inside portal faces. Fixtures must be installed and energized immediately after the members supporting them have been erected.
- 5. Fixtures along the sides of the opening must be placed not more than 4 feet behind or 2 feet in front of the roadway face of the temporary railing. Mounting heights of fixtures must be between 12 and 16 feet above the roadway surface and must present an unobstructed light pattern on the pavement.

86-6.11C Portal Illumination

Illumination of falsework portals must comply with the following:

- 1. On each side of each entrance portal, plywood sheet clearance guides, 4 feet wide by 8 feet high, must be fastened vertically, facing traffic, with the bottom of the panel 3 feet to 4 feet above the roadway. The center of the panel must be located approximately 3 feet horizontally behind the roadway face of the railing. Panels must be freshly painted for each installation with not less than 2 applications of flat white paint. Paint testing will not be required.
- 2. If ordered by the Engineer, in order to improve the general appearance of the painted surfaces, you must repaint designated areas and that painting will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

- 3. Falsework portals must be illuminated on the side facing traffic with 150 W, minimum, PAR reflector floodlamps mounted on the structure directly over each vertical support adjacent to the traveled way, as needed to uniformly illuminate the exterior falsework beam, the clearance guides, and the overhead clearance sign. Each lamp must be supported approximately 16 feet above the pavement and approximately 6 feet in front of the portal face.
- 4. Portal lighting and clearance guides must be installed on the day that vertical members are erected.

86-6.11D Pedestrian Walkway Illumination

Illumination of pedestrian openings through or under falsework must comply with the following:

- 1. Fixtures must be flush-mounted in the overhead protection shield and equipped with a damage-resistant clear polycarbonate diffuser lens. Lamps must be standard incandescent 100 W, 120 V(ac).
- 2. Fixtures must be centered over the passageway at intervals of not more than 15 feet with the end fixtures not more than 7 feet inside the end of the pedestrian openings.
- Pedestrian passageway light systems must be installed immediately after the overhead protection shield is erected.

86-7 REMOVING, REINSTALLING OR SALVAGING ELECTRICAL EQUIPMENT

86-7.01 REMOVING ELECTRICAL EQUIPMENT

Existing electrical equipment, pull boxes, and conduits, to be removed and not reused or salvaged, become your property and you must dispose of it under Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way." Unused underground conduit may be abandoned in place after all conductors have been removed, except that conduit terminations from conduit to be abandoned must be removed from pull boxes to remain.

Exercise care in salvaging equipment so that it will not be damaged or destroyed. Mast arms must be removed from standards. Luminaires, signal heads, and signal mounting assemblies must be removed from standards and mast arms.

Holes resulting from removing pull boxes must be filled with material equivalent to the surrounding material.

86-7.02 REINSTALLING REMOVED ELECTRICAL EQUIPMENT

If removed electrical equipment is to be reinstalled, you must supply all necessary materials and equipment, including signal mounting assemblies, anchor bolts, nuts, washers, and concrete as required to complete the new installation.

Luminaires to be reinstalled must be cleaned and relamped.

Existing materials required to be reused and found to be unsatisfactory by the Engineer must be replaced with new material and the replacement cost will be paid for as extra work as specified in Section 4-1.03D, "Extra Work."

86-8 PAYMENT

86-8.01 PAYMENT

The contract lump sum price or prices paid for signal, ramp metering, flashing beacon, lighting, sign illumination, traffic monitoring station, highway advisory radio systems, closed circuit television systems, or combinations thereof; for modifying or removing those systems; for temporary systems; or the lump sum or unit prices paid for various units of those systems; or the lump sum or per foot price paid for conduit of the various sizes, types, and installation methods listed in the Engineer's Estimate include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in furnishing and installing, modifying, or removing the systems, combinations or units thereof, including any necessary pull boxes (except if the type required is shown as a separate contract item); excavation and backfill; concrete foundations (except if shown as a separate contract item); pedestrian barricades; furnishing and installing illuminated street name signs; installing sign panels on pedestrian barricades, on flashing beacon standards, and on traffic signal mast arms; restoring sidewalk, pavement and appurtenances damaged or destroyed during construction; salvaging existing materials; and making all required tests, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

If poles for electrical systems are manufactured from a source located more than 300 air-line miles from Sacramento and Los Angeles, the Department will deduct \$5,000 for inspection costs for each inspection site. If poles for electrical systems are manufactured from a source located more than 3,000 air-line miles from Sacramento and Los Angeles, the Department will deduct \$8,000 for inspection costs for each inspection site.

Full compensation for all additional materials and labor, not shown on the plans or specified, that are necessary to complete the installation of the various systems, is included in the prices paid for the systems, or units thereof,

except as provided in Section 86-1.06, "Maintaining Existing and Temporary Electrical Systems," and no additional compensation will be allowed therefor.

If shown as a contract item, the contract price paid per foot for cast-in-drilled-hole concrete pile (signal foundation) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing reinforced concrete pile foundations of the size shown on the Engineer's Estimate, including drilling holes, disposing of the material resulting from drilling holes, furnishing and placing anchor bolt assemblies and reinforcing steel, complete in place, as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer.

If shown as a contract item, non-reinforced PCC foundations will be measured and paid for by the cubic yard for foundation concrete in the same manner as specified for minor concrete (minor structure) in Section 51, "Concrete Structures."

If shown as a separate contract item by the lump sum or per foot, interconnection conduit and cable includes all interconnection conductors, and conduit and pull boxes containing interconnection cable and no other conductors. The quantity of interconnection conduit and cable to be paid for by the foot is the length of that conduit. Compensation for conduit containing interconnection cable and other conductors is included in the contract price paid for the item requiring the other conductors.

Full compensation for furnishing, installing, maintaining, and removing falsework lighting equipment is included in the contract prices paid for the items of work involved in the structure that requires the falsework lighting and no additional compensation will be allowed therefor.

SECTION 88 ENGINEERING FABRICS (Issued 01-20-12)

Replace Section 88 with: SECTION 88 GEOSYNTHETICS

88-1.01 GENERAL

88-1.01A Summary

Section 88 includes specifications for geosynthetics. Geosynthetics are used for:

- 1. Filtration
- 2. Drainage
- 3. Reinforcement
- 4. Water pollution control
- 5. Channel and shore protection
- 6. Pavement interlayer
- 7. Separation and stabilization

88-1.01B Submittals

Submit:

- 1. Certificate of Compliance under Section 6-1.07, "Certificates of Compliance"
- 2. Samples representing each lot
- 3. Minimum average roll values (MARV)

Label submittals with the manufacturer's name and product information.

88-1.01C Quality Control and Assurance

Treat geosynthetics to resist degradation from exposure to sunlight. Using covers, protect geosynthetics from moisture, sunlight, and shipping and storage damage.

88-1.02 FILTRATION

88-1.02A Filter Fabric

Geosynthetics used for filter fabric must be permeable and nonwoven. Filter fabric must consist of 1 of the following:

- 1. Polyester
- 2. Polypropylene
- 3. Combined polyester and polypropylene

Filter fabric must comply with:

Filter Fabric

1 1001 1 10110					
Property	ASTM	Specification			
		Class A	Class B	Class C	
Grab breaking load, 1-inch grip, lb					
minimum in each direction	D 4632		157		
Apparent elongation, percent					
minimum in each direction	D 4632		50		
Puncture strength, lb					
minimum	D 6241	600			
Ultraviolet resistance, percent					
minimum retained grab breaking					
load, 500 hr	D 4355		70		
Permittivity, sec ⁻¹					
minimum	D 4491	0.5	0.2	0.1	
Apparent opening size, average roll			_		
value, U.S. Standard sieve size					
maximum	D 4751	40	60	70	

88-1.03 DRAINAGE

88-1.03A Geocomposite Wall Drain

Geocomposite wall drain must consist of a polymeric core with filter fabric integrally bonded to 1 or both sides of the core creating a stable drainage void.

Filter fabric must comply with Section 88-1.02, "Filtration."

Geocomposite wall drain must comply with:

Geocomposite Wall Drain

Property	ASTM	Specification
Thickness with fabric,		2
inches		
maximum		
Transmissivity, gradient =	D 4716	4
1.0, normal stress = $5,000$		
psf, gal/min/ft		

88-1.04 REINFORCEMENT

88-1.04A Geotechnical Subsurface Reinforcement

General

Geosynthetic used for geotechnical subsurface reinforcement must be either of the following:

- 1. Geotextile
- 2. Geogrid

Geotextile permittivity must be at least 0.05 sec⁻¹ determined under ASTM D 4491.

Geogrid must have a regular and defined open area. The open area must be from 50 to 90 percent of the total grid area.

Long Term Design Strength

Long Term Design Strength (LTDS) of geosynthetic reinforcement is the ultimate tensile strength in the primary strength direction divided by reduction factors. Calculate the LTDS from the guidelines in Geosynthetic Research Institute (GRI) Standard Practice GG4a, GRI GG4b, or GRI GT7.

The product of the appropriate reduction factors must be at least 1.30. Determine the reduction factor for creep using a 75-year design life for permanent applications and a 5-year design life for temporary applications. Determine the installation damage reduction factor based on the characteristics of the backfill materials used.

If test data is not available, use default values of reduction factors in the GRI Standard Practice to calculate LTDS.

Submit the LTDS and its supporting calculations at least 15 days before placing geosynthetic reinforcement. Do not install before the Engineer's approval. The LTDS must be signed by an engineer who is registered as a civil engineer in the State.

88-1.05 WATER POLLUTION CONTROL

Geosynthetics used for water pollution control must comply with:

Water Pollution Control Geosynthetics

Water Pollution Control Geosynthetics								
		Application						
		Silt Fence		Sediment Filter Bag		Gravel- Temporary Cov		ary Cover
						Filled		
		***		***		Bags	***	.,,
Duamantri	ASTM	Woven	Non-	Woven	Non-		Woven	Non-
Property	ASIM		woven		woven			woven
Grab breaking load, 1-								
inch grip, lb								
minimum in each	D	120	120	200	250	205	200	200
direction	4632							
Apparent elongation,								
percent								
minimum, in each	D	15	50	10	50		15	50
direction	4632							
Water flow rate,								
gallons per								
minute/square foot								
minimum and	D	10 - 100	100 - 150	100 - 200	75 - 200	80 - 150	4 - 10	80 - 120
maximum average	4491							
roll value								
Permittivity, sec ⁻¹								
minimum	D	0.05	1.1	1.0	1.0	0.2	0.05	1.0
	4491							
Apparent opening size,								
inches								
maximum average	D	0.023	0.012	0.023	0.012	0.016	0.023	0.012
roll value	4751							
Ultraviolet resistance,		_				_		_
percent								
minimum retained	D	70	70	70	70	70	70	70
grab breaking	4355							
load, 500 hr.								

88-1.06 CHANNEL AND SHORE PROTECTION

88-1.06A Rock Slope Protection

Rock slope protection (RSP) fabric must be a permeable, nonwoven, needle-punched geotextile. RSP fabric consists of 1 of the following:

1. Polyester

- 2. Polypropylene
- 3. Combined polyester and polypropylene

Polymers must be either virgin compounds or clean reworked material. Do not subject virgin compounds to use or processing other than required for initial manufacture. Clean reworked material must be previously processed material from the processor's own production that has been reground, pelletized, or solvated. RSP fabric must not consist of more than 20 percent by weight of clean reworked material. Do not use recycled materials from either post-consumer or post-industrial sources.

Class 8 or Class 10 RSP fabric must comply with:

Rock Slope Protection Fabric

Property	ASTM	Specif	ication
		Class 8	Class 10
Weight, oz/yd ²			
minimum	D 5261	7.5	9.5
Grab breaking load, lb			
1-inch grip, min. in each			
direction	D 4632	200	250
Apparent elongation, percent			
min., in each direction	D 4632	50	50
Permittivity, sec ⁻¹ ,			
minimum	D 4491	1.0	0.70
Apparent opening size, U.S.			
Standard sieve size			
minimum and maximum	D 4751	70 - 100	70 - 100
Ultraviolet resistance, percent			
minimum retained grab			
breaking load, 500 hr.	D4355	70	70

88-1.07 PAVEMENT INTERLAYER

88-1.07A Paving Fabric

Geosynthetics used for paving fabric must be nonwoven. Paving fabric must comply with:

Geosynthetic Paving Fabric

Property	ASTM	Specification
Mass per unit area, oz/yd ²		
minimum	D 5261	4.1
Grab breaking load, lb		
1-inch grip, minimum, in each direction	D 4632	100
Apparent elongation, percent		
minimum in each direction	D 4632	50
Hydraulic bursting strength, psi		
minimum	D 3786	200
Melting point, °F		
minimum	D 276	325
Asphalt retention, gal/yd ²		
minimum	D 6140	0.2

88-1.07B Paving Mat

Geosynthetics used for paving mat must be a nonwoven fiberglass and polyester hybrid material. Paving mat must comply with:

Geosynthetic Paving Mat

Georgia and a series and a seri					
Property	ASTM	Specification			
Breaking force, lb/2 inches					
minimum	D 5035	45			
Ultimate elongation, percent					
maximum	D 5035	5			
Mass per unit area, oz/ sq yd					
minimum	D 5261	3.7			
Melting point, °F					
minimum	D 276	400			
Asphalt retention, gal/yd ²					
minimum	D 6140	0.10			

88-1.07C Paving Grid

Geosynthetics used for paving grid must be a geopolymer material formed into a grid of integrally connected elements with openings. Paving grid must comply with:

Geosynthetic Paving Grid

Property	Test	Specification		
		Class I	Class II	Class III
Tensile strength at				
ultimate, lb/in ^a				
minimum	ASTM D 6637	560 x 1,120	560	280
Aperture size, inch				
minimum	Calipered	0.5	0.5	0.5
Elongation, %				
maximum	ASTM D 6637	12	12	12
Mass per area, oz / sqyd				
minimum	ASTM D 5261	16	10	5.5
Melting point, °F				
minimum	ASTM D 276	325	325	325

Note:

88-1.07D Paving Geocomposite Grid

Paving geocomposite grid consists of paving grid specified under Section 88-1.07C, "Paving Grid," bonded or integrated with paving fabric specified under Section 88-1.07A, "Paving Fabric."

Paving geocomposite grid must have a peel strength of at least 10 pounds per foot determined under ASTM D 413.

88-1.07E Geocomposite Strip Membrane

Geocomposite strip membrane must consist of various widths of strips manufactured from of asphaltic rubber and geosynthetics. Geocomposite strip membrane must comply with:

Contract No. 12-0E3104 265 of 297

^a For Class I, machine direction x cross direction. For Class II and Class III, both directions.

Geocomposite Strip Membrane

000000000000000000000000000000000000000		
Property	ASTM	Specification
Strip tensile strength, lbs/inch		
minimum	D 882	50
Elongation at break, %		
minimum	D 882	50
Resistance to puncture, lbs.		
minimum	E 154	200
Permeance, perms		
maximum	E 96/E 96M	0.10
Pliability, 1/4 inch mandrel with sample		No cracks in
conditioned at 25 °F	D 146	fabric or bitumen
Melting point, °F	D 276	325

88-1.08 SEPARATION AND STABILIZATION

88-1.08A Subgrade Enhancement Geotextile

Subgrade enhancement geotextile must consist of either of the following:

- 1. Polyester
- 2. Polypropylene

Subgrade enhancement geotextile must comply with:

Subgrade Enhancement Geotextile

Subgrade Enhancement Geotextile						
Property	ASTM	Specification ^a				
		Class A1	Class A2	Class B1	Class B2	Class B3
Elongation at break, %	D 4632	< 50	≥50	<50	<50	≥50
Grab tensile strength, lb						
minimum	D4632	250	160		320	200
Wide width tensile strength at 5%						
strain, lb/ft						
minimum	D 4595			2,000		
Wide width tensile strength at						
ultimate strength, lb/ft						
minimum	D 4595			4,800		
Tear strength, lb						
minimum	D 4533	90	60		120	80
Puncture strength, lb						
minimum	D 6241	500	310	620	620	430
Permittivity, sec ⁻¹						
minimum	D 4491	0.05	0.05	0.20	0.20	0.20
Apparent opening size, inches						
maximum	D 4751	0.012	0.012	0.024	0.012	0.012
Ultraviolet stability (retained						
strength after 500 hrs exposure), %						
minimum	D 4355	70	70	70	70	70

Notes:

88-1.09 PAYMENT

The Department measures and pays for geosynthetics under the specifications requiring their use.

^^^^^

^a Specifications are based on minimum average roll value in the weaker principle direction except apparent opening size is based on maximum average roll value.

SECTION 90 PORTLAND CEMENT CONCRETE

(Issued 08-05-11)

Replace Section 90 with:

SECTION 90 PORTLAND CEMENT CONCRETE

90-1 GENERAL

90-1.01 DESCRIPTION

Portland cement concrete shall be composed of cementitious material, fine aggregate, coarse aggregate, admixtures if used, and water, proportioned and mixed as specified in these specifications.

The Contractor shall determine the mix proportions for concrete in conformance with these specifications.

Minor concrete shall contain not less than 505 pounds of cementitious material per cubic yard unless otherwise specified in these specifications or the special provisions.

Unless otherwise designated on the plans or specified in these specifications or the special provisions, the amount of cementitious material used per cubic yard of concrete in structures or portions of structures shall conform to the following:

Use	Cementitious Material Content (Pounds/CY)
Concrete designated by compressive strength:	
Deck slabs and slab spans of bridges	675 min., 800 max.
Roof sections of exposed top box culverts	675 min., 800 max.
Other portions of structures	590 min., 800 max.
Concrete not designated by compressive strength:	
Deck slabs and slab spans of bridges	675 min.
Roof sections of exposed top box culverts	675 min.
Prestressed members	675 min.
Seal courses	675 min.
Other portions of structures	590 min.
Concrete for precast members	590 min., 925 max.

Except for minor structures, the minimum required compressive strength for concrete in structures or portions of structures shall be the strength specified, or 3600 pounds per square inch at 28 days, whichever is greater.

Except for when a modulus of rupture is specified, the minimum required compressive strength for concrete shall be the strength specified, or 2,500 pounds per square inch, whichever is greater. Concrete shall be proportioned such that the concrete will attain the minimum required compressive strength.

If the specified 28-day compressive strength is 3,600 pounds per square inch or greater, the concrete is designated by compressive strength. For concrete with a 28-day compressive strength greater than 3,600 pounds per square inch, 42 days will be allowed to obtain the specified strength.

For concrete not designated by compressive strength, the Engineer may test the concrete for compressive strength. The concrete will be accepted if the compressive strength at 28 days attains 85 percent or more of the minimum required compressive strength.

Concrete shall be proportioned to conform to the following shrinkage limitations when tested in conformance with the requirements of AASHTO Designation: T 160, modified as follows:

Condition	Maximum Shrinkage of Laboratory Cast Specimens at 28 days Drying (average of 3, %)		
Paving and approach slab concrete	0.050		
Bridge deck concrete	0.045		

Note: Shrinkage requirement is waived for concrete that is used for precast elements.

Shrinkage tests shall be either:

A. Performed by a laboratory accredited to perform AASHTO Designation: T 160, or

B. Performed by a laboratory that maintains a current rating of 3 or better for the Cement and Concrete Reference Laboratory (CCRL) concrete proficiency sample program.

Laboratory cast specimens shall have a 4" x 4" cross section. Specimens shall be removed from the molds 23 ± 1 hours after mixing the concrete and placed in lime water at 73 ± 3 °F to 7 days age. A comparator reading shall be taken at 7 days age and recorded as the initial reading. Specimens then shall be stored in a humidity controlled room maintained at 73 ± 3 °F and 50 ± 4 percent relative humidity for the remainder of the test. Subsequent readings shall be taken at 7, 14, 21, and 28 days drying.

Test data verifying conformance to the shrinkage limitations shall be submitted with the mix design. Shrinkage testing data accepted by the Engineer no more than 3 years prior to the first working day of this contract will be acceptable for this entire contract, provided the data was for concrete with similar proportions and the same materials and material sources to be used on this contract. Concrete shall be considered to have similar proportions if, when compared to concrete to be used on this project, no more than 2 mix design elements are varied. Varied mix design elements shall fall within the tolerances in the following table:

Mix Design Element	Tolerance (±)
Water to cementitious material ratio	0.03
Total water content	5 %
Coarse aggregate (weight per cubic yard)	10 %
Fine aggregate (weight per cubic yard)	10 %
Supplementary cementitious material content	5 %
Admixture (as originally dosed)	25 %

Note: Admixtures must be of the same brand.

Before using concrete or in advance of revising the mix proportions, the Contractor shall submit in writing to the Engineer a copy of the mix design.

Compliance with cementitious material content requirements will be verified in conformance with procedures described in California Test 518 for cement content. For testing purposes, supplementary cementitious material (SCM) shall be considered to be cement. Batch proportions shall be adjusted as necessary to produce concrete having the specified cementitious material content.

If any concrete has a cementitious material, portland cement, or SCM content that is less than the minimum required, the concrete shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place and the Contractor shall pay to the State \$0.25 for each pound of cementitious material, portland cement, or SCM that is less than the minimum required. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. The deductions will not be made unless the difference between the contents required and those actually provided exceeds the batching tolerances permitted by Section 90-5, "Proportioning." No deductions will be made based on the results of California Test 518.

The requirements of the preceding paragraph shall not apply to minor concrete.

90-2 MATERIALS

90-2.01 CEMENTITIOUS MATERIALS

Unless otherwise specified, cementitious material shall be either a combination of Type II or Type V portland cement and SCM, or a blended cement. No cementitious material shall be used in the work unless it is on the Department's Pre-Qualified Products List at the time of mix design submittal. Information regarding cementitious material qualification and placement on the Department's approved list can be obtained at the Transportation Laboratory.

Cementitious materials used in cast-in-place concrete for exposed surfaces of like elements of a structure shall be from the same sources and of the same proportions.

Cementitious materials shall be protected from moisture until used. Sacked cementitious materials shall be piled to permit access for tallying, inspecting, and identifying each shipment.

Facilities shall be provided to ensure that the various cementitious materials meeting this Section 90-2.01 are kept separate from each other and from other cementitious materials. A storage silo containing a cementitous material shall be emptied before using that silo for a different cementitious material. Blended cements with a percentage of SCM differing by more than 2 percentage points are considered different cementitious materials. Sampling cementitious materials shall be in conformance with California Test 125.

The Contractor shall furnish a Certificate of Compliance for cementitious materials in conformance with the provisions in Section 6-1.07, "Certificates of Compliance." The Certificate of Compliance shall indicate the source by name and location (including country, state, and city). If cementitious material is delivered directly to the job site, the Certificate of Compliance shall be signed by the cementitious material supplier. If the cementitious material is used in ready-mixed concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product. If blended cement is used, the Certificate of Compliance shall include a statement signed by the blended cement supplier that indicates the actual percentage, by weight, of SCM in the blend. Weight of SCM shall be by weighing device conforming to Section 9-1.01, "Measurement of Quantities," or as determined by chemical analysis.

90-2.01A Cement

Portland cement shall conform to the requirements in ASTM Designation: C 150 except the C₃S content of Type II cement shall not exceed 65 percent.

Blended cement shall conform to the requirements for Portland Blast-Furnace Slag Cement, Type IS (MS) or Portland-Pozzolan Cement, Type IP (MS) in AASHTO Designation: M 240, except that the maximum limits on the pozzolan content shall not apply. Blended cement shall be comprised of Type II or Type V cement and SCM produced by intergrinding portland cement clinker and granulated blast furnace slag, ground granulated blast furnace slag (GGBFS), or pozzolan; by blending portland cement and either GGBFS or finely divided pozzolan; or by a combination of intergrinding and blending.

In addition, Type II portland cement and Type V portland cement shall conform to the following requirements:

- A. The cement shall not contain more than 0.60-percent by mass of alkalies, calculated as the percentage of Na₂O plus 0.658 times the percentage of K₂O, when determined by methods as required in AASHTO Designation: T 105; and
- B. The autoclave expansion shall not exceed 0.50-percent

Type III portland cement shall be used only as specified or with the approval of the Engineer. Type III portland cement shall conform to the additional requirements listed above for Type II portland cement. The Contractor may use Type III portland cement in the manufacturing of precast concrete.

90-2.01B Supplementary Cementitious Materials

Each supplementary cementitious material shall conform to one of the following:

- A. Fly ash conforming to the requirements in AASHTO Designation: M 295, Class F, and these specifications. The available alkali, as sodium oxide equivalent, shall not exceed 1.5 percent when determined in conformance with the requirements in ASTM Designation: C 311 or the total alkali, as sodium oxide equivalent, shall not exceed 5.0 percent when determined in conformance with the requirements in AASHTO Designation: T 105.
- B. Ultra fine fly ash (UFFA) conforming to the requirements in AASHTO Designation: M 295, Class F, and the following chemical and physical requirements:

Chemical Requirements	Percent
Sulfur Trioxide (SO ₃)	1.5 max.
Loss on ignition	1.2 max.
Available Alkalies (as Na ₂ O) equivalent	1.5 max.

Physical Requirements	Percent
Particle size distribution	
Less than 3.5 microns	50
Less than 9.0 microns	90
Strength Activity Index with portland cement	
7 days	95 (minimum % of control)
28 days	110 (minimum % of control)
Expansion at 16 days when testing job materials in	0.10 max.
conformance with ASTM C 1567*	

^{*} In the test mix, Type II or Type V portland cement shall be replaced with at least 12% UFFA by weight.

- C. Raw or calcined natural pozzolans conforming to the requirements in AASHTO Designation: M 295, Class N. and the following requirements and these specifications. The available alkali, as sodium oxide equivalent, shall not exceed 1.5 percent when determined in conformance with the requirements in ASTM Designation: C 311 or the total alkali, as sodium oxide equivalent, shall not exceed 5.0 percent when determined in conformance with the requirements in AASHTO Designation: T 105.
- D. Metakaolin conforming to the requirements in AASHTO Designation: M 295, Class N, and the following chemical and physical requirements:

Chemical Requirements	Percent
Silicon Dioxide (SiO ₂) + Aluminum Oxide (Al ₂ O ₃)	92.0 min.
Calcium Oxide (CaO)	1.0 max
Sulfur Trioxide (SO ₃)	1.0 max.
Loss on ignition	1.2 max.
Available Alkalies (as Na ₂ O) equivalent	1.0 max.

Physical Requirements	Percent
Particle size distribution	95
Less than 45 microns	
Strength Activity Index with portland cement	
7 days	100 (minimum % of control)
28 days	100 (minimum % of control)

- E. Ground Granulated Blast Furnace Slag (GGBFS) conforming to the requirements in AASHTO Designation: M 302, Grade 100 or Grade 120.
- F. Silica Fume conforming to the requirements of AASHTO Designation: M 307, with reduction in mortar expansion of 80 percent, minimum, using the cement from the proposed mix design.

Commingling of fly ash from different sources at uncontrolled ratios is permissible only if the following criteria are satisfied:

- A. Sources of fly ash to be commingled shall each produce fly ash that conforms to the requirements in AASHTO Designation: M 295, Class F.
- B. Testing of the commingled product is the responsibility of the fly ash supplier.
- C. Each fly ash's running average of relative density shall not differ from any other by more than 0.25 at the time of commingling.
- D. Each fly ash's running average of loss on ignition shall not differ from any other by more than one percent at the time of commingling.
- E. The final product of commingled fly ash shall conform to the requirements in AASHTO Designation: M 295, Class F.

90-2.01C Required Use Of Supplementary Cementitious Materials

General

The amount of portland cement and SCM used in portland cement concrete shall conform to the minimum cementitious material content provisions in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," and these specifications.

The SCM content in portland cement concrete shall conform to one of the following:

A. Any combination of portland cement and at least one SCM, satisfying Equations (1) and (2):

$$\frac{(25 \text{ x UF}) + (12 \text{ x FA}) + (10 \text{ x FB}) + (6 \text{ x SL})}{25 \text{ x UF}} \ge X$$

Where:

Equation (1)

- UF = Silica fume, metakaolin, or UFFA, including the amount in blended cement, pounds per cubic yard.
- FA = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content up to 10 percent, including the amount in blended cement, pounds per cubic yard.
- FB = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content greater than 10 percent and up to 15 percent, including the amount in blended cement, pounds per cubic yard.
- SL = GGBFS, including the amount in blended cement, pounds per cubic yard.
- MC = Minimum amount of cementitious material specified, pounds per cubic yard.
- X = 1.8 for innocuous aggregate, 3.0 for all other aggregate.

Equation (2)

 $MC - MSCM - PC \ge 0$

Where:

MC = Minimum amount of cementitious material specified, pounds per cubic yard.

MSCM = The minimum sum of SCMs that satisfies Equation (1) above, pounds per cubic yard.

PC = The amount of portland cement, including the amount in blended cement, pounds per cubic yard.

B. 15 percent of Class F fly ash with at least 48 ounces of LiNO₃ solution added per 100 pounds of portland cement. CaO content of the fly ash shall not exceed 15 percent.

Precast Concrete

The SCM content in precast portland cement concrete shall conform to one of the following:

A. Any combination of portland cement and SCM, satisfying the following equation:

Equation (3)

$$\frac{(25 \text{ x UF}) + (12 \text{ x FA}) + (10 \text{ x FB}) + (6 \text{ x SL})}{\text{TC}} \ge X$$

Where:

- UF = Silica fume, metakaolin, or UFFA, including the amount in blended cement, pounds per cubic vard.
- FA = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content up to 10 percent, including the amount in blended cement, pounds per cubic yard.
- FB = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content greater than 10 percent and up to 15 percent, including the amount in blended cement, pounds per cubic yard.
- SL = GGBFS, including the amount in blended cement, pounds per cubic yard.
- TC = Total amount of cementitious material used in the mix, pounds per cubic yard.
- X = 0.0 if precast members are constructed with portland cement concrete using aggregate that is "innocuous" in conformance with the provisions in Section 90-2.02, "Aggregates."
- X = 3.0 for all other aggregate.
- B. 15 percent of Class F fly ash with at least 48 ounces of LiNO₃ solution added per 100 pounds of portland cement. CaO content of the fly ash shall not exceed 15 percent.
- C. Any combination of supplementary cementitious material and portland cement may be used if the expansion of cementitious material and aggregate does not exceed 0.10 percent when tested in conformance with the requirements in ASTM C 1567. Test data shall be submitted with each mix design. Test data

accepted by the Engineer no more than 3 years prior to the first working day of this contract will be acceptable for this entire contract, provided the data was for the same concrete mix and the same materials and material sources to be used on this contract.

90-2.02 AGGREGATES

To be considered innocuous, aggregate must be on the Department's approved list, "Innocuous Aggregates for use in Concrete." Information regarding aggregate qualification and placement on the Department's approved list can be obtained at the Transportation Laboratory.

Both coarse and fine aggregate must be on the approved list for the aggregate used in concrete to be considered innocuous.

Aggregates shall be free from deleterious coatings, clay balls, roots, bark, sticks, rags, and other extraneous material.

The Contractor shall provide safe and suitable facilities, including necessary splitting devices for obtaining samples of aggregates, in conformance with California Test 125.

Aggregates shall be of such character that it will be possible to produce workable concrete within the limits of water content provided in Section 90-6.06, "Amount of Water and Penetration."

Aggregates shall have not more than 10 percent loss when tested for soundness in conformance with the requirements in California Test 214. The soundness requirement for fine aggregate will be waived, provided that the durability index, D_f , of the fine aggregate is 60 or greater when tested for durability in conformance with California Test 229.

If the results of any one or more of the Cleanness Value, Sand Equivalent, or aggregate grading tests do not meet the requirements specified for "Operating Range" but all meet the "Contract Compliance" requirements, the placement of concrete shall be suspended at the completion of the current pour until tests or other information indicate that the next material to be used in the work will comply with the requirements specified for "Operating Range."

If the results of either or both the Cleanness Value and coarse aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete that is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State \$3.50 per cubic yard for paving concrete and \$5.50 per cubic yard for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract.

If the results of either or both the Sand Equivalent and fine aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete which is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State \$3.50 per cubic yard for paving concrete and \$5.50 per cubic yard for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract.

The 2 preceding paragraphs apply individually to the "Contract Compliance" requirements for coarse aggregate and fine aggregate. When both coarse aggregate and fine aggregate do not conform to the "Contract Compliance" requirements, both paragraphs shall apply. The payments specified in those paragraphs are in addition to any payments made in conformance with the provisions in Section 90-1.01, "Description."

No single Cleanness Value, Sand Equivalent, or aggregate grading test shall represent more than 300 cubic yards of concrete or one day's pour, whichever is smaller.

When the source of an aggregate is changed, the Contractor shall adjust the mix proportions and submit in writing to the Engineer a copy of the mix design before using the aggregates.

90-2.02A Coarse Aggregate

Coarse aggregate shall consist of gravel, crushed gravel, crushed rock, reclaimed aggregate, crushed air-cooled iron blast furnace slag or combinations thereof. Crushed air-cooled blast furnace slag shall not be used in reinforced or prestressed concrete.

Reclaimed aggregate is aggregate that has been recovered from plastic concrete by washing away the cementitious material. Reclaimed aggregate shall conform to all aggregate requirements.

Coarse aggregate shall conform to the following quality requirements:

	California	
Tests	Test	Requirements
Loss in Los Angeles Rattler (after 500	211	45% max.
revolutions)		
Cleanness Value		
Operating Range	227	75 min.
Contract Compliance	227	71 min.

In lieu of the above Cleanness Value requirements, a Cleanness Value "Operating Range" limit of 71, minimum, and a Cleanness Value "Contract Compliance" limit of 68, minimum, will be used to determine the acceptability of the coarse aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that:

- A. Coarse aggregate sampled at the completion of processing at the aggregate production plant had a Cleanness Value of not less than 82 when tested in conformance with the requirements in California Test 227; and
- B. Prequalification tests performed in conformance with the requirements in California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete.

90-2.02B Fine Aggregate

Fine aggregate shall consist of natural sand, manufactured sand produced from larger aggregate or a combination thereof. Manufactured sand shall be well graded.

Fine aggregate shall conform to the following quality requirements:

Test	California Test	Requirements
Organic Impurities	213	Satisfactory ^a
Sand Equivalent:		,
Operating Range	217	75, min.
Contract Compliance	217	71, min.

^a Fine aggregate developing a color darker than the reference standard color may be accepted if 95% relative mortar strength is achieved when tested in conformance with ASTM C87.

In lieu of the above Sand Equivalent requirements, a Sand Equivalent "Operating Range" limit of 71, minimum, and a Sand Equivalent "Contract Compliance" limit of 68, minimum, will be used to determine the acceptability of the fine aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that:

- A. Fine aggregate sampled at the completion of processing at the aggregate production plant had a Sand Equivalent value of not less than 82 when tested by California Test 217; and
- B. Prequalification tests performed in conformance with California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete.

90-2.03 WATER

In conventionally reinforced concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 1,000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1,300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In prestressed concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 650 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1,300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In no case shall the water contain an amount of impurities that will cause either of the following results when compared to the same test using distilled or deionized water: 1) a change in the setting time of cement of more than 25 percent when tested in conformance with the requirements in ASTM

Designation: C 191 or ASTM Designation: C 266 or 2) a reduction in the compressive strength of mortar at 14 days of more than 5 percent, when tested in conformance with the requirements in ASTM Designation: C 109.

In nonreinforced concrete work, the water for curing, for washing aggregates and for mixing shall be free from oil and shall not contain more than 2,000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, or more than 1,500 parts per million of sulfates as SO_4 , when tested in conformance with California Test 417.

In addition to the above provisions, water for curing concrete shall not contain impurities in a sufficient amount to cause discoloration of the concrete or produce etching of the surface.

Water reclaimed from mixer wash-out operations may be used in mixing concrete. The water shall not contain coloring agents or more than 300 parts per million of alkalis ($Na_2O + 0.658 K_2O$) as determined on the filtrate. The specific gravity of the water shall not exceed 1.03 and shall not vary more than ± 0.010 during a day's operations.

90-2.04 Admixture Materials

Admixture materials shall be stored and dispensed in liquid form and conform to the following requirements:

- A. Chemical Admixtures—ASTM Designation: C 494.
- B. Air-entraining Admixtures—ASTM Designation: C 260.
- C. Lithium Nitrate shall be in an aqueous solution conforming to the following:
 - 1. Lithium Nitrate (LiNO₃) must be 30 percent +/- 0.5 percent by weight
 - 2. Sulfate (SO₄) must be less than 1000 ppm
 - 3. Chloride (Cl) must be less than 1000 ppm
 - 4. Alkalis (Na₂O + $0.658 \text{ K}_2\text{O}$) must be less than 1000 ppm

90-3 AGGREGATE GRADINGS

90-3.01 GENERAL

Before beginning concrete work, the Contractor shall submit in writing to the Engineer the gradation of the primary aggregate nominal sizes that the Contractor proposes to furnish. If a primary coarse aggregate or the fine aggregate is separated into 2 or more sizes, the proposed gradation shall consist of the gradation for each individual size, and the proposed proportions of each individual size, combined mathematically to indicate one proposed gradation. The proposed gradation shall meet the grading requirements shown in the table in this section, and shall show the percentage passing each of the sieve sizes used in determining the end result.

The Engineer may waive, in writing, the gradation requirements in this Section 90-3.01 and in Sections 90-3.02, "Coarse Aggregate Grading," 90-3.03, "Fine Aggregate Grading," and 90-3.04, "Combined Aggregate Gradings," if, in the Engineer's opinion, furnishing the gradation is not necessary for the type or amount of concrete work to be constructed.

Gradations proposed by the Contractor shall be within the following percentage passing limits:

Primary Aggregate Nominal Size	Sieve Size	Limits of Proposed Gradation
1-1/2" x 3/4"	1"	19 - 41
1" x No. 4	3/4"	52 - 85
1" x No. 4	3/8"	15 - 38
1/2" x No. 4	3/8"	40 - 78
3/8" x No. 8	3/8"	50 - 85
Fine Aggregate	No. 16	55 - 75
Fine Aggregate	No. 30	34 - 46
Fine Aggregate	No. 50	16 - 29

Should the Contractor change the source of supply, the Contractor shall submit in writing to the Engineer the new gradations before their intended use.

90-3.02 COARSE AGGREGATE GRADING

The grading requirements for coarse aggregates are shown in the following table for each size of coarse aggregate:

	Percentage Passing Primary Aggregate Nominal Sizes							
	1-1/2	" x 3/4"	1" x No. 4		1" x No. 4 1/2" x No		No. 4 3/8" x No. 8	
	Operating	Contract	Operating	Contract	Operating	Contract	Operating	Contract
Sieve Sizes	Range	Compliance	Range	Compliance	Range	Compliance	Range	Compliance
2"	100	100	_		_		_	_
1-1/2"	88 - 100	85 - 100	100	100	1	_	_	_
1"	X ±18	X ±25	88 - 100	86 - 100	1	_	_	_
3/4"	0 - 17	0 - 20	X ±15	X ±22	100	100	_	_
1/2"	_	_	_		82 - 100	80 - 100	100	100
3/8"	0 - 7	0 - 9	X ±15	X ±22	X ±15	X ±22	X ±15	X ±20
No. 4	_	_	0 - 16	0 - 18	0 - 15	0 - 18	0 - 25	0 - 28
No. 8	_	_	0 - 6	0 - 7	0 - 6	0 - 7	0 - 6	0 - 7

In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General."

Coarse aggregate for the 1-1/2 inch, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," shall be furnished in 2 or more primary aggregate nominal sizes. Each primary aggregate nominal size may be separated into 2 sizes and stored separately, provided that the combined material conforms to the grading requirements for that particular primary aggregate nominal size.

When the one inch, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," is to be used, the coarse aggregate may be separated into 2 sizes and stored separately, provided that the combined material shall conform to the grading requirements for the 1" x No. 4 primary aggregate nominal size.

90-3.03 FINE AGGREGATE GRADING

Fine aggregate shall be graded within the following limits:

	Percentage Passing			
Sieve Sizes	Operating Range	Contract Compliance		
3/8"	100	100		
No. 4	95 - 100	93 - 100		
No. 8	65 - 95	61 - 99		
No. 16	X ±10	X ±13		
No. 30	X ±9	X ±12		
No. 50	X ±6	X ±9		
No. 100	2 - 12	1 - 15		
No. 200	0 - 8	0 - 10		

In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General."

In addition to the above required grading analysis, the distribution of the fine aggregate sizes shall be such that the difference between the total percentage passing the No. 16 sieve and the total percentage passing the No. 30 sieve shall be between 10 and 40, and the difference between the percentage passing the No. 30 and No. 50 sieves shall be between 10 and 40.

Fine aggregate may be separated into 2 or more sizes and stored separately, provided that the combined material conforms to the grading requirements specified in this Section 90-3.03.

90-3.04 COMBINED AGGREGATE GRADINGS

Combined aggregate grading limits shall be used only for the design of concrete mixes. Concrete mixes shall be designed so that aggregates are combined in proportions that shall produce a mixture within the grading limits for combined aggregates as specified herein.

The combined aggregate grading, except when otherwise specified in these specifications or the special provisions, shall be either the 1-1/2 inch, maximum grading, or the 1 inch, maximum grading, at the option of the Contractor.

Grading Limits of Combined Aggregates

	Percentage Passing			
Sieve Sizes	1-1/2" Max.	1" Max.	1/2" Max.	3/8" Max.
2"	100	_	_	_
1-1/2"	90 - 100	100	_	_
1"	50 - 86	90 - 100	_	_
3/4"	45 - 75	55 - 100	100	_
1/2"	_	_	90 - 100	100
3/8"	38 - 55	45 - 75	55 - 86	50 - 100
No. 4	30 - 45	35 - 60	45 - 63	45 - 63
No. 8	23 - 38	27 - 45	35 - 49	35 - 49
No. 16	17 - 33	20 - 35	25 - 37	25 - 37
No. 30	10 - 22	12 - 25	15 - 25	15 - 25
No. 50	4 - 10	5 - 15	5 - 15	5 - 15
No. 100	1 - 6	1 - 8	1 - 8	1 - 8
No. 200	0 - 3	0 - 4	0 - 4	0 - 4

Changes from one grading to another shall not be made during the progress of the work unless permitted by the Engineer.

90-4 ADMIXTURES

90-4.01 GENERAL

Admixtures used in portland cement concrete shall conform to and be used in conformance with the provisions in this Section 90-4 and the special provisions. Admixtures shall be used when specified or ordered by the Engineer and may be used at the Contractor's option as provided herein.

Chemical admixtures and air-entraining admixtures containing chlorides as Cl in excess of one percent by weight of admixture, as determined by California Test 415, shall not be used.

Admixtures shall be uniform in properties throughout their use in the work. Should it be found that an admixture as furnished is not uniform in properties, its use shall be discontinued.

If more than one admixture is used, the admixtures shall be compatible with each other so that the desirable effects of all admixtures used will be realized.

Chemical admixtures shall be used in conformance with the manufacturer's written recommendations. The manufacturer's written recommendations shall include a statement that the admixtures are compatible with the types and amounts of SCMs used.

90-4.02 MATERIALS

Admixture materials shall conform to the provisions in Section 90-2.04, "Admixture Materials."

90-4.03 ADMIXTURE APPROVAL

No admixture brand shall be used in the work unless it is on the Department's current list of approved brands for the type of admixture involved. Information regarding admixture qualification and placement on the Department's list can be obtained at the Transportation Laboratory.

If the Contractor proposes to use an admixture of a brand and type on the current list of approved admixture brands, the Contractor shall furnish a Certificate of Compliance from the manufacturer, as provided in Section 6-1.07, "Certificates of Compliance," certifying that the admixture furnished is the same as that previously approved. If a previously approved admixture is not accompanied by a Certificate of Compliance, the admixture shall not be used in the work until the Engineer has had sufficient time to make the appropriate tests and has approved the admixture for use. The Engineer may take samples for testing at any time, whether or not the admixture has been accompanied by a Certificate of Compliance.

90-4.04 REQUIRED USE OF CHEMICAL ADMIXTURES

If the use of a chemical admixture is specified, the admixture shall be used at the dosage specified, except that if no dosage is specified, the admixture shall be used at the dosage normally recommended by the manufacturer of the admixture.

90-4.05 OPTIONAL USE OF CHEMICAL ADMIXTURES

The Contractor may use Type A or F, water-reducing; Type B, retarding; or Type D or G, water-reducing and retarding admixtures as described in ASTM Designation: C 494 to conserve cementitious material or to facilitate any concrete construction application subject to the following conditions:

- A. If a water-reducing admixture or a water-reducing and retarding admixture is used, the cementitious material content specified or ordered may be reduced by a maximum of 5 percent by weight, except that the resultant cementitious material content shall be not less than 505 pounds per cubic yard; and
- B. When a reduction in cementitious material content is made, the dosage of admixture used shall be no less than the dosage used in determining approval of the admixture.

The Contractor may use Type S admixtures conforming to the requirements in ASTM Designation: C 494.

Unless otherwise specified, a Type C accelerating chemical admixture conforming to the requirements in ASTM Designation: C 494, may be used in portland cement concrete. Inclusion in the mix design submitted for approval will not be required provided that the admixture is added to counteract changing conditions that contribute to delayed setting of the portland cement concrete, and the use or change in dosage of the admixture is approved in writing by the Engineer.

90-4.06 REQUIRED USE OF AIR-ENTRAINING ADMIXTURES

When air-entrainment is specified or ordered by the Engineer, the air-entraining admixture shall be used in amounts to produce a concrete having the specified air content as determined by California Test 504.

90-4.07 OPTIONAL USE OF AIR-ENTRAINING ADMIXTURES

When air-entrainment has not been specified or ordered by the Engineer, the Contractor will be permitted to use an air-entraining admixture to facilitate the use of any construction procedure or equipment provided that the average air content, as determined by California Test 504, of 3 successive tests does not exceed 4 percent, and no single test value exceeds 5.5 percent. If the Contractor elects to use an air-entraining admixture in concrete for pavement, the Contractor shall so indicate at the time the Contractor designates the source of aggregate.

90-4.08 BLANK

90-4.09 BLANK

90-4.10 PROPORTIONING AND DISPENSING LIQUID ADMIXTURES

Chemical admixtures and air-entraining admixtures shall be dispensed in liquid form. Dispensers for liquid admixtures shall have sufficient capacity to measure at one time the prescribed quantity required for each batch of concrete. Each dispenser shall include a graduated measuring unit into which liquid admixtures are measured to within ±5 percent of the prescribed quantity for each batch. Dispensers shall be located and maintained so that the graduations can be accurately read from the point at which proportioning operations are controlled to permit a visual check of batching accuracy prior to discharge. Each measuring unit shall be clearly marked for the type and quantity of admixture.

Each liquid admixture dispensing system shall be equipped with a sampling device consisting of a valve located in a safe and readily accessible position such that a sample of the admixture may be withdrawn slowly by the Engineer.

If more than one liquid admixture is used in the concrete mix, each liquid admixture shall have a separate measuring unit and shall be dispensed by injecting equipment located in such a manner that the admixtures are not mixed at high concentrations and do not interfere with the effectiveness of each other. When air-entraining admixtures are used in conjunction with other liquid admixtures, the air-entraining admixture shall be the first to be incorporated into the mix, unless it is demonstrated that a different sequence improves performance.

When automatic proportioning devices are used, dispensers for liquid admixtures shall operate automatically with the batching control equipment. The dispensers shall be equipped with an automatic warning system in good operating condition that will provide a visible or audible signal at the point at which proportioning operations are controlled when the quantity of admixture measured for each batch of concrete varies from the preselected dosage by more than 5 percent, or when the entire contents of the measuring unit are not emptied from the dispenser into each batch of concrete.

Unless liquid admixtures are added to premeasured water for the batch, their discharge into the batch shall be arranged to flow into the stream of water so that the admixtures are well dispersed throughout the batch, except that

air-entraining admixtures may be dispensed directly into moist sand in the batching bins provided that adequate control of the air content of the concrete can be maintained.

Liquid admixtures requiring dosages greater than one-half gallon per cubic yard shall be considered to be water when determining the total amount of free water as specified in Section 90-6.06, "Amount of Water and Penetration."

90-4.11 BLANK

90-5 PROPORTIONING

90-5.01 STORAGE OF AGGREGATES

Aggregates shall be stored or stockpiled in such a manner that separation of coarse and fine particles of each size shall be avoided and the various sizes shall not become intermixed before proportioning.

Aggregates shall be stored or stockpiled and handled in a manner that prevent contamination by foreign materials. In addition, storage of aggregates at batching or mixing facilities that are erected subsequent to the award of the contract and that furnish concrete to the project shall conform to the following:

- A. Intermingling of the different sizes of aggregates shall be positively prevented. The Contractor shall take the necessary measures to prevent intermingling. The preventive measures may include, but are not necessarily limited to, physical separation of stockpiles or construction of bulkheads of adequate length and height; and
- B. Contamination of aggregates by contact with the ground shall be positively prevented. The Contractor shall take the necessary measures to prevent contamination. The preventive measures shall include, but are not necessarily limited to, placing aggregates on wooden platforms or on hardened surfaces consisting of portland cement concrete, asphalt concrete, or cement treated material.

In placing aggregates in storage or in moving the aggregates from storage to the weigh hopper of the batching plant, any method that may cause segregation, degradation, or the combining of materials of different gradings that will result in any size of aggregate at the weigh hopper failing to meet the grading requirements, shall be discontinued. Any method of handling aggregates that results in excessive breakage of particles shall be discontinued. The use of suitable devices to reduce impact of falling aggregates may be required by the Engineer.

90-5.02 PROPORTIONING DEVICES

Weighing, measuring, or metering devices used for proportioning materials shall conform to the requirements in Section 9-1.01, "Measurement of Quantities," and this Section 90-5.02. In addition, automatic weighing systems shall comply with the requirements for automatic proportioning devices in Section 90-5.03A, "Automatic Proportioning." Automatic devices shall be automatic to the extent that the only manual operation required for proportioning the aggregates, cement, and SCM for one batch of concrete is a single operation of a switch or starter.

For concrete pavement, aggregate and bulk cementitious material must be proportioned by weight by means of automatic proportioning devices.

Proportioning devices shall be tested as frequently as the Engineer may deem necessary to ensure their accuracy.

Weighing equipment shall be insulated against vibration or movement of other operating equipment in the plant. When the plant is in operation, the weight of each batch of material shall not vary from the weight designated by the Engineer by more than the tolerances specified herein.

Equipment for cumulative weighing of aggregate shall have a zero tolerance of ± 0.5 percent of the designated total batch weight of the aggregate. For systems with individual weigh hoppers for the various sizes of aggregate, the zero tolerance shall be ± 0.5 percent of the individual batch weight designated for each size of aggregate. Equipment for cumulative weighing of cement and SCM shall have a zero tolerance of ± 0.5 percent of the designated total batch weight of the cement and SCM. Equipment for weighing cement or SCM separately shall have a zero tolerance of ± 0.5 percent of their designated individual batch weights. Equipment for measuring water shall have a zero tolerance of ± 0.5 percent of its designated weight or volume.

The weight indicated for any batch of material shall not vary from the preselected scale setting by more than the following:

A. Aggregate weighed cumulatively shall be within 1.0 percent of the designated total batch weight of the aggregate. Aggregates weighed individually shall be within 1.5 percent of their respective designated batch weights; and

- B. Cement shall be 99 to 102 percent of its designated batch weight. When weighed individually, SCM shall be 99 to 102 percent of its designated batch weight. When SCM and cement are permitted to be weighed cumulatively, cement shall be weighed first to 99 to 102 percent of its designated batch weight, and the total for cement and SCM shall be 99 to 102 percent of the sum of their designated batch weights When a blended cement is used, the percentages of cement and SCM used for calculating batch weights shall be based on the percentage of SCM indicated in the Certificate of Compliance from the blended cement supplier; and
- C. Water shall be within 1.5 percent of its designated weight or volume.

Each scale graduation shall be approximately 0.001 of the total capacity of the scale. The capacity of scales for weighing cement, SCM, or cement plus SCM and aggregates shall not exceed that of commercially available scales having single graduations indicating a weight not exceeding the maximum permissible weight variation above, except that no scale shall be required having a capacity of less than 1,000 pounds, with one pound graduations.

90-5.03 PROPORTIONING

Proportioning shall consist of dividing the aggregates into the specified sizes, each stored in a separate bin, and combining them with cementitious material and water as provided in these specifications. Aggregates shall be proportioned by weight.

At the time of batching, aggregates shall have been dried or drained sufficiently to result in a stable moisture content such that no visible separation of water from aggregate will take place during transportation from the proportioning plant to the point of mixing. In no event shall the free moisture content of the fine aggregate at the time of batching exceed 8 percent of its saturated, surface-dry weight.

Should separate supplies of aggregate material of the same size group, but of different moisture content or specific gravity or surface characteristics affecting workability, be available at the proportioning plant, withdrawals shall be made from one supply exclusively and the materials therein completely exhausted before starting upon another.

Bulk Type IP (MS) or Type IS (MS) cement shall be weighed in an individual hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer.

Bulk cement and SCM may be weighed in separate, individual weigh hoppers or may be weighed in the same weigh hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer. If the cement and SCM are weighed cumulatively, the cement shall be weighed first.

If cement and SCM are weighed in separate weigh hoppers, the weigh systems for the proportioning of the aggregate, the cement, and the SCM shall be individual and distinct from all other weigh systems. Each weigh system shall be equipped with a hopper, a lever system, and an indicator to constitute an individual and independent material-weighing device. The cement and the SCM shall be discharged into the mixer simultaneously with the aggregate.

The scales and weigh hoppers for bulk weighing cement, SCM, or cement plus SCM shall be separate and distinct from the aggregate weighing equipment.

For batches of one cubic yard or more, the batching equipment shall conform to one of the following combinations:

- A. Separate boxes and separate scale and indicator for weighing each size of aggregate.
- B. Single box and scale indicator for all aggregates.
- C. Single box or separate boxes and automatic weighing mechanism for all aggregates.

In order to check the accuracy of batch weights, the gross weight and tare weight of batch trucks, truck mixers, truck agitators, and non-agitating hauling equipment shall be determined when ordered by the Engineer. The equipment shall be weighed on scales designated by the Engineer.

90-5.03A Automatic Proportioning

Automatic proportioning devices shall be authorized by the Department.

For concrete pavement, the Contractor shall install and maintain in operating condition an electronically actuated moisture meter that will indicate, on a readily visible scale, changes in the moisture content of the fine aggregate as it is batched within a sensitivity of 0.5 percent by weight of the fine aggregate.

The batching of cement, SCM, or cement plus SCM and aggregate shall be interlocked so that a new batch cannot be started until all weigh hoppers are empty, the proportioning devices are within zero tolerance, and the discharge gates are closed. The interlock shall permit no part of the batch to be discharged until all aggregate

hoppers and the cement and SCM hoppers or the cement plus SCM hopper are charged with weights that are within the tolerances specified in Section 90-5.02, "Proportioning Devices."

If interlocks are required for cement and SCM charging mechanisms and cement and SCM are weighed cumulatively, their charging mechanisms shall be interlocked to prevent the introduction of SCM until the weight of cement in the cement weigh hopper is within the tolerances specified in Section 90-5.02, "Proportioning Devices."

If concrete is completely mixed in stationary mixers, the SCMs shall be weighed in a separate weigh hopper and the SCM and cement shall be introduced simultaneously into the mixer proportionately with the aggregate. If the Contractor provides certification that the stationary mixer is capable of mixing the cement, SCM, aggregates, and water uniformly before discharge, weighing the SCM cumulatively with the cement is permitted. Certification shall contain the following:

- A. Test results for 2 compressive strength test cylinders of concrete taken within the first one-third and 2 compressive strength test cylinders of concrete taken within the last one-third of the concrete discharged from a single batch from the stationary mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength";
- B. Calculations demonstrating that the difference in the averages of 2 compressive strengths taken in the first one-third is no greater than 7.5 percent different than the averages of 2 compressive strengths taken in the last one-third of the concrete discharged from a single batch from the stationary mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;" and
- C. The mixer rotation speed and time of mixing before discharge that are required to produce a mix that meets the requirements above.

The discharge gate on the cement and SCM hoppers or the cement plus SCM hopper shall be designed to permit regulating the flow of cement, SCM, or cement plus SCM into the aggregate as directed by the Engineer.

If separate weigh boxes are used for each size of aggregate, the discharge gates shall permit regulating the flow of each size of aggregate as directed by the Engineer.

Material discharged from the several bins shall be controlled by gates or by mechanical conveyors. The means of withdrawal from the several bins, and of discharge from the weigh box, shall be interlocked so that not more than one bin can discharge at a time, and so that the weigh box cannot be tripped until the required quantity from each of the several bins has been deposited therein. Should a separate weigh box be used for each size of aggregate, all may be operated and discharged simultaneously.

If the discharge from the several bins is controlled by gates, each gate shall be actuated automatically so that the required weight is discharged into the weigh box, after which the gate shall automatically close and lock.

The automatic weighing system shall be designed so that all proportions required may be set on the weighing controller at the same time.

90-6 MIXING AND TRANSPORTING

90-6.01 GENERAL

Concrete shall be mixed in mechanically operated mixers, except that when permitted by the Engineer, batches not exceeding 1/3 cubic yard may be mixed by hand methods in conformance with the provisions in Section 90-6.05, "Hand-Mixing."

Equipment having components made of aluminum or magnesium alloys that would have contact with plastic concrete during mixing, transporting, or pumping of portland cement concrete shall not be used.

Concrete shall be homogeneous and thoroughly mixed, and there shall be no lumps or evidence of undispersed cementitious material.

Uniformity of concrete mixtures will be determined by differences in penetration as determined by California Test 533, or slump as determined by ASTM Designation: C 143, and by variations in the proportion of coarse aggregate as determined by California Test 529.

When the mix design specifies a penetration value, the difference in penetration, determined by comparing penetration tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed 1/2 inch. When the mix design specifies a slump value, the difference in slump, determined by comparing slump tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed the values given in the table below. Variation in the proportion of coarse aggregate will be determined by comparing the results of tests of 2 samples of mixed concrete from the same batch or truck mixer load and the difference between the 2 results shall not exceed 170 pounds per cubic yard of concrete.

Average Slump	Maximum Permissible Difference
Less than 4"	1"
4" to 6"	1-1/2"
Greater than 6" to 9"	2"

The Contractor shall furnish samples of the freshly mixed concrete and provide satisfactory facilities for obtaining the samples.

90-6.02 MACHINE MIXING

Concrete mixers may be of the revolving drum or the revolving blade type, and the mixing drum or blades shall be operated uniformly at the mixing speed recommended by the manufacturer. Mixers and agitators that have an accumulation of hard concrete or mortar shall not be used.

The temperature of mixed concrete, immediately before placing, shall be not less than 50 °F or more than 90 °F. Aggregates and water shall be heated or cooled as necessary to produce concrete within these temperature limits. Neither aggregates nor mixing water shall be heated to exceed 150 °F. If ice is used to cool the concrete, discharge of the mixer will not be permitted until all ice is melted.

The batch shall be so charged into the mixer that some water will enter in advance of cementitious materials and aggregates. All water shall be in the drum by the end of the first one-fourth of the specified mixing time. When concrete is delivered in a truck mixer, a portion of the mixing water may be withheld and, if allowed by the Engineer, may be added at the point of delivery as specified under Section 90-6.03, "Transporting Mixed Concrete."

Cementitious materials shall be batched and charged into the mixer by means that will not result either in loss of cementitious materials due to the effect of wind, in accumulation of cementitious materials on surfaces of conveyors or hoppers, or in other conditions that reduce or vary the required quantity of cementitious material in the concrete mixture.

Stationary mixers shall be operated with an automatic timing device. The timing device and discharge mechanism shall be interlocked so that during normal operation no part of the batch will be discharged until the specified mixing time has elapsed.

The total elapsed time between the intermingling of damp aggregates and all cementitious materials and the start of mixing shall not exceed 30 minutes.

The size of batch shall not exceed the manufacturer's guaranteed capacity.

When producing concrete for pavement or base, suitable batch counters shall be installed and maintained in good operating condition at job site batching plants and stationary mixers. The batch counters shall indicate the exact number of batches proportioned and mixed.

Concrete shall be mixed and delivered to the job site by means of one of the following combinations of operations:

- A. Mixed completely in a stationary mixer and the mixed concrete transported to the point of delivery in truck agitators or in nonagitating hauling equipment (central-mixed concrete).
- B. Mixed partially in a stationary mixer, and the mixing completed in a truck mixer (shrink-mixed concrete).
- C. Mixed completely in a truck mixer (transit-mixed concrete).

Agitators may be truck mixers operating at agitating speed or truck agitators. Each mixer and agitator shall have attached thereto in a prominent place a metal plate or plates on which is plainly marked the various uses for which the equipment is designed, the manufacturer's guaranteed capacity of the drum or container in terms of the volume of mixed concrete and the speed of rotation of the mixing drum or blades.

Truck mixers shall be equipped with electrically or mechanically actuated revolution counters by which the number of revolutions of the drum or blades may readily be verified.

When shrink-mixed concrete is furnished, concrete that has been partially mixed at a central plant shall be transferred to a truck mixer and all requirements for transit-mixed concrete shall apply. No credit in the number of revolutions at mixing speed will be allowed for partial mixing in a central plant.

90-6.03 TRANSPORTING MIXED CONCRETE

Mixed concrete may be transported to the delivery point in truck agitators or truck mixers operating at the speed designated by the manufacturer of the equipment as agitating speed, or in non-agitating hauling equipment, provided the consistency and workability of the mixed concrete upon discharge at the delivery point is suitable for adequate placement and consolidation in place, and provided the mixed concrete after hauling to the delivery point conforms to the provisions in Section 90-6.01, "General."

Truck agitators shall be loaded not to exceed the manufacturer's guaranteed capacity and shall maintain the mixed concrete in a thoroughly mixed and uniform mass during hauling.

Bodies of nonagitating hauling equipment shall be constructed so that leakage of the concrete mix, or any part thereof, will not occur at any time.

Concrete hauled in open-top vehicles shall be protected during hauling against rain or against exposure to the sun for more than 20 minutes when the ambient temperature exceeds 75 °F.

No water in excess of that in the approved mix design shall be incorporated into the concrete. If approved by the Engineer, water withheld during batching may be added to the concrete at the delivery point in one operation before the discharge of more than 1/4 cubic yard. Equipment for supplying the water shall conform to Section 90-6.06, "Amount of Water and Penetration." When water is added at the point of delivery, the drum shall be revolved not less than 30 revolutions at mixing speed after the water is added and before discharged is commenced.

The rate of discharge of mixed concrete from a truck mixer or agitator shall be controlled by the speed of rotation of the drum in the discharge direction with the discharge gate fully open.

If a truck mixer or agitator is used for transporting concrete to the delivery point, discharge shall be completed within 1.5 hours or before 250 revolutions of the drum or blades, whichever occurs first, after the introduction of the cementitious materials to the aggregates. Under conditions contributing to quick stiffening of the concrete, or if the temperature of the concrete is 85 °F or above, the time allowed may be less than 1.5 hours. If an admixture is used to retard the set time, the temperature of the concrete shall not exceed 85 °F, the time limit shall be 2 hours, and the revolution limitation shall be 300.

If nonagitating hauling equipment is used for transporting concrete to the delivery point, discharge shall be completed within one hour after the addition of the cementitious materials to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 85 °F or above, the time between the introduction of cementitious materials to the aggregates and discharge shall not exceed 45 minutes.

Each load of concrete delivered at the job site shall be accompanied by a weighmaster certificate showing the mix identification number, nonrepeating load number, date and time at which the materials were batched, the total amount of water added to the load, and for transit-mixed concrete, the reading of the revolution counter at the time the truck mixer is charged with cement. This weighmaster certificate shall also show the actual scale weights (pounds) for the ingredients batched. Theoretical or target batch weights shall not be used as a substitute for actual scale weights.

Weighmaster certificates shall be provided in printed form, or if approved by the Engineer, the data may be submitted in electronic media. Electronic media shall be presented in a tab-delimited format on a CD or DVD. Captured data, for the ingredients represented by each batch shall be "line feed, carriage return" (LFCR) and "one line, separate record" with allowances for sufficient fields to satisfy the amount of data required by these specifications.

The Contractor may furnish a weighmaster certificate accompanied by a separate certificate that lists the actual batch weights or measurements for a load of concrete provided that both certificates are imprinted with the same nonrepeating load number that is unique to the contract and delivered to the jobsite with the load.

Weighmaster certificates furnished by the Contractor shall conform to the provisions in Section 9-1.01, "Measurement of Quantities."

90-6.04 TIME OR AMOUNT OF MIXING

Mixing of concrete in stationary mixers shall continue for the required mixing time after all ingredients, except water and admixture, if added with the water, are in the mixing compartment of the mixer before any part of the batch is released. Transfer time in multiple drum mixers shall not be counted as part of the required mixing time.

The required mixing time, in stationary mixers, of concrete used for concrete structures, except minor structures, shall be not less than 90 seconds or more than 5 minutes, except that when directed by the Engineer in writing, the requirements of the following paragraph shall apply.

The required mixing time in stationary mixers, except as provided in the preceding paragraph, shall be not less than 50 seconds or more than 5 minutes.

The minimum required revolutions at the mixing speed for transit-mixed concrete shall not be less than that recommended by the mixer manufacturer, but in no case shall the number of revolutions be less than that required to consistently produce concrete conforming to the provisions for uniformity in Section 90-6.01, "General."

When a high range water-reducing admixture is added to the concrete at the job site, the total number of revolutions shall not exceed 300.

90-6.05 HAND-MIXING

Hand-mixed concrete shall be made in batches of not more than 1/3 cubic yard and shall be mixed on a watertight, level platform. The proper amount of coarse aggregate shall be measured in measuring boxes and spread

on the platform and the fine aggregate shall be spread on this layer, the 2 layers being not more than one foot in total depth. On this mixture shall be spread the dry cementitious materials and the whole mass turned no fewer than 2 times dry; then sufficient clean water shall be added, evenly distributed, and the whole mass again turned no fewer than 3 times, not including placing in the carriers or forms.

90-6.06 AMOUNT OF WATER AND PENETRATION

The amount of water used in concrete mixes shall be regulated so that the penetration of the concrete as determined by California Test 533 or the slump of the concrete as determined by ASTM Designation: C 143 is within the nominal values shown in the following table. When the penetration or slump of the concrete is found to exceed the nominal values listed, the mixture of subsequent batches shall be adjusted to reduce the penetration or slump to a value within the nominal range shown. Batches of concrete with a penetration or slump exceeding the maximum values listed shall not be used in the work. If Type F or Type G chemical admixtures are added to the mix, the penetration requirements shall not apply and the slump shall not exceed 9 inches after the chemical admixtures are added.

Type of Work	Nominal		Maximum	
	Penetration	Slump	Penetration	Slump
	(inches)	(inches)	(inches)	(inches)
Concrete Pavement	0 - 1	_	1-1/2	_
Non-reinforced concrete facilities	0 – 1-1/2		2	
Reinforced concrete structures				
Sections over 12 inches thick	0 - 1 - 1/2	_	2-1/2	_
Sections 12 inches thick or less	0 - 2	_	3	_
Concrete placed under water	_	6 - 8		9
Cast-in-place concrete piles	2-1/2 - 3-1/2	5 - 7	4	8

The amount of free water used in concrete shall not exceed 310 pounds per cubic yard, plus 20 pounds for each required 100 pounds of cementitious material in excess of 550 pounds per cubic yard.

The term free water is defined as the total water in the mixture minus the water absorbed by the aggregates in reaching a saturated surface-dry condition.

If there are adverse or difficult conditions that affect the placing of concrete, the above specified penetration and free water content limitations may be exceeded providing the Contractor is granted permission by the Engineer in writing to increase the cementitious material content per cubic yard of concrete. The increase in water and cementitious material shall be at a ratio not to exceed 30 pounds of water per added 100 pounds of cementitious material per cubic yard. Full compensation for additional cementitious material and water added under these conditions shall be considered as included in the contract price paid for the concrete work involved and no additional compensation will be allowed therefor.

The equipment for supplying water to the mixer shall be constructed and arranged so that the amount of water added can be measured accurately. Any method of discharging water into the mixer for a batch shall be accurate within 1.5 percent of the quantity of water required to be added to the mix for any position of the mixer. Tanks used to measure water shall be designed so that water cannot enter while water is being discharged into the mixer and discharge into the mixer shall be made rapidly in one operation without dribbling. All equipment shall be arranged so as to permit checking the amount of water delivered by discharging into measured containers.

90-7 CURING CONCRETE

90-7.01 METHODS OF CURING

Newly placed concrete shall be cured by the methods specified in this Section 90-7.01 and the special provisions.

90-7.01A Water Method

The concrete shall be kept continuously wet by the application of water for a minimum curing period of 7 days after the concrete has been placed.

Cotton mats, rugs, carpets, or earth or sand blankets may be used as a curing medium to retain the moisture during the curing period.

If a curing medium consisting of cotton mats, rugs, carpets, polyethylene sheeting, polyethylene sheeting on burlap, or earth or sand blankets is to be used to retain the moisture, the entire surface of the concrete shall be kept

damp by applying water with a nozzle that so atomizes the flow that a mist and not a spray is formed, until the surface of the concrete is covered with the curing medium. The moisture from the nozzle shall not be applied under pressure directly upon the concrete and shall not be allowed to accumulate on the concrete in a quantity sufficient to cause a flow or wash the surface. At the expiration of the curing period, the concrete surfaces shall be cleared of all curing media.

At the option of the Contractor, a curing medium consisting of white opaque polyethylene sheeting extruded onto burlap may be used to cure concrete structures. The polyethylene sheeting shall have a minimum thickness of 4-mil, and shall be extruded onto 10-ounce burlap.

At the option of the Contractor, a curing medium consisting of polyethylene sheeting may be used to cure concrete columns. The polyethylene sheeting shall have a minimum thickness of 10-mil achieved in a single layer of material.

If the Contractor chooses to use polyethylene sheeting or polyethylene sheeting on burlap as a curing medium, these media and any joints therein shall be secured as necessary to provide moisture retention and shall be within 3 inches of the concrete at all points along the surface being cured. When these media are used, the temperature of the concrete shall be monitored during curing. If the temperature of the concrete cannot be maintained below 140° F, use of these curing media shall be disallowed.

When concrete bridge decks and flat slabs are to be cured without the use of a curing medium, the entire surface of the bridge deck or slab shall be kept damp by the application of water with an atomizing nozzle as specified above, until the concrete has set, after which the entire surface of the concrete shall be sprinkled continuously with water for a period of not less than 7 days.

90-7.01B Curing Compound Method

Surfaces of the concrete that are exposed to the air shall be sprayed uniformly with a curing compound.

Curing compounds to be used shall be as follows:

- 1. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B, except the resin type shall be poly-alpha-methylstyrene.
- 2. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B.
- 3. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class A.
- 4. Nonpigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class B.
- 5. Nonpigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class A.
- 6. Nonpigmented curing compound with fugitive dye conforming to the requirements in ASTM Designation: C 309, Type 1-D, Class A.

The infrared scan for the dried vehicle from curing compound (1) shall match the infrared scan on file at the Transportation Laboratory.

The loss of water for each type of curing compound, when tested in conformance with the requirements in California Test 534, shall not be more than 0.28 pounds per square yard in 24 hours.

The curing compound to be used will be specified elsewhere in these specifications or in the special provisions.

If the use of curing compound is required or permitted elsewhere in these specifications or in the special provisions and no specific kind is specified, any of the curing compounds listed above may be used.

Curing compound shall be applied at a nominal rate of one gallon per 150 square feet, unless otherwise specified.

At any point, the application rate shall be within ± 50 square feet per gallon of the nominal rate specified, and the average application rate shall be within ± 25 square feet per gallon of the nominal rate specified when tested in conformance with the requirements in California Test 535. Runs, sags, thin areas, skips, or holidays in the applied curing compound shall be evidence that the application is not satisfactory.

Curing compounds shall be applied using power operated spray equipment. The power operated spraying equipment shall be equipped with an operational pressure gage and a means of controlling the pressure. Hand spraying of small and irregular areas that are not reasonably accessible to mechanical spraying equipment, in the opinion of the Engineer, may be permitted.

The curing compound shall be applied to the concrete following the surface finishing operation, immediately before the moisture sheen disappears from the surface, but before any drying shrinkage or craze cracks begin to

appear. In the event of any drying or cracking of the surface, application of water with an atomizing nozzle as specified in Section 90-7.01A, "Water Method," shall be started immediately and shall be continued until application of the compound is resumed or started; however, the compound shall not be applied over any resulting freestanding water. Should the film of compound be damaged from any cause before the expiration of 7 days after the concrete is placed in the case of structures and 72 hours in the case of pavement, the damaged portion shall be repaired immediately with additional compound.

At the time of use, compounds containing pigments shall be in a thoroughly mixed condition with the pigment uniformly dispersed throughout the vehicle. A paddle shall be used to loosen all settled pigment from the bottom of the container, and a power driven agitator shall be used to disperse the pigment uniformly throughout the vehicle.

Agitation shall not introduce air or other foreign substance into the curing compound.

The manufacturer shall include in the curing compound the necessary additives for control of sagging, pigment settling, leveling, de-emulsification, or other requisite qualities of a satisfactory working material. Pigmented curing compounds shall be manufactured so that the pigment does not settle badly, does not cake or thicken in the container, and does not become granular or curdled. Settlement of pigment shall be a thoroughly wetted, soft, mushy mass permitting the complete and easy vertical penetration of a paddle. Settled pigment shall be easily redispersed, with minimum resistance to the sideways manual motion of the paddle across the bottom of the container, to form a smooth uniform product of the proper consistency.

Curing compounds shall remain sprayable at temperatures above 40 °F and shall not be diluted or altered after manufacture.

The curing compound shall be packaged in clean 274-gallon totes, 55-gallon barrels or 5-gallon pails shall be supplied from a suitable storage tank located at the jobsite. The containers shall comply with "Title 49, Code of Federal Regulations, Hazardous Materials Regulations." The 274-gallon totes and the 55-gallon barrels shall have removable lids and airtight fasteners. The 5-gallon pails shall be round and have standard full open head and bail. Lids with bungholes will not be permitted. Settling or separation of solids in containers, except tanks, must be completely redispersed with low speed mixing prior to use, in conformance with these specifications and the manufacturer's recommendations. Mixing shall be accomplished either manually by use of a paddle or by use of a mixing blade driven by a drill motor, at low speed. Mixing blades shall be the type used for mixing paint. On-site storage tanks shall be kept clean and free of contaminants. Each tank shall have a permanent system designed to completely redisperse settled material without introducing air or other foreign substances.

Steel containers and lids shall be lined with a coating that will prevent destructive action by the compound or chemical agents in the air space above the compound. The coating shall not come off the container or lid as skins. Containers shall be filled in a manner that will prevent skinning. Plastic containers shall not react with the compound.

Each container shall be labeled with the manufacturer's name, kind of curing compound, batch number, volume, date of manufacture, and volatile organic compound (VOC) content. The label shall also warn that the curing compound containing pigment shall be well stirred before use. Precautions concerning the handling and the application of curing compound shall be shown on the label of the curing compound containers in conformance with the Construction Safety Orders and General Industry Safety Orders of the State.

Containers of curing compound shall be labeled to indicate that the contents fully comply with the rules and regulations concerning air pollution control in the State.

When the curing compound is shipped in tanks or tank trucks, a shipping invoice shall accompany each load. The invoice shall contain the same information as that required herein for container labels.

Curing compound will be sampled by the Engineer at the source of supply, at the job site, or at both locations.

Curing compound shall be formulated so as to maintain the specified properties for a minimum of one year. The Engineer may require additional testing before use to determine compliance with these specifications if the compound has not been used within one year or whenever the Engineer has reason to believe the compound is no longer satisfactory.

Tests will be conducted in conformance with the latest ASTM test methods and methods in use by the Transportation Laboratory.

90-7.01C Waterproof Membrane Method

The exposed finished surfaces of concrete shall be sprayed with water, using a nozzle that so atomizes the flow that a mist and not a spray is formed, until the concrete has set, after which the curing membrane, shall be placed. The curing membrane shall remain in place for a period of not less than 72 hours.

Sheeting material for curing concrete shall conform to the requirements in AASHTO Designation: M 171 for white reflective materials.

The sheeting material shall be fabricated into sheets of such width as to provide a complete cover for the entire concrete surface. Joints in the sheets shall be securely cemented together in such a manner as to provide a waterproof joint. The joint seams shall have a minimum lap of 0.33 foot.

The sheets shall be securely weighted down by placing a bank of earth on the edges of the sheets or by other means satisfactory to the Engineer.

Should any portion of the sheets be broken or damaged before the expiration of 72 hours after being placed, the broken or damaged portions shall be immediately repaired with new sheets properly cemented into place.

Sections of membrane that have lost their waterproof qualities or have been damaged to such an extent as to render them unfit for curing the concrete shall not be used.

90-7.01D Forms-In-Place Method

Formed surfaces of concrete may be cured by retaining the forms in place. The forms shall remain in place for a minimum period of 7 days after the concrete has been placed, except that for members over 20 inches in least dimension the forms shall remain in place for a minimum period of 5 days.

Joints in the forms and the joints between the end of forms and concrete shall be kept moisture tight during the curing period. Cracks in the forms and cracks between the forms and the concrete shall be resealed by methods subject to the approval of the Engineer.

90-7.02 BLANK

90-7.03 CURING STRUCTURES

Newly placed concrete for cast-in-place structures, other than highway bridge decks, shall be cured by the water method, the forms-in-place method, or, as permitted herein, by the curing compound method, in conformance with the provisions in Section 90-7.01, "Methods of Curing."

The curing compound method using a pigmented curing compound may be used on concrete surfaces of construction joints, surfaces that are to be buried underground, and surfaces where only ordinary surface finish is to be applied and on which a uniform color is not required and that will not be visible from a public traveled way. If the Contractor elects to use the curing compound method on the bottom slab of box girder spans, the curing compound shall be curing compound (1).

The top surface of highway bridge decks shall be cured by both the curing compound method and the water method. The curing compound shall be curing compound (1).

Concrete surfaces of minor structures, as defined in Section 51-1.02, "Minor Structures," shall be cured by the water method, the forms-in-place method or the curing compound method.

When deemed necessary by the Engineer during periods of hot weather, water shall be applied to concrete surfaces being cured by the curing compound method or by the forms-in-place method, until the Engineer determines that a cooling effect is no longer required. Application of water for this purpose will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."

90-7.04 CURING PRECAST CONCRETE MEMBERS

Precast concrete members shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." Curing shall be provided for the minimum time specified for each method or until the concrete reaches its design strength, whichever is less. Steam curing may also be used for precast members and shall conform to the following provisions:

- A. After placement of the concrete, members shall be held for a minimum 4-hour presteaming period. If the ambient air temperature is below 50 °F, steam shall be applied during the presteaming period to hold the air surrounding the member at a temperature between 50 °F and 90 °F.
- B. To prevent moisture loss on exposed surfaces during the presteaming period, members shall be covered as soon as possible after casting or the exposed surfaces shall be kept wet by fog spray or wet blankets.
- C. Enclosures for steam curing shall allow free circulation of steam about the member and shall be constructed to contain the live steam with a minimum moisture loss. The use of tarpaulins or similar flexible covers will be permitted, provided they are kept in good repair and secured in such a manner as to prevent the loss of steam and moisture.
- D. Steam at the jets shall be at low pressure and in a saturated condition. Steam jets shall not impinge directly on the concrete, test cylinders, or forms. During application of the steam, the temperature rise within the enclosure shall not exceed 40 °F per hour. The curing temperature throughout the enclosure shall not exceed 150 °F and shall be maintained at a constant level for a sufficient time necessary to develop the

- required transfer strength. Control cylinders shall be covered to prevent moisture loss and shall be placed in a location where temperature is representative of the average temperature of the enclosure.
- E. Temperature recording devices that will provide an accurate, continuous, permanent record of the curing temperature shall be provided. A minimum of one temperature recording device per 200 feet of continuous bed length will be required for checking temperature.
- F. Members in pretension beds shall be detensioned immediately after the termination of steam curing while the concrete and forms are still warm, or the temperature under the enclosure shall be maintained above 60 °F until the stress is transferred to the concrete.
- G. Curing of precast concrete will be considered completed after termination of the steam curing cycle.

90-7.05 CURING PRECAST PRESTRESSED CONCRETE PILES

Newly placed concrete for precast prestressed concrete piles shall be cured in conformance with the provisions in Section 90-7.04, "Curing Precast Concrete Members," except that piles in a corrosive environment shall be cured as follows:

- A. Piles shall be either steam cured or water cured. If water curing is used, the piles shall be kept continuously wet by the application of water in conformance with the provisions in Section 90-7.01A, "Water Method."
- B. If steam curing is used, the steam curing provisions in Section 90-7.04, "Curing Precast Concrete Members," shall apply except that the piles shall be kept continuously wet for their entire length for a period of not less than 3 days, including the holding and steam curing periods.

90-7.06 CURING SLOPE PROTECTION

Concrete slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing."

Concreted-rock slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing," with a blanket of earth kept wet for 72 hours, or by sprinkling with a fine spray of water every 2 hours during the daytime for a period of 3 days.

90-7.07 CURING MISCELLANEOUS CONCRETE WORK

Exposed surfaces of curbs shall be cured by pigmented curing compounds as specified in Section 90-7.01B, "Curing Compound Method."

Concrete sidewalks, gutter depressions, island paving, curb ramps, driveways, and other miscellaneous concrete areas shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing."

Shotcrete shall be cured for at least 72 hours by spraying with water, by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing."

Mortar and grout shall be cured by keeping the surface damp for 3 days.

After placing, the exposed surfaces of sign structure foundations, including pedestal portions, if constructed, shall be cured for at least 72 hours by spraying with water, by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing."

90-8 PROTECTING CONCRETE

90-8.01 GENERAL

In addition to the provisions in Section 7-1.16, "Contractor's Responsibility for the Work and Materials," the Contractor shall protect concrete as provided in this Section 90-8. If required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete.

The Contractor shall protect concrete from damage from any cause, which shall include, but not be limited to: rain, heat, cold, wind, Contractor's actions, and actions of others.

Concrete shall not be placed on frozen or ice-coated ground or subgrade nor on ice-coated forms, reinforcing steel, structural steel, conduits, precast members, or construction joints.

Under rainy conditions, placing of concrete shall be stopped before the quantity of surface water is sufficient to damage surface mortar or cause a flow or wash of the concrete surface, unless the Contractor provides adequate protection against damage.

Concrete that has been frozen or damaged by other causes, as determined by the Engineer, shall be removed and replaced by the Contractor at the Contractor's expense.

90-8.02 PROTECTING CONCRETE STRUCTURES

Structure concrete and shotcrete used as structure concrete shall be maintained at a temperature of not less than 45 °F for 72 hours after placing and at not less than 40 °F for an additional 4 days.

90-9 COMPRESSIVE STRENGTH

90-9.01 GENERAL

Concrete compressive strength requirements consist of a minimum strength that shall be attained before various loads or stresses are applied to the concrete and, for concrete designated by compressive strength, a minimum strength at the age of 28 days or at the age otherwise allowed in Section 90-1.01, "Description." The various strengths required are specified in these specifications or the special provisions or are shown on the plans.

The compressive strength of concrete will be determined from test cylinders that have been fabricated from concrete sampled in conformance with the requirements of California Test 539. Test cylinders will be molded and initially field cured in conformance with California Test 540. Test cylinders will be cured and tested after receipt at the testing laboratory in conformance with the requirements of California Test 521. A strength test shall consist of the average strength of 2 cylinders fabricated from material taken from a single load of concrete, except that, if any cylinder should show evidence of improper sampling, molding, or testing, that cylinder shall be discarded and the strength test shall consist of the strength of the remaining cylinder.

When concrete compressive strength is specified as a prerequisite to applying loads or stresses to a concrete structure or member, test cylinders for other than steam cured concrete will be cured in conformance with Method 1 of California Test 540. The compressive strength of concrete determined for these purposes will be evaluated on the basis of individual tests.

When concrete is designated by compressive strength rather than by cementitious material content, the concrete strength to be used as a basis for acceptance of other than steam cured concrete will be determined from cylinders cured in conformance with Method 1 of California Test 540. If the result of a single compressive strength test at the maximum age specified or allowed is below the specified strength but is 95 percent or more of the specified strength, the Contractor shall make corrective changes, subject to approval of the Engineer, in the mix proportions or in the concrete fabrication procedures, before placing additional concrete, and shall pay to the State \$10 for each inplace cubic yard of concrete represented by the deficient test. If the result of a single compressive strength test at the maximum age specified or allowed is below 95 percent of the specified strength, but is 85 percent or more of the specified strength, the Contractor shall make the corrective changes specified above, and shall pay to the State \$15 for each in-place cubic yard of concrete represented by the deficient test. In addition, such corrective changes shall be made when the compressive strength of concrete tested at 7 days indicates, in the judgment of the Engineer, that the concrete will not attain the required compressive strength at the maximum age specified or allowed. Concrete represented by a single test that indicates a compressive strength of less than 85 percent of the specified 28-day compressive strength will be rejected in conformance with the provisions in Section 6-1.04, "Defective Materials."

If the test result indicates that the compressive strength at the maximum age specified or allowed is below the specified strength, but is 85 percent or more of the specified strength, payments to the State as required above shall be made, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength of the concrete placed in the work meets or exceeds the specified 28-day compressive strength. If the test result indicates a compressive strength at the maximum age specified or allowed below 85 percent, the concrete represented by that test will be rejected, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength of the concrete placed in the work is at least 85 percent of the specified strength. If the evidence consists of tests made on cores taken from the work, the cores shall be obtained and tested in conformance with the requirements in ASTM Designation: C 42.

No single compressive strength test shall represent more than 320 cubic yards.

If a precast concrete member is steam cured, the compressive strength of the concrete will be determined from test cylinders that have been handled and stored in conformance with Method 3 of California Test 540. The compressive strength of steam cured concrete will be evaluated on the basis of individual tests representing specific portions of production. If the concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete shall be considered to be acceptable whenever its compressive strength reaches the specified 28-day compressive strength provided that strength is reached in not more than the maximum number of days specified or allowed after the member is cast.

When concrete has a specified 28-day compressive strength greater than 3,600 pounds per square inch or when prequalification is specified, prequalification of materials, mix proportions, mixing equipment, and procedures proposed for use will be required prior to placement of the concrete. Prequalification shall be accomplished by the submission of acceptable certified test data or trial batch reports by the Contractor. Prequalification data shall be

based on the use of materials, mix proportions, mixing equipment, procedures, and size of batch proposed for use in the work.

Certified test data, in order to be acceptable, shall indicate that not less than 90 percent of at least 20 consecutive tests exceed the specified strength at the maximum number of days specified or allowed, and none of those tests are less than 95 percent of specified strength. Strength tests included in the data shall be the most recent tests made on concrete of the proposed mix design and all shall have been made within one year of the proposed use of the concrete.

Trial batch test reports, in order to be acceptable, shall indicate that the average compressive strength of 5 consecutive concrete cylinders, taken from a single batch, at not more than 28 days (or the maximum age allowed) after molding shall be at least 600 pounds per square inch greater than the specified 28-day compressive strength, and no individual cylinder shall have a strength less than the specified strength at the maximum age specified or allowed. Data contained in the report shall be from trial batches that were produced within one year of the proposed use of specified strength concrete in the project. Whenever air-entrainment is required, the air content of trial batches shall be equal to or greater than the air content specified for the concrete without reduction due to tolerances.

Tests shall be performed in conformance with either the appropriate California Test methods or the comparable ASTM test methods. Equipment employed in testing shall be in good condition and shall be properly calibrated. If the tests are performed during the life of the contract, the Engineer shall be notified sufficiently in advance of performing the tests in order to witness the test procedures.

The certified test data and trial batch test reports shall include the following information:

- A. Date of mixing.
- B. Mixing equipment and procedures used.
- C. The size of batch in cubic yards and the weight, type, and source of all ingredients used.
- D. Penetration or slump (if the concrete will be placed under water or placed in cast-in-place concrete piles) of the concrete.
- E. The air content of the concrete if an air-entraining admixture is used.
- F. The age at time of testing and strength of all concrete cylinders tested.

Certified test data and trial batch test reports shall be signed by an official of the firm that performed the tests.

When approved by the Engineer, concrete from trial batches may be used in the work at locations where concrete of a lower quality is required and the concrete will be paid for as the type of concrete required at that location.

After materials, mix proportions, mixing equipment, and procedures for concrete have been prequalified for use, additional prequalification by testing of trial batches will be required prior to making changes that, in the judgment of the Engineer, could result in a strength of concrete below that specified.

The Contractor's attention is directed to the time required to test trial batches and the Contractor shall be responsible for production of trial batches at a sufficiently early date so that the progress of the work is not delayed.

When precast concrete members are manufactured at the plant of an established manufacturer of precast concrete members, the mix proportions of the concrete shall be determined by the Contractor, and a trial batch and prequalification of the materials, mix proportions, mixing equipment, and procedures will not be required.

90-10 MINOR CONCRETE

90-10.01 GENERAL

Concrete for minor structures, slope paving, curbs, sidewalks and other concrete work, when designated as minor concrete on the plans, in the specifications, or in the contract item, shall conform to the provisions specified herein.

The Engineer, at the Engineer's discretion, will inspect and test the facilities, materials and methods for producing the concrete to ensure that minor concrete of the quality suitable for use in the work is obtained.

Before using minor concrete or in advance of revising the mix proportions, the Contractor shall submit in writing to the Engineer a copy of the mix design. When required by the following table, the Contractor shall include compressive strength test results verifying the minimum specified compressive strength:

SCM	Test Submittal Required
Fly Ash used alone	When portland cement content<350 lbs/cy
GGBFS used alone	When portland cement content <250 lbs/cy
Natural Pozzolan used alone	When portland cement content <350 lbs/cy
More than 1 SCM	Always

Tests shall be performed by an ACI certified technician.

90-10.02 MATERIALS

Minor concrete shall conform to the following requirements:

90-10.02A Cementitious Material

Cementitious material shall conform to the provisions in Section 90-1.01, "Description," and 90-2, "Materials."

90-10.02B Aggregate

Aggregate shall be clean and free from deleterious coatings, clay balls, roots, and other extraneous materials.

Use of crushed concrete or reclaimed aggregate is acceptable only if the aggregate satisfies all aggregate requirements.

The Contractor shall submit to the Engineer for approval, a grading of the combined aggregate proposed for use in the minor concrete. After acceptance of the grading, aggregate furnished for minor concrete shall conform to that grading, unless a change is authorized in writing by the Engineer.

The Engineer may require the Contractor to furnish periodic test reports of the aggregate grading furnished. The maximum size of aggregate used shall be at the option of the Contractor, but in no case shall the maximum size be larger than 1-1/2-inch or smaller than 3/4 inch.

The Engineer may waive, in writing, the gradation requirements in this Section 90-10.02B, if, in the Engineer's opinion, the furnishing of the gradation is not necessary for the type or amount of concrete work to be constructed.

90-10.02C Water

Water used for washing, mixing, and curing shall be free from oil, salts, and other impurities that would discolor or etch the surface or have an adverse affect on the quality of the concrete.

90-10.02D Admixtures

The use of admixtures shall conform to the provisions in Section 90-4, "Admixtures."

90-10.03 PRODUCTION

Cementitious material, water, aggregate, and admixtures shall be stored, proportioned, mixed, transported, and discharged in conformance with recognized standards of good practice that will result in concrete that is thoroughly and uniformly mixed, that is suitable for the use intended, and that conforms to requirements specified herein. Recognized standards of good practice are outlined in various industry publications such as are issued by American Concrete Institute, AASHTO, or the Department.

The cementitious material content of minor concrete shall conform to the provisions in Section 90-1.01, "Description."

The amount of water used shall result in a consistency of concrete conforming to the provisions in Section 90-6.06, "Amount of Water and Penetration." Additional mixing water shall not be incorporated into the concrete during hauling or after arrival at the delivery point, unless allowed by the Engineer.

Discharge of ready-mixed concrete from the transporting vehicle shall be made while the concrete is still plastic and before stiffening occurs. An elapsed time of 1.5 hours (one hour in non-agitating hauling equipment), or more than 250 revolutions of the drum or blades, after the introduction of the cementitious material to the aggregates, or a temperature of concrete of more than 90 °F will be considered conditions contributing to the quick stiffening of concrete. The Contractor shall take whatever action is necessary to eliminate quick stiffening, except that the addition of water will not be permitted.

The required mixing time in stationary mixers shall be not less than 50 seconds or more than 5 minutes.

The minimum required revolutions at mixing speed for transit-mixed concrete shall be not less than that recommended by the mixer manufacturer, and shall be increased, if necessary, to produce thoroughly and uniformly mixed concrete.

When a high range water-reducing admixture is added to the concrete at the job site, the total number of revolutions shall not exceed 300.

Each load of ready-mixed concrete shall be accompanied by a weighmaster certificate that shall be delivered to the Engineer at the discharge location of the concrete, unless otherwise directed by the Engineer. The weighmaster certificate shall be clearly marked with the date and time of day when the load left the batching plant and, if hauled in truck mixers or agitators, the time the mixing cycle started.

A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall be furnished to the Engineer, prior to placing minor concrete from a source not previously used on the contract, stating that minor concrete to be furnished meets contract requirements, including minimum cementitious material content specified.

90-10.04 CURING MINOR CONCRETE

Curing minor concrete shall conform to the provisions in Section 90-7, "Curing Concrete."

90-10.05 PROTECTING MINOR CONCRETE

Protecting minor concrete shall conform to the provisions in Section 90-8, "Protecting Concrete," except the concrete shall be maintained at a temperature of not less than 40 °F for 72 hours after placing.

90-10.06 MEASUREMENT AND PAYMENT

Minor concrete will be measured and paid for in conformance with the provisions specified in the various sections of these specifications covering concrete construction when minor concrete is specified in the specifications, shown on the plans, or indicated by contract item in the Engineer's Estimate.

90-11 MEASUREMENT AND PAYMENT

90-11.01 MEASUREMENT

Portland cement concrete will be measured in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete.

For concrete measured at the mixer, the volume in cubic feet shall be computed as the total weight of the batch in pounds divided by the density of the concrete in pounds per cubic foot. The total weight of the batch shall be calculated as the sum of all materials, including water, entering the batch. The density of the concrete will be determined in conformance with the requirements in California Test 518.

90-11.02 PAYMENT

Portland cement concrete will be paid for in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete.

Full compensation for furnishing and incorporating admixtures required by these specifications or the special provisions will be considered as included in the contract prices paid for the concrete involved and no additional compensation will be allowed therefor.

Should the Engineer order the Contractor to incorporate any admixtures in the concrete when their use is not required by these specifications or the special provisions, furnishing the admixtures and adding them to the concrete will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."

Should the Contractor use admixtures in conformance with the provisions in Section 90-4.05, "Optional Use of Chemical Admixtures," or Section 90-4.07, "Optional Use of Air-entraining Admixtures," or should the Contractor request and obtain permission to use other admixtures for the Contractor's benefit, the Contractor shall furnish those admixtures and incorporate them into the concrete at the Contractor's expense and no additional compensation will be allowed therefor.

^^^^^

SECTION 91 PAINT (Issued 05-1-06)

Replace Section 91-3 with:

Contract No. 12-0E3104 291 of 297

91-3 PAINTS FOR TIMBER

91-3.01 WOOD PRIMER, LATEX-BASE

Classification:

This specification covers a ready-mixed priming paint for use on unpainted wood or exterior woodwork. It shall conform with the requirements in the Detailed Performance Standards of the Master Painters Institute (MPI) for exterior wood primers, and be listed on the Exterior Latex Wood Primer MPI List Number 6.

91-3.02 PAINT; LATEX-BASE FOR EXTERIOR WOOD, WHITE AND TINTS

Classification:

This specification covers a ready-mixed paint for use on wood surfaces subject to outside exposures. This paint shall conform to the requirements in the Detailed Performance Standards of the Master Painters Institute (MPI) for Paint, Latex, Exterior, and shall be listed on the following MPI Approved Products List:

- A. Exterior Latex, Flat MPI Gloss Level 1, MPI List Number 10.
- B. Exterior Latex, Semi-Gloss, MPI Gloss Level 5, MPI List Number 11.
- C. Exterior Latex, Gloss, MPI Gloss Level 6, MPI List Number 119.

Unpainted wood shall first be primed with wood primer conforming to the provisions in Section 91-3.01, "Wood Primer, Latex-Base."

Replace Section 91-4 with:

91-4 MISCELLANEOUS PAINTS

91-4.01 THROUGH 91-4.04 (BLANK)

91-4.05 PAINT; ACRYLIC EMULSION, EXTERIOR WHITE AND LIGHT AND MEDIUM TINTS

Classification:

This specification covers an acrylic emulsion paint designed for use on exterior masonry. This paint shall conform to the requirements in the Detailed Performance Standards of the Master Painters Institute (MPI) for Paint, Latex, Exterior, and shall be listed on the following MPI Approved Products Lists:

- A. Exterior Latex, Flat MPI Gloss Level 1, MPI List Number 10.
- B. Exterior Latex, Semi-Gloss, MPI Gloss Level 5, MPI List Number 11.
- C. Exterior Latex, Gloss, MPI Gloss Level 6, MPI List Number 119.

This paint may be tinted by using "universal" or "all purpose" concentrates.

^^^^^^

SECTION 92 ASPHALTS (Issued 01-20-12)

Replace Section 92 with:

SECTION 92 ASPHALTS

92-1.01 DESCRIPTION

Asphalt is refined petroleum or a mixture of refined liquid asphalt and refined solid asphalt that are prepared from crude petroleum. Asphalt is:

- 1. Free from residues caused by the artificial distillation of coal, coal tar, or paraffin
- 2. Free from water

3. Homogeneous

92-1.02 MATERIALS

GENERAL

Furnish asphalt under the Department's "Certification Program for Suppliers of Asphalt." The Department maintains the program requirements, procedures, and a list of approved suppliers at:

http://www.dot.ca.gov/hq/esc/Translab/fpm/fpmcoc.htm

Transport, store, use, and dispose of asphalt safely.

Prevent the formation of carbonized particles caused by overheating asphalt during manufacturing or construction.

GRADES

Performance graded (PG) asphalt binder is:

Contract No. 12-0E3104 293 of 297 Performance Graded Asphalt Binder

		Specification				
		Grade				
Property	AASHTO					
	Test	PG	PG	PG	PG	PG
	Method	58-22 ^a	64-10	64-16	64-28	70-10
		Original Bind	er		•	•
Flash Point, Minimum °C	T 48	230	230	230	230	230
Solubility, Minimum % b	T 44	99	99	99	99	99
Viscosity at 135°C, ^c	T 316					
Maximum, Pa·s		3.0	3.0	3.0	3.0	3.0
Dynamic Shear,	T 315					
Test Temp. at 10 rad/s, °C		58	64	64	64	70
Minimum G*/sin(delta), kPa		1.00	1.00	1.00	1.00	1.00
Maximum G*/sin(delta), kPa		2.00	2.00	2.00	2.00	2.00
RTFO Test, ^e	T 240					
Mass Loss, Maximum, %		1.00	1.00	1.00	1.00	1.00
	RTF	O Test Aged	Binder			
Dynamic Shear,	T 315					
Test Temp. at 10 rad/s, °C		58	64	64	64	70
Minimum G*/sin(delta), kPa		2.20	2.20	2.20	2.20	2.20
Ductility at 25°C	T 51					
Minimum, cm		75	75	75	75	75
PAV f Aging,	R 28					
Temperature, °C		100	100	100	100	110
RTFO Test and PAV Aged Binder						
Dynamic Shear,	T 315					
Test Temp. at 10 rad/s, °C		22 ^d	31 ^d	28 ^d	22 ^d	34 ^d
Maximum G*sin(delta), kPa		5000	5000	5000	5000	5000
Creep Stiffness,	T 313					
Test Temperature, °C		-12	0	-6	-18	0
Maximum S-value, Mpa		300	300	300	300	300
Minimum M-value		0.300	0.300	0.300	0.300	0.300

Notes:

- a. Use as asphalt rubber base stock for high mountain and high desert area.
- b. The Engineer waives this specification if the supplier is a Quality Supplier as defined by the Department's "Certification Program for Suppliers of Asphalt."
- c. The Engineer waives this specification if the supplier certifies the asphalt binder can be adequately pumped and mixed at temperatures meeting applicable safety standards.
- d. Test the sample at 3° C higher if it fails at the specified test temperature. G*sin(delta) remains 5000 kPa maximum.
- e. "RTFO Test" means the asphaltic residue obtained using the Rolling Thin Film Oven Test, AASHTO Test Method T 240 or ASTM Designation: D 2872. The residue from mass change determination may be used for other tests.
- f. "PAV" means Pressurized Aging Vessel.

Performance graded polymer modified asphalt binder (PG Polymer Modified) is:

Performance Graded Polymer Modified Asphalt Binder ^a

	nee Graded Forymer Wodinee	Specification			
D	A A CHITTO TO A DATA I	Grade			
Property	AASHTO Test Method	D.C.	D.C.	D.C.	
		PG	PG	PG	
		58-34 PM	64-28 PM	76-22 PM	
	Original Binder	T	T		
Flash Point, Minimum °C	T 48	230	230	230	
Solubility, Minimum % b	T 44 ^c	98.5	98.5	98.5	
Viscosity at 135°C, d	T 316				
Maximum, Pa·s		3.0	3.0	3.0	
Dynamic Shear,	T 315				
Test Temp. at 10 rad/s, °C		58	64	76	
Minimum G*/sin(delta), kPa		1.00	1.00	1.00	
RTFO Test,	T 240				
Mass Loss, Maximum, %		1.00	1.00	1.00	
	RTFO Test Aged Binde	er			
Dynamic Shear,	T 315				
Test Temp. at 10 rad/s, °C		58	64	76	
Minimum G*/sin(delta), kPa		2.20	2.20	2.20	
Dynamic Shear,	T 315				
Test Temp. at 10 rad/s, °C		Note e	Note e	Note e	
Maximum (delta), %		80	80	80	
Elastic Recovery ^f ,	T 301				
Test Temp., °C		25	25	25	
Minimum recovery, %		75	75	65	
PAV ^g Aging,	R 28				
Temperature, °C		100	100	110	
RTFO Test and PAV Aged Binder					
Dynamic Shear,	T 315				
Test Temp. at 10 rad/s, °C		16	22	31	
Maximum G*sin(delta), kPa		5000	5000	5000	
Creep Stiffness,	T 313				
Test Temperature, °C		-24	-18	-12	
Maximum S-value, MPa		300	300	300	
Minimum M-value		0.300	0.300	0.300	

Notes:

- a. Do not modify PG Polymer Modified using acid modification.
- b. The Engineer waives this specification if the supplier is a Quality Supplier as defined by the Department's "Certification Program for Suppliers of Asphalt."
- c. The Department allows ASTM D 5546 instead of AASHTO T 44
- d. The Engineer waives this specification if the supplier certifies the asphalt binder can be adequately pumped and mixed at temperatures meeting applicable safety standards.
- e. Test temperature is the temperature at which G*/sin(delta) is 2.2 kPa. A graph of log G*/sin(delta) plotted against temperature may be used to determine the test temperature when G*/sin(delta) is 2.2 kPa. A graph of (delta) versus temperature may be used to determine delta at the temperature when G*/sin(delta) is 2.2 kPa. The Engineer also accepts direct measurement of (delta) at the temperature when G*/sin(delta) is 2.2 kPa.
- f. Tests without a force ductility clamp may be performed.
- g. "PAV" means Pressurized Aging Vessel.

SAMPLING

Provide a sampling device in the asphalt feed line connecting the plant storage tanks to the asphalt weighing system or spray bar. Make the sampling device accessible between 24 and 30 inches above the platform. Provide a receptacle for flushing the sampling device.

Include with the sampling device a valve:

- 1. Between 1/2 and 3/4 inch in diameter
- 2. Manufactured in a manner that a one-quart sample may be taken slowly at any time during plant operations
- 3. Maintained in good condition

Replace failed valves.

In the Engineer's presence, take 2 one-quart samples per operating day. Provide round, friction top, one-quart containers for storing samples.

92-1.03 EXECUTION

If asphalt is applied, you must comply with the heating and application specifications for liquid asphalt in Section 93, "Liquid Asphalts."

92-1.04 MEASUREMENT

If the contract work item for asphalt is paid by weight, the Department measures asphalt tons by complying with the specifications for weight determination of liquid asphalt in Section 93, "Liquid Asphalts."

The Engineer determines the asphalt weight from volumetric measurements if you:

- 1. Use a partial asphalt load
- 2. Use asphalt at a location other than a mixing plant and no scales within 20 miles are available and suitable
- 3. Deliver asphalt in either of the following:
 - 3.1. A calibrated truck with each tank accompanied by its measuring stick and calibration card
 - 3.2. A truck equipped with a calibrated thermometer that determines the asphalt temperature at the delivery time and with a vehicle tank meter complying with the specifications for weighing, measuring, and metering devices in Section 9-1.01, "Measurement of Quantities"

If you furnish hot mix asphalt from a mixing plant producing material for only one project, the Engineer determines the asphalt quantity by measuring the volume in the tank at the project's start and end provided the tank is calibrated and equipped with its measuring stick and calibration card.

The Engineer determines pay quantities from volumetric measurements as follows:

- 1. Before converting the volume to weight, the Engineer reduces the measured volume to that which the asphalt would occupy at 60 °F.
- 2. The Engineer uses 235 gallons per ton and 8.51 pounds per gallon for the average weight and volume for PG and PG Polymer Modified asphalt grades at 60 °F.
- 3. The Engineer uses the Conversion Table in Section 93, "Liquid Asphalts."

^^^^^^

SECTION 93 LIQUID ASPHALTS (Issued 11-03-06)

In Section 93-1.04 replace the 9th paragraph with:

The following Legend and Conversion Table is to be used for converting volumes of liquid asphalt products, Grades 70 to 3000, inclusive, and paving asphalt Grades PG 58-22, PG 64-10, PG 64-16, PG 64-28, and PG 70-10, and Grades PG 58-34 PM, PG 64-28 PM, and PG 76-22 PM.

^^^^^^

SECTION 95 EPOXY (Issued 06-05-09)

Replace the table in Section 95-2.11 with:

Characteristics of Adhesive:

Test ^a	California Test	Requirement
Brookfield Viscosity, No. 3 Spindle at 20 rpm, Poise at 77°F	434, Part 4	0.9 max.
Gel time, minutes	434, Part 1	2 to 15
Slant Shear Strength on Dry Concrete, psi, after 4 days of cure in air at 77° F ±2° F	434, Part 5 ^b	3,000 min.
Slant Shear Strength on Wet Concrete, psi, after 4 days of cure in air at 77° F ±2° F	434, Part 5 ^b	1,700 min.
Tensile Strength, psi	434, Part 7, except test after 4 days of cure at 77° F ±2° F	4,500 min.
Elongation, %	434, Part 7, except test after 4 days of cure at 77° F ±2° F	10 max.

^a The mixing ratio used will be that recommended by the manufacturer.

- 1. Soak blocks in water for 24 hours at 77° F ±2° F. Remove and wipe off excess water.
- 2. Mix epoxy as described in California Test 434, Part 1, and apply a coat approximately 0.010-inch thick to each diagonal surface. Place four 0.125-inch square pieces of shim stock 0.012-inch thick on one block to control final film thickness. Before pressing the coated surfaces together, leave the blocks so that the coated surfaces are horizontal until the epoxy reacts slightly to prevent excessive flow.

^b For slant shear strength on concrete, delete Sections B-1 and B-5 of California Test 434, Part 5. For dry concrete, use Step "2" below only. For wet concrete, use both Steps "1" & "2":